首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary Most of the auditory neurons in the ventral nerve cord ofLocusta migratoria carry information not only from the tympanal organs but also from the subgenual organs (vibration sensors). Six of the eight neuron types studied electrophysiologically respond to at least these two modalities. Artificial sounds (white noise and pure tones varying in frequency and intensity) and sinusoidal vibration (200 Hz with an acceleration of 15.8 cm/s2 or 2000 Hz and 87 cm/s2) were used as stimuli.Complex excitatory and/or inhibitory interactions of the signals from both tympanal organs form the discharge patterns of auditory ventral-cord neurons in response to stimulation with air-borne sound. Normally the input of the ipsilateral sense organ dominates. The response patterns of these same neurons elicited by vibration stimuli are formed differently, as follows: (1) the sensory inputs of all subgenual organs are integrated in the responses of the ventral-cord neurons; in a single neuron they have either excitatory or inhibitory effects, but not both. (2) The more legs vibrated, the larger is the response. (3) The subgenual organs in the middle legs are most effective, those in the hind legs least so. (4) Ipsilateral vibration has more effect than contralateral.The six auditory neurons react to vibration combined with air-borne sound in different ways. The B neuron is the only one inhibited by vibration stimuli. The G neuron has been studied more intensively; because its anatomical arrangement and the location of the endings of the subgenual receptor fibers are known, it could be inferred from effects of transection of the connectives that interneurons are interposed between receptor cells and the G neuron.Part of the program Sonderforschungsbereich 114 (Bionach) Bochum, under the auspices of the Deutsche Forschungsgemeinschaft, with the support of the Slovenic Research Society (RSS)  相似文献   

3.
Summary The neuropile regions in the supraesophageal ganglion ofLocusta migratoria were revealed by Bodian staining of frontal and parasagittal sections.A combined recording and staining technique (CoS method, Rehbein et al., 1974) was used to identify physiologically five different types of auditory ventral cord neurons and mark the course of their axons and the positions of the terminal arborizations. The boundaries of the projection regions are described; they include the various multimodal neuropile regions in the ventrolateral protocerebrum.Previously demonstrated instances of convergence with neurons of other sensory systems, and others likely to exist, are considered with respect to their possible significance in neuronal processing within the auditory system.Supported by the Deutsche Forschungsgemeinschaft, as part of the program Sonderforschungsbereich Bionach, Bochum. The investigations were done at Lehrstuhl für Allgemeine Zoologie, Ruhr-UniversitÄt, D-4630 Bochum  相似文献   

4.
5.
6.
7.
8.
The evoked potential (EP) and the pulse activity of single auditory cortex neurons were recorded simultaneously in response to a click and to a tone for cats under nembutal and nembutal — chloralose anesthesia. Both extra- and intracellular taps were employed. The experiments showed that the reaction of auditory cortex neurons in response to a click lasts from 200 to 300 msec. It consists of pulse discharges from several groups of neurons. Out of 174 neurons observed 8 responded within 4 to 7 msec after a click (before the EP). One hundred and nine neurons reacted in the range from 7 to 25 msec which coincided with the initial electropositivity of the EP; 11 neurons were in the range from 40 to 100 msec and 4 were between 180 and 270 msec. Such a sequence of involvement of different neuron groups in the reaction is probably accounted for to a large extent by the time dispersion of the afferent volley. With an intracellular tap slow alterations of membrane potential were observed in the form of an EPSP with pulses together with subsequent hyperpolarization lasting 50 to 70 msec and slowly increasing depolarization that reached a maximum after 170 to 200 msec.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 1, No. 2, pp. 147–157, September–October, 1969.  相似文献   

9.
Summary The biochemical elements of GABA-ergic synapses in the central nervous tissue were examined by a comparative neurochemical approach. The high concentration of GABA as well as the activities of glutamate decarboxylase and GABA-transaminase suppose a high content of GABAergic elements in the nervous system of the locust.Nerve endings isolated from the ganglia of locusts accumulated exogenous GABA in a carriermediated, sodium dependent process into compartments from where it could partially be released under depolarizing conditions. The transport was stimulated by extracellular chloride, was modulated by specific ionophores (enhanced by valinomycin, inhibited by CCCP) and could effectively be blocked by GABAergic ligands (DABA, muscimol). Binding studies revealed the existence of multiple binding sites for GABA which differ in number, affinity, pharmacology and ion dependency. The putative receptors for GABA (Na+-independent binding sites) in locust nervous tissue exceeded the concentrations found in vertebrate brain tissue and showed different binding pharmacology.Abbreviations GABA -amino butyric acid - GAD glutamate decarboxylase - GABA-T GABA-transaminase - DABA diamino butyric acid  相似文献   

10.
Many acoustically communicating grasshoppers live in crowded populations where sound of many individuals may cause permanent noise. Tympanic receptors and first-order auditory interneurons of Locusta migratoria code such noise tonically, whereas many higher order interneurons react only weakly. In response to simultaneously presented sound they exhibit a better signal-to-noise ratio than their presynaptic elements. Two possible filter mechanisms are suggested for noise reduction in higher-order interneurons: (i) high-pass filtering of receptor spike frequencies and (ii) filtering due to synchronization of receptor spikes. Different receptor spike frequencies were elicited by series of short noise pulses with variable repetition rates. Receptor activities differing in their degree of synchronization were elicited by sound stimuli with variable rising times. In contrast to the first order interneurons some higher order interneurons responded best to receptor spike frequencies above 150–200 Hz, thus showing the postulated filtering. Only one higher order interneuron (AN4) distinguished between synchronous and asynchronous receptor activities. It is suggested that high-pass filtering of receptor spike frequencies is responsible for the noise filtering observed in these interneurons. The synchronization selectivity of AN4 is proposed to be responsible for temporal pattern detection of conspecific sounds.  相似文献   

11.
12.
13.
Octopamine- and dopamine-sensitive adenylate cyclases were studied in the brain of Locusta migratoria during its metamorphosis. In the adult brain the effects of octopamine and dopamine on adenylate cyclase were additive, suggesting the presence of separate populations of adenylate cyclase-linked receptors for octopamine and dopamine. There are no separate receptors for noradrenaline. Octopamine stimulates adenylate cyclase in both adult and larval brain; however, in adult brain octopamine is more potent than in larval brain. Dopamine stimulates adenylate cyclase activity only in adult brain. The sensitivity of adenylate cyclase to octopamine changes during the development of the animal. Phentolamine and cyproheptadine are potent antagonists of octopamine-stimulated adenylate cyclase, while propranolol has a weak effect. No cytosol factor which would modulate either basal or octopamine-stimulated adenylate cyclase was found. The effect of GTP and octopamine on adenylate cyclase was synergistic in adult brain but not in larval brain, while the effect of GppNHp and octopamine was synergistic in both adult and larval brains.  相似文献   

14.
15.
16.
Summary In the locust,Locusta migratoria, the pairs of connectives between the three thoracic ganglia and in the neck were transected in all possible combinations. Each of these preparations was tested for the production of rhythmic flight motor activity, with sensory input from the wing receptors intact and after deafferentation. The motor activity elicited in these preparations was characterized by intracellular recordings from motoneurons and electromyographic analyses.The motor patterns observed in locusts with either the neck or the pro-mesothoracic connectives severed (Figs. 2, 3, and 4) were very similar to the flight motor pattern produced by animals with intact connectives. The activity recorded in mesothoracic flight motoneurons of locusts with either only the meso-metathoracic connectives cut or both the meso-metathoracic and the neck connectives transected were similar to each other. Rhythmic motor activity could be observed in these preparations only as long as sensory feedback from the wing receptors was intact. These patterns were significantly different from the intact motor pattern (Figs. 5, 6, and 7). Similar results were obtained when the mesothoracic ganglion was isolated from the other two thoracic ganglia, although the oscillations produced under these conditions were weak (Fig. 8 upper). In the isolated metathorax no rhythmic flight motor activity could be recorded (Fig. 8 lower), even when wing afferents were intact.Considering the differences between the motor patterns observed in the various preparations these results suggest that the ganglia of the locust ventral nerve cord do not contain segmental, homologous flight oscillators which are coupled to produce the intact flight rhythm. Instead they support the idea that the functional flight oscillator network is distributed throughout the thoracic ganglia (Robertson and Pearson 1984). The results also provide further evidence that sensory feedback from the wing sense organs is necessary for establishing the correct motor pattern in the intact animal (Wendler 1974, 1983; Pearson 1985; Wolf and Pearson 1987 a).Abbreviations CPG central pattern generator - EMG electromyogram  相似文献   

17.
18.
19.
The detection of a change in the modulation pattern of a (target) carrier frequency, fc (for example a change in the depth of amplitude or frequency modulation, AM or FM) can be adversely affected by the presence of other modulated sounds (maskers) at frequencies remote from fc, an effect called modulation discrimination interference (MDI). MDI cannot be explained in terms of interaction of the sounds in the peripheral auditory system. It may result partly from a tendency for sounds which are modulated in a similar way to be perceptually 'grouped', i.e. heard as a single sound. To test this idea, MDI for the detection of a change in AM depth was measured as a function of stimulus variables known to affect perceptual grouping, namely overall duration and onset and offset asynchrony between the masking and target sounds. In parallel experiments, subjects were presented with a series of pairs of sounds, the target alone and the target with maskers, and were asked to rate how clearly the modulation of the target could be heard in the complex mixture. The results suggest that two factors contribute to MDI. One factor is difficulty in hearing a pitch corresponding to the target frequency. This factor appears to be strongly affected by perceptual grouping. Its effects can be reduced or abolished by asynchronous gating of the target and masker. The second factor is a specific difficulty in hearing the modulation of the target, or in distinguishing that modulation from the modulation of other sounds that are present. This factor has effects even under conditions promoting perceptual segregation of the target and masker.  相似文献   

20.
In 10 healthy subjects, studies have been made on changes in amplitude-temporal characteristics of N1-P2 components at different rates of movement of a sound image (3.14, 1.57 and 0.78 rad/s). It was shown that only movement of the sound image from the right ear to the median line of the head with sufficiently high rate (3.14 rad/s) results in the increase in total peak amplitude of N1-P2 components relatively similar parameters obtained during the effect of a resting sound image lateralized at the same ear. Latent periods of N1 component in both hemispheres are longer during the effect of the moving sound image than during the effect of the resting lateralized one, although with the decrease in the rate the difference becomes less significant. It is suggested that the right hemisphere is more sensitive to changes in the rate of movement of the sound image.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号