首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gymnosperms and angiosperms can co-occur within the same habitats but key plant traits are thought to give angiosperms an evolutionary competitive advantage in many ecological settings. We studied ontogenetic changes in competitive and facilitative interactions between a rare gymnosperm (Dioon sonorense, our target species) and different plant and abiotic neighbours (conspecific-cycads, heterospecific-angiosperms, or abiotic-rocks) from 2007 to 2010 in an arid environment of northwestern Mexico. We monitored survival and growth of seedlings, juveniles, and adults of the cycad Dioon sonorense to evaluate how cycad survival and relative height growth rate (RHGR) responded to intra- and interspecific competition, canopy openness, and nearest neighbour. We tested spatial associations among D. sonorense life stages and angiosperm species and measured ontogenetic shifts in cycad shade tolerance. Canopy openness decreased cycad survival while intraspecific competition decreased survival and RHGR during early ontogeny. Seedling survival was higher in association with rocks and heterospecific neighbours where intraspecific competition was lower. Shade tolerance decreased with cycad ontogeny reflecting the spatial association of advanced stages with more open canopies. Interspecific facilitation during early ontogeny of our target species may promote its persistence in spite of increasing interspecific competition in later stages. We provide empirical support to the long-standing assumption that marginal rocky habitats serve as refugia from angiosperm competition for slow-growing gymnosperms such as cycads. The lack of knowledge of plant–plant interactions in rare or endangered species may hinder developing efficient conservation strategies (e.g. managing for sustained canopy cover), especially under the ongoing land use and climatic changes.  相似文献   

2.
Several studies have argued that under field conditions plant–soil feedback may be related to the local density of a plant species, but plant–soil feedback is often studied by comparing conspecific and heterospecific soils or by using mixed soil samples collected from different locations and plant densities. We examined whether the growth of the early successional species Jacobaea vulgaris in soil collected from the field is related to the local variation in plant density of this species. In a grassland restoration site, we selected eight 8 m × 8 m plots, four with high and four with low densities of J. vulgaris plants. In 16 subplots in each plot we recorded the density and size of J. vulgaris, and characteristics of the vegetation and the soil chemistry. Soil collected from each subplot was used in a greenhouse pot-experiment to study the growth of J. vulgaris, both in pure field soil and in sterile soil inoculated with a small part of field soil.In the field, flowering J. vulgaris plants were taller, the percentage of rosette plants was higher and seed density was larger in High- than in Low-density plots. In the pot experiment, J. vulgaris had a negative plant–soil feedback, but biomass was also lower in soil collected from High- than from Low-density plots, although only when growing in inoculated soil. Regression analyses showed that J. vulgaris biomass of plants growing in pure soil was related to soil nutrients, but also to J. vulgaris density in the field.We conclude that in the field there is local variation in the negative plant–soil feedback of J. vulgaris and that this variation can be explained by the local density of J. vulgaris, but also by other factors such as nutrient availability.  相似文献   

3.
Desel C  Hubbermann EM  Schwarz K  Krupinska K 《Planta》2007,226(5):1311-1322
Nitration of γ-tocopherol has been suggested to be an important mechanism for the regulation and detoxification of reactive nitrogen oxide species in animal tissues. To investigate whether this reaction does also occur in plants, reversed phase high-performance liquid chromatography (HPLC) and mass spectrometry (LC-MS) were used for analysis of 5-nitro-γ-tocopherol (5-NγT) in leaves and seeds. 5-nitro-γ-tocopherol (5-NγT) could be detected in an in vitro system where it was most likely generated by the reaction of γ-tocopherol with a nitric oxide radical. In vivo 5-NγT was identified in leaves of the Arabidopsis mutant line (vte4), which has insertion in the gene encoding γ-tocopherol methyltransferase and consequently lacks α-tocopherol and accumulates high levels of γ-tocopherol. Quantification of NOx in leaves revealed that the vte4 mutant in comparison to wild type and the mutant vte1, which does not contain any tocopherol, has a reduced NOx concentration. The level of 5-NγT in leaves of the vte4 mutant was shown to depend on the developmental stage and on the duration of light exposure. 5-NγT was also detectable in germinating seeds of Brassica napus, Nicotiana tabacum and Arabidopsis thaliana. These seeds have in common high γ-tocopherol contents. The rate of germination at two days after imbibition inversely correlated with the γ-tocopherol content of the seeds. The result suggests that γ-tocopherol or its respective derivative, 5-NγT, may prolong early development by reducing the level of NOx.  相似文献   

4.
The ubiquitin/26S proteasome pathway is a basic biological mechanism involved in the regulation of a multitude of cellular processes. Increasing evidence indicates that plants utilize the ubiquitin/26S proteasome pathway in their immune response to pathogen invasion, emphasizing the role of this pathway during plant–pathogen interactions. The specific functions of proteasomal degradation in plant–pathogen interactions are diverse, and do not always benefit the host plant. Although in some cases, proteasomal degradation serves as an effective barrier to help plants ward off pathogens, in others, it is used by the pathogen to enhance the infection process. This review discusses the different roles of the ubiquitin/26S proteasome pathway during interactions of plants with pathogenic viruses, bacteria, and fungi.  相似文献   

5.
6.
7.
The data on heavy metal (HM) accumulation and detoxification by plants and bacteria in plant–microbial systems (PMS) are reviewed. Bacteria are shown to be the labile component of the system, responsible for a considerable amelioration of HM stress impact on plants and for improved PMS adaptation to heavy metals. Simulation of plant–microbial interactions under conditions of soil contamination by HM revealed the protective role of bacterial migration from the rhizoplane to the rhizosphere.  相似文献   

8.
Plant–plant interactions are increasingly recognized as a key driver of community organization and ecosystem processes in alpine environments. However, patterns and mechanisms of plant–plant interactions remain largely uncharacterized in tropical alpine ecosystems (TAE) which represent as much as 10% of the total surface area of alpine ecosystems worldwide. In this paper, we review (1) the ecological and environmental features that are specific to TAE in comparison with other alpine ecosystems, (2) the existing literature on plant–plant interactions in TAE, and (3) whether patterns and mechanisms of plant–plant interactions established in extratropical alpine zones can be extended to TAE. TAE are located predominantly in South America, East Africa, and South-East Asia where they show a unique combination of environmental characteristics, such as absence of persisting snow cover, high frequency of diurnal freeze–thaw cycles and needle-ice activity, and a decrease in precipitation with increasing altitude. These environmental characteristics result in the presence of giant growth forms with a great architectural diversity. These biotic and abiotic characteristics influence the outcome of plant–plant interactions by imposing other types of environmental constraints than those found in extratropical alpine environments, and by potentially generating distinctive patterns of niche differentiation/complementarity between species and populations. To generalize the conceptual framework of plant–plant interactions in alpine environments, we advocate that TAE should be investigated more thoroughly by applying designs, methods and hypotheses that are used currently in temperate areas and by conducting studies along large latitudinal gradients that include tropical regions.  相似文献   

9.
10.
Understanding the mechanisms that underlie nutrient use efficiency and carbon allocation along with mycorrhizal interactions is critical for managing croplands and forests soundly. Indeed, nutrient availability, uptake and exchange in biotrophic interactions drive plant growth and modulate biomass allocation. These parameters are crucial for plant yield, a major issue in the context of high biomass production. Transport processes across the polarized membrane interfaces are of major importance in the functioning of the established mycorrhizal association as the symbiotic relationship is based on a ‘fair trade’ between the fungus and the host plant. Nutrient and/or metabolite uptake and exchanges, at biotrophic interfaces, are controlled by membrane transporters whose regulation patterns are essential for determining the outcome of plant–fungus interactions and adapting to changes in soil nutrient quantity and/or quality. In the present review, we summarize the current state of the art regarding transport systems in the two major forms of mycorrhiza, namely ecto- and arbuscular mycorrhiza.  相似文献   

11.
Lang I  Barton DA  Overall RL 《Protoplasma》2004,224(3-4):231-243
Summary. Field emission scanning electron microscopy of plasmolysed Tradescantia virginiana leaf epidermal cells gave novel insights into the three-dimensional architecture of Hechtian strands, Hechtian reticulum, and the inner surface of the cell wall without the need for extraction. At high magnification, we observed fibres that pin the plasma membrane to the cell wall after plasmolysis. Treatment with cellulase caused these connecting fibres to be lost and the pinned out plasma membrane of the Hechtian reticulum to disintegrate into vesicles with diameters of 100–250nm. This suggests that the fibres may be cellulose. After 4h of plasmolysis, a fibrous meshwork that labelled with anti-callose antibodies was observed within the space between the plasmolysed protoplast and the cell wall by field emission scanning electron microscopy. Interestingly, macerase-pectinase treatment resulted in the loss of this meshwork, suggesting that it was stabilised by pectins. We suggest that cellulose microfibrils extending from strands of the Hechtian reticulum and entwining into the cell wall matrix act as anchors for the plasma membrane as it moves away from the wall during plasmolysis.Correspondence and reprints: Institute of Ecology and Conservation Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.  相似文献   

12.
Plant diseases bear names such as leaf blights, root rots, sheath blights, tuber scabs, and stem cankers, indicating that symptoms occur preferentially on specific parts of host plants. Accordingly, many plant pathogens are specialized to infect and cause disease in specific tissues and organs. Conversely, others are able to infect a range of tissues, albeit often disease symptoms fluctuate in different organs infected by the same pathogen. The structural specificity of a pathogen defines the degree to which it is reliant on a given tissue, organ, or host developmental stage. It is influenced by both the microbe and the host but the processes shaping it are not well established. Here we review the current status on structural specificity of plant–filamentous pathogen interactions and highlight important research questions. Notably, this review addresses how constitutive defence and induced immunity as well as virulence processes vary across plant organs, tissues, and even cells. A better understanding of the mechanisms underlying structural specificity will aid targeted approaches for plant health, for instance by considering the variation in the nature and the amplitude of defence responses across distinct plant organs and tissues when performing selective breeding.  相似文献   

13.
Patterns of herbivore browse at small scales, such as the rate of leaf consumption or plant preferences, drive the impact of herbivores on whole-plant processes, such as growth or survival, and subsequent changes in plant population structure. However, herbivore impacts are often non-linear, highly variable and context-dependent. Understanding the effect of herbivores on plant populations therefore requires a detailed understanding of the relationships that drive small-scale processes, and how these interact to generate dynamics at larger scales. We derive a mathematical model to predict annual rates of browse-induced tree mortality. We model individual plant mortality as a result of rates of foliage production, turnover and herbivore intake, and extend the model to the population scale by allowing for between-tree variation in levels of herbivore browse. The model is configurable for any broadleaved tree species subject to vertebrate or invertebrate browse, and is designed to be parameterized from field data typically collected as part of browse damage assessments. We parameterized and tested the model using data on foliage cover and browse damage recorded on kamahi trees (Weinmannia racemosa) browsed by possums (Trichosurus vulpecula) in New Zealand forests. The model replicated observed patterns of tree mortality at 12 independent validation sites with a wide range of herbivore densities and browse damage. The model reveals two key thresholds; in plant foliar cover, indicating when individual trees may be at high risk from browse-induced mortality, and in herbivore intake, leading to high rates of mortality across the whole population.  相似文献   

14.
Geldner N 《Planta》2004,219(4):547-560
Endosomes are highly dynamic membrane systems that receive endocytosed plasma membrane proteins and sort them for either degradation or recycling back to the cell surface. In addition, they receive newly synthesised proteins destined for vacuolar/lysosomal compartments. Sorting in the endosomes is necessary for the establishment and maintenance of cell polarity and it is needed to control levels and function of receptors and transporters at the cellular surface. Both processes are crucial for correct cell behaviour during tissue and organ development and for intercellular communication in general. It has therefore become an imperative to investigate structure and function of the endosomal system if we want to obtain a deeper mechanistic understanding of signal transduction and development. This review will compare our current understanding of endosomal trafficking in animals and yeast with what is known in plants, and will highlight some important breakthroughs in our understanding of the role of endosomes in signal transduction and multicellular development in Drosophila, as well as in Arabidopsis.Abbreviations ARF ADP ribosylation factor - BFA Brefeldin A - EGF Epidermal growth factor - GEF GDP/GTP exchange factor - MVB Multi-vesicular body - PCR Partially-coated reticulum - PI-3P Phosphatidylinositol-3-phosphate - TGN Trans-Golgi network  相似文献   

15.
Conservatism in species interaction, meaning that related species tend to interact with similar partners, is an important feature of ecological interactions. Studies at community scale highlight variations in conservatism strength depending on the characteristics of the ecological interaction studied. However, the heterogeneity of datasets and methods used prevent to compare results between mutualistic and antagonistic networks. Here we perform such a comparison by taking plant–insect communities as a study case, with data on plant–herbivore and plant–pollinator networks. Our analysis reveals that plants acting as resources for herbivores exhibit the strongest conservatism in species interaction among the four interacting groups. Conservatism levels are similar for insect pollinators, insect herbivores and plants as interacting partners of pollinators, although insect pollinators tend to have a slightly higher conservatism than the two others. Our results thus clearly support the current view that within antagonistic networks, conservatism is stronger for species as resources than for species as consumer. Although the pattern tends to be opposite for plant–pollinator networks, our results suggest that asymmetry in conservatism is much less pronounced between the pollinators and the plant they interact with. We discuss these differences in conservatism strength in relation with the processes structuring plant–insect communities.  相似文献   

16.
Activated carbon (AC) is widely used in ecological studies to elucidate the role of allelopathic substances in interspecific plant competition. However, by adsorbing chemical signalling compounds AC may also have negative effects on plants with symbiosis partners such as arbuscular mycorrhizal fungi and rhizobia. Here we test whether addition of AC has detrimental effects on the mycorrhizal root colonization of the native forb Plantago lanceolata and the exotic legume Lupinus polyphyllus, the nodulation of L. polyphyllus, and the nutrient uptake and growth of the plants growing in intra- and interspecific competition. Allelopathic effects probably occurred in the germination and seedling establishment phase when P. lanceolata suffered from the presence of L. polyphyllus. However, this negative effect of L. polyphyllus on P. lanceolata was not ameliorated by AC addition. AC negatively affected L. polyphyllus root biomass in week 4, and root and shoot biomass of P. lanceolata in week 9 of the experiment; both effects were independent of the presence and absence of the competing plant species. Mycorrhizal root colonization of both plant species was reduced in the presence of AC, although the effect tended to be stronger for L. polyphyllus. No significant effect of AC on the nodulation of L. polyphyllus was detected. P. lanceolata was the superior competitor and led to reduced biomasses of L. polyphyllus in interspecific competition. We conclude that AC can reduce the mycorrhization and performance of plants which may lead to changes in interspecific competition without the involvement of allelopathy. Contrary to former studies the AC used in our study did not enhance the nutrient availability for the plants, but reduced plant growth and mycorrhization. We suggest that the nutrient properties of the used AC are of crucial importance for the direction and the mechanisms of the effects and should always be reported.  相似文献   

17.
We examined the effect of water extracts of Persea americana fruit, and of the leaves of Tabernamontana divericata, Nerium oleander and Annona cherimolia (positive control) on Vicia faba root cells. We had confirmed in our previously published data the cytotoxicity of these plant extracts on four human cancer cell lines: liver (HepG-2), lung (A549), colon (HT-29) and breast (MCF-7). Vicia faba roots were soaked in plant extracts at dilutions of 100, 1,250, 2,500, 5,000, 10,000, 20,000 ppm for 4 and 24 h. All treatments resulted in a significant reduction in the mitotic index in a dose dependant manner. Root cells treated with T. divericata, N. oleander and A. cherimolia exhibited a decrease in prophase cell percentage, increase in micronuclei and chromosomal abnormalities as concentration increased. The P. americana treatment showed the highest cytotoxic effect on cancer cells, prophase cell percentage increased linearly with the applied concentration and no micronuclei were detected. This study shows that root tip assay of beans can be used in initial screening for new plant extracts to validate their use as candidates for containing active cytotoxic agents against malignant cells. This will greatly help in exploring new plant extracts as drugs for cancer treatment.  相似文献   

18.
Coffee is an important plantation crop grown in about 80 countries across the globe. In recent years, coffee attained lot of attention in the biotechnology research area. Since last three decades, there has been a steady flow of information on coffee biotechnology and now it is entering into the genomic era. Major milestones in coffee biotech research are successful in vitro manipulation and multiplication of coffee, development of gene transfer protocols and generation of transgenic coffee plants with specific traits. The isolation of genes involved in caffeine biosynthetic pathway has opened up new avenues for generating caffeine free transgenic coffee. With the initiation of international coffee genomics initiatives, the genomic research in coffee is expected to reach new dimensions. The IPR issues may play crucial role in sharing of benefits during international collaborations in near future. This review focuses on the basic and applied aspects of coffee biotechnology for newer potentials.  相似文献   

19.
H.-B. Shao  L.-Y. Chu 《Plant biosystems》2013,147(4):1163-1165
Plants and soil are the base for sustainably surviving human beings on the globe as the role of materials, energy, resources and environment (Shao & Chu 2008; Shao et al. 2008, 2009, 2010, 2012a,b; Liu & Shao, 2010; Ruan et al. 2010; Xu et al. 2010, 2012; Shao 2012; Huang et al. 2013). This topic has been extensively investigated for 100 years with more achievements in many sectors and practical significance in conducting high-efficient agriculture and eco-environmental construction. The plant–soil interaction is the core issue of this topic, which has been given much attention for the past 30 years (Wu et al. 2007, 2010; Zhang et al. 2011, 2013; Xu et al. 2012, 2013).  相似文献   

20.
Bonner  James 《The Botanical review》1937,3(12):616-640
The Botanical Review -  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号