首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anti-metatype antibodies have been described as antibodies which recognize ligand-induced conformational changes in the antibody variable region. Additionally, anti-metatype antibodies, produced by multiple immunizations with liganded high affinity monoclonal anti-fluorescein antibody 4-4-20, enhanced the lifetime of monoclonal antibody 4-4-20-fluorescein complex. To better understand the mechanism of the delayed dissociation rate, deuterium oxide was used to probe the liganded active site. The rate and extent of deuterium oxide-mediated fluorescence enhancement of bound ligand served to monitor the conformational dynamics of the active site in the presence and absence of anti-metatype antibodies. Results showed that anti-metatype antibodies reduced the rate and extent of deuterium oxide-mediated fluorescence enhancement of 4-4-20, a single-chain derivative of 4-4-20 (consisting of the variable domains and a polylinker), and idiotypically related monoclonal anti-fluorescein antibodies suggesting that anti-metatype stabilized the liganded active site. Size exclusion liquid chromatography was utilized to isolate the liganded antibody-anti-metatype complex. Liganded single chain antibody 4-4-20 was mixed with 10-fold molar excess anti-metatype Fab fragments, and a major complex eluted with an apparent M(r) 249,000. The apparent molecular weight of this complex inferred that one liganded single chain antibody was bound by five antimetatype Fab fragments. Spectral analysis confirmed these results and the characteristic delayed rate of ligand dissociation was also observed for the isolated complex. The results suggest that anti-metatype antibodies stabilize the liganded conformation by forming a large, stable, macromolecular complex.  相似文献   

2.
Mechanisms of ligand binding by monoclonal anti-fluorescyl antibodies   总被引:2,自引:0,他引:2  
Binding of fluorescyl ligand by five IgG anti-fluorescyl hybridoma proteins (4-4-20, 6-10-6, 20-4-4, 20-19-=1, 20-20-3) was examined. Relative reduction in fluorescence of bound fluorescein, deuterium oxide (D2O)-induced enhancement of fluorescence, and the effects of pH on binding kinetics were measured for each clone. Individual hybridoma proteins (all of which bind fluorescein with relatively high affinity) exhibited significant differences in the relative contribution of various forces (hydrophobicity, hydrogen bonding, ionic interactions) to binding and hence, affinity. The extent of such variations in binding mechanisms among monoclonal antibodies binding the same hapten is indicative of the extreme functional diversity of active sites. In addition, ligand binding by clone 20-20-3 was examined in greater detail. ABsorption spectra of ligand bound by purified intact antibody, Fab fragments, and reassociated heavy and light chains indicated that protonation of the fluorescyl ligand by a residue within the active site contributed significantly to the binding free energy. Comparative dissociation rates of fluorescein and a structural analog, rhodamine 110, were used to quantitatively substantiate the contribution of this interaction. Association and dissociation rate studies with fluorescein and antibody indicated that: 1) the active site appeared to undergo a conformational change upon ligand binding, and 2) neither intact disulfides nor intersite cooperativity affected the dissociation rate of bound ligand. Observed mechanisms of ligand binding are discussed in terms of proposed mechanisms of antibody affinity maturation and diversity.  相似文献   

3.
Eleven individual hyperimmune rabbit polyclonal anti-fluorescein Fab fragment preparations were resolved into heterogeneous subfractions based on differential dissociation times from a specific adsorbent. Four Fab subfractions (i.e., 0.1-, 1.0-, 10-, and 100-day elutions) that differed in affinity were characterized and classified according to the extent of the bathochromic shift in the absorption properties of antibody-bound fluorescein ligand. Absorption maxima of bound fluorescein were shifted in all cases to two distinct narrow ranges, namely, 505 to 507 nm or 518 to 520 nm relative to 491 nm for free fluorescein. There was no direct correlation between the two spectral shift populations and antibody affinity, fluorescence polarization, fluorescence quenching, or fluorescence lifetimes of bound ligand. Fluorescence emission maxima varied with the bathochromic shift range. Bound fluorescein ligand, with absorption maxima of 505 to 507 nm and 518 to 520 nm showed fluorescence emission maxima of 519 to 520 nm and 535 nm, respectively. The two spectral shift ranges differed by 14 to 15 nm and/or energies of 1.5 kcal mol–1 relative to each other and to the absorption maximum for free fluorescein. Spectral effects on the antibody-bound ligand were discussed relative to solvent-water studies and the atomic structure of a high-affinity liganded anti-fluorescein active site.  相似文献   

4.
Single-chain antibody of the (NH2) VL-linker-VH (COOH) design, was constructed based on prototype high affinity anti-fluorescein monoclonal antibody (mAb) 4-4-20. Purified single-chain antibody (SCA) 4-4-20/212 was studied relative to Ig mAb 4-4-20 in terms of ligand binding, kinetics, idiotypy, metatypy, and stability in denaturing agents. Ligand-binding data correlated with metatypic relatedness of the liganded site. Anti-metatypic reagents reacted preferentially with the liganded conformer of the 4-4-20 antibody active site and were unreactive with free ligand and the non-liganded (idiotypic) state. All results were consistent with the conclusion that SCA 4-4-20/212, with a 14-amino acid linker folded into a native conformational state that closely simulated the prototypical mAb. Furthermore, GndHCl unfolding and refolding studies demonstrated H and L chain variable domain intrinsic stability between SCA 4-4-20/212 and a 50 kDa antigen-binding fragment were nearly identical. This suggested CH1 and CL domain interactions may be more prevalent in V region molecular dynamics than structure.  相似文献   

5.
The kinetics of antibody–antigen interactions are reviewed in terms of general trends observed in both polyclonal and monoclonal antibody populations. Anti-fluorescein antibodies are featured in the review as model proteins to explore fluorescence-based kinetic measurements. Since the fluorescence of the fluorescein ligand is significantly quenched upon interaction with both polyclonal and monoclonal anti-fluorescein antibodies, the quenching parameter can be advantageously employed in measuring the rates of association (k1) and dissociation (k2). The near diffusion-limited k1 rates and the prolonged k2 rates are discussed in terms of antibody affinity and mechanisms involved in ligand binding. Specific prolongation effects of reagents, such as anti-metatype antibodies, on the dissociation rate are discussed in terms of antibody dynamics and conformational substates.  相似文献   

6.
The kinetics of the reaction with oxygen and carbon monoxide of the homodimeric hemoglobin from the bivalve mollusc Scapharca inaequivalvis has been extensively investigated by flash and dye-laser photolysis, temperature jump relaxation, and stopped flow methods. The results indicate that cooperativity in ligand binding, already observed for oxygen at equilibrium, finds its kinetic counterpart in a large decrease of the oxygen dissociation velocity in the second step of the binding reaction. In the case of carbon monoxide, cooperativity is clearly evident in the increase of the combination velocity constant as the reaction proceeds. Therefore, the ligand-binding kinetics of this dimeric hemoglobin shows the characteristic features of the corresponding reactions of tetrameric hemoglobins. Analysis of the data in terms of the allosteric model proposed by Monod et al. (Monod, J., Wyman, J., and Changeux, J. P. (1965) J. Mol. Biol. 12, 88-118) has shown that the values of the allosteric parameters cannot be fixed uniquely for a dimeric hemoglobin. The rapid changes in absorbance observed at the isosbestic points of unliganded and liganded hemoglobin following laser photolysis provided a value of 7 X 10(4) S-1 at 20 degrees C for the rate of the ligand-free quarternary conformational change, postulated on the basis of cooperative ligand binding. Comparison of the rapid absorbance changes observed during ligand rebinding in this hemoglobin with those observed in tuna hemoglobin indicate that, at full photolysis, binding to the T state is followed by further binding and conversion to the liganded R state; at partial photolysis, population of the liganded T state occurs immediately and is followed by a decay to the liganded R state upon further ligand binding. These new results, in conjunction with previous equilibrium data on the same system, show unequivocally that the presence of two different types of chain is not an absolute prerequisite for cooperativity in hemoglobins, contrary to currently accepted ideas.  相似文献   

7.
An oxytocin/bovine neurophysin I biosynthetic precursor, [N epsilon-diacetimidyl-30,71, des-His106]pro-OT/BNPI, was synthesized from a synthetic oxytocinyl peptide, 1/2Cys-Tyr-Ile-Gln-Asn-1/2Cys-Pro-Leu-Gly-Gly-Lys-Arg, and native neurophysin by chemical semisynthesis. The semisynthetic precursor contains the entire sequence of the biosynthetic precursor deduced from the complementary DNA structure except for omission of the carboxyl-terminal histidine residue. The covalent structure of the semisynthetic product was verified by amino acid analysis and amino-terminal analysis. Analytical affinity chromatography was employed to evaluate noncovalent binding properties of the precursor. The precursor does not bind significantly to immobilized Met-Tyr-Phe, a hormone binding site ligand. In contrast, the acetimidated precursor binds to immobilized bovine neurophysin II, with a 13-fold higher affinity than does acetimidated neurophysin itself. When a hormonal ligand, [Lys8]vasopressin, was added to the elution buffer at the concentration of 0.1 mM so that a major portion of the immobilized BNPII was liganded, the affinity between the immobilized liganded BNPII and the precursor was enhanced 8-fold and approached the affinity for the liganded (bovine neurophysin I-immobilized BNPII) interaction. The data imply that the precursor can self-associate and that this self-association is closely related to that of liganded neurophysin. The tripeptide affinity matrix data argue that, in the precursor, the ligand binding site of the neurophysin domain is occupied intramolecularly by the hormone domain. The data verify the view that both the self-association surface and hormone binding site are established upon precursor folding. A disulfide stability analysis showed the resistance, to disulfide interchange by dithiothreitol, of semisynthetic precursor but not of neurophysin, as judged by protein association and peptide ligand binding activities, respectively. The results argue that the molecular structure of the precursor is established upon precursor folding and before enzymatic processing that produces mature hormone and neurophysin.  相似文献   

8.
Multi-disciplinary studies of fluorescein-protein conjugates have led to the generation of a family of antibodies with common idiotypes and affinities for fluorescein ranging over five orders of magnitude. The high affinity 4-4-20 prototype traps the ligand in a highly complementary binding slot, which is lined by multiple aromatic side-chains. An antibody (9-40) of intermediate affinity belongs to the same idiotypic family as 4-4-20 and shares substantial amino acid identities within the VL and VH domains. To establish the structural basis for the affinity differences, we solved the crystal structure of the 9-40 Fab-fluorescein complex at a resolution of 2.3A. Similar to 4-4-20, 9-40 binds fluorescein in a tight aromatic slot with its xanthenonyl ring system accommodated by end-on insertion. However, the combined effects of the amino acid substitutions have resulted in reorganization of the binding site, with the HCDR3 loops showing the greatest differences in conformations. Access to the binding site of 9-40 is substantially more open, leaving the fluorescein's phenylcarboxylate moiety partially exposed to solvent. In addition to the usage of a different D (diversity) mini-gene encoding the HCDR3 loop, the decrease in fluorescein affinity in the 9-40 antibody family appears to be correlated with the substitution of histidine (9-40) for arginine (4-4-20) in position 34 of the antibody light chains.  相似文献   

9.
D G Sawutz  R Koury  C J Homcy 《Biochemistry》1987,26(17):5275-5282
We previously described the production of four monoclonal antibodies to the beta-adrenergic receptor antagonist alprenolol. One of these antibodies, 5B7 (IgG2a, kappa), was used to raise anti-idiotypic antisera in rabbits. In contrast to the expected results, one of the anti-idiotypic antisera (R9) promotes [125I]iodocyanopindolol (ICYP) binding to antibody 5B7. In the presence of R9, the dissociation constant decreases 100-fold from 20 to 0.3 nM. This increase in binding affinity of antibody 5B7 for ICYP is not observed in the presence of preimmune, rabbit anti-mouse or anti-idiotypic antisera generated to a monoclonal antibody of a different specificity. Furthermore, R9 in the absence of 5B7 does not bind ICYP. The F(ab) fragments of 5B7 and R9 behaved in a similar manner, and the soluble complex responsible for the high-affinity interaction with ICYP can be identified by gel filtration chromatography. The elution position of the complex is consistent with a 5B7 F(ab)-R9 F(ab) dimer, indicating that polyvalency is not responsible for the enhanced ligand binding. Kinetic analysis of ICYP-5B7 binding revealed that the rate of ICYP dissociation from 5B7 in the presence of R9 is approximately 100 times slower than in the absence of R9 [k-1(+R9) = 0.025 min-1 vs. k-1(-R9) = 2.04 min-1], consistent with the 100-fold change in binding affinity of 5B7 for ICYP. The available data best fit a model in which an anti-idiotypic antibody binds at or near the binding site of the idiotype participating in the formation of a hybrid ligand binding site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Previous reports described the properties of a high affinity (Ka = 1.7 X 10(10) M-1) prototype anti-fluorescein monoclonal antibody 4-4-20, an intermediate affinity (Ka = 3.7 X 10(7) M-1) prototype 9-40, and Ig members of the 9-40 idiotype family (comprised of 3-24, 5-14, 5-27, 10-25 and 12-40). Although the seven monoclonal anti-fluorescein antibodies expressed similar active site structural determinants (idiotypes) as determined serologically, each was characterized by different affinities for fluorescein and fine specificity binding patterns. Partial heavy (H)- and light (L)-chain N-terminal amino acid sequence analyses revealed all antibodies (except 5-27) were composed of highly homologous VHIII(C) and V kappa II subgroup genes, respectively. Antibody 5-27 utilized a VHIII(B) and a V kappa V subgroup genes and shared low V-region sequence homology with 4-4-20, 9-40 and the remaining 9-40 idiotype family. In addition, complete 4-4-20, VH- and VL-region primary structures were determined to better understand antibody-antigen interactions. Antibody 4-4-20 utilized a VHIII(C) subgroup VH-gene, a truncated Sp2 D gene segment, JH4, a V kappa II subgroup VL-gene, and J kappa 1. Antibody 4-4-20 VH and VL complementarity-determining regions contained many basic and aromatic amino acid residues capable of interaction with fluorescein. Results are discussed in terms of idiotypic and fluorescein-binding characteristics as well as antibody structural and functional diversity in the immune response.  相似文献   

11.
Although sterol carrier protein-2 (SCP-2) stimulates sterol transfer in vitro, almost nothing is known regarding the identity of the putative cholesterol binding site. Furthermore, the interrelationship(s) between this SCP-2 ligand binding site and the recently reported SCP-2 long chain fatty acid (LCFA) and long chain fatty acyl-CoA (LCFA-CoA) binding site(s) remains to be established. In the present work, two SCP-2 ligand binding sites were identified. First, both [4-(13)C]cholesterol and 22-(N-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3beta-ol (NBD-cholesterol) binding assays were consistent with a single cholesterol binding site in SCP-2. This ligand binding site had high affinity for NBD-cholesterol, K(d) = 4.15 +/- 0.71 nM. (13)C NMR-labeled ligand competition studies demonstrated that the SCP-2 high affinity cholesterol binding site also bound LCFA or LCFA-CoA. However, only the LCFA-CoA was able to effectively displace the SCP-2-bound [4-(13)C]cholesterol. Thus, the ligand affinities at this SCP-2 binding site were in the relative order cholesterol = LCFA-CoA > LCFA. Second, (13)C NMR studies demonstrated the presence of another ligand binding site on SCP-2 that bound either LCFA or LCFA-CoA but not cholesterol. Photon correlation spectroscopy was consistent with SCP-2 being monomeric in both liganded and unliganded states. In summary, both (13)C NMR and fluorescence techniques demonstrated for the first time that SCP-2 had a single high affinity binding site that bound cholesterol, LCFA, or LCFA-CoA. Furthermore, results with (13)C NMR supported the presence of a second SCP-2 ligand binding site that bound either LCFA or LCFA-CoA but not cholesterol. These data contribute to our understanding of a role for SCP-2 in both cellular cholesterol and LCFA metabolism.  相似文献   

12.
In hemoglobin Rothschild arginine replaces the normal tryptophan at β37(C3), at α1β2 contact. Residue β37 is in close proximity to Argα92 (FG4). Substitution of Trp by Arg at β37 results in two positively charged Arg residues at FG4 and C3 facing each other, a situation that would destabilize the subunit constraints essential for the tetrameric integrity of the molecule and for the reduced ligand affinity of unliganded normal HB3 compared to isolated chains.Our studies show liganded HbR is extensively dissociated into dimers and has a high ligand affinity in phosphate buffer and a low ligand affinity in bis-Tris at alkaline pH. Kinetic studies indicate that in the T state HbR has a higher ligand affinity than HbA. This is explained by reduced subunit constraints in the T state and dissociation of the monoliganded species (Hb4L) into dimers. Kinetic studies also show that R state Hb Rothschild has lower ligand affinity than R state HbA. These results are explained on the basis of extensive dissociation of R state Hb Rothschild into dimers and lower ligand affinity of dimers as compared to triliganded tetramers (α2β2(O2)3). Kinetic data indicate that the lower ligand affinity of dimers (Hb Rothschild) as compared to that of triliganded tetramers (HbA) is due to the increased ligand dissociation rates in the case of oxyhemoglobin and reduced ligand combination in the case of carboxyderivatives. Both the CO combination reaction time-course around 425 nm and the O2 dissociation rates at 437.8 nm indicate the presence of large α,β-chain differences in Hb Rothschild.  相似文献   

13.
Differential accessibility of liganded, high affinity rabbit anti-fluorescyl IgG antibody combining sites to the aqueous milieu has been investigated by solvent perturbation of the extrinsic fluorescence of bound fluorophore. Iodide, a dynamic quencher of fluorescein, was selected for use in these studies after examination of a number of water-soluble fluorescence quenchers. Quenching of antibody-bound fluorophore by iodide was measured with a number of liganded anti-fluorescyl IgG preparations, demonstrating partial solvent exposure of the fluorophore as well as heterogeneity of the high affinity antibody populations. Fluorescence quenching, lifetime, and absorption spectroscopy provided evidence that the antibody-bound fluorophore quenched by iodide interacted with it directly and that anomalous binding of the anion to the surface of the protein, resulting in ground state perturbations of the immunoglobulin, could not explain the observed results.  相似文献   

14.
Current evidence indicates that the ligand-facilitated dimerization of neurophysin is mediated in part by dimerization-induced changes at the hormone binding site of the unliganded state that increase ligand affinity. To elucidate other contributory factors, we investigated the potential role of neurophysin's short interdomain loop (residues 55-59), particularly the effects of loop residue mutation and of deleting amino-terminal residues 1-6, which interact with the loop and adjacent residues 53-54. The neurophysin studied was bovine neurophysin-I, necessitating determination of the crystal structures of des 1-6 bovine neurophysin-I in unliganded and liganded dimeric states, as well as the structure of its liganded Q58V mutant, in which peptide was bound with unexpectedly increased affinity. Increases in dimerization constant associated with selected loop residue mutations and with deletion of residues 1-6, together with structural data, provided evidence that dimerization of unliganded neurophysin-I is constrained by hydrogen bonding of the side chains of Gln58, Ser56, and Gln55 and by amino terminus interactions, loss or alteration of these hydrogen bonds, and probable loss of amino terminus interactions, contributing to the increased dimerization of the liganded state. An additional intersubunit hydrogen bond from residue 81, present only in the liganded state, was demonstrated as the largest single effect of ligand binding directly on the subunit interface. Comparison of bovine neurophysins I and II indicates broadly similar mechanisms for both, with the exception in neurophysin II of the absence of Gln55 side chain hydrogen bonds in the unliganded state and a more firmly established loss of amino terminus interactions in the liganded state. Evidence is presented that loop status modulates dimerization via long-range effects on neurophysin conformation involving neighboring Phe22 as a key intermediary.  相似文献   

15.
Previous crystallographic studies of high affinity anti-fluorescein monoclonal antibody 4-4-20 (Ka = 1.7 x 10(10) M-1) complexed with fluorescyl ligand resolved active site contact residues involved in binding. For better definition of the relative roles of three light chain antigen contact residues (L27dhis, L32tyr and L34arg), four site-specific mutations (L27dhis to L27lys, L32tyr to L32phe, and L34arg to L34lys and L34his) were generated and expressed in single-chain antigen binding derivatives of monoclonal antibody 4-4-20 containing two different polypeptide linkers (SCA 4-4-20/205c, 25 amino acids and SCA 4-4-20/212, 14 amino acids). Results showed that L27dhis and L32tyr were necessary for wild type binding affinities, however, were not required for near-wild type Qmax values (where Qmax is the maximum fluoroscein fluorescence quenching expressed as percent). Tyrosine L32 which hydrogen bonds with ligand was also characterized at the haptenic level through the use of 9-hydroxyphenylfluoron which lacks the carboxyl group to which L32 tyrosine forms a hydrogen bond. Results demonstrated that wild type SCA and mutant L32phe possessed similar HPF binding characteristics. Active site contact residue L34arg was important for fluorescein quenching maxima and binding affinity (L34his mutant), however, substitution of lysine for arginine at L34 did not have a significant effect on observed Qmax value. In addition, substitutions had no effect on structural and topological characteristics, since all mutants retained similar idiotypic and metatypic properties. Finally, two linkers were comparatively examined to determine relative contributions to mutant binding properties and stability. No linker effects were observed. Collectively, these results verified the importance of these light chain fluorescein contact residues in the binding pocket of monoclonal antibody 4-4-20.  相似文献   

16.
Decameric vanadate (V(10)) inhibits the actin-stimulated myosin ATPase activity, noncompetitively with actin or with ATP upon interaction with a high-affinity binding site (K(i) = 0.27 +/- 0.05 microM) in myosin subfragment-1 (S1). The binding of V(10) to S1 can be monitored from titration with V(10) of the fluorescence of S1 labeled at Cys-707 and Cys-697 with N-iodo-acetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine (IAEDANS) or 5-(iodoacetamido) fluorescein, which showed the presence of only one V(10) binding site per monomer with a dissociation constant of 0.16-0.7 microM, indicating that S1 labeling with these dyes produced only a small distortion of the V(10) binding site. The large quenching of AEDANS-labeled S1 fluorescence produced by V(10) indicated that the V(10) binding site is close to Cys-697 and 707. Fluorescence studies demonstrated the following: (i) the binding of V(10) to S1 is not competitive either with actin or with ADP.V(1) or ADP.AlF(4); (ii) the affinity of V(10) for the complex S1/ADP.V(1) and S1/ADP.AlF(4) is 2- and 3-fold lower than for S1; and (iii) it is competitive with the S1 "back door" ligand P(1)P(5)-diadenosine pentaphosphate. A local conformational change in S1 upon binding of V(10) is supported by (i) a decrease of the efficiency of fluorescence energy transfer between eosin-labeled F-actin and fluorescein-labeled S1, and (ii) slower reassociation between S1 and F-actin after ATP hydrolysis. The results are consistent with binding of V(10) to the Walker A motif of ABC ATPases, which in S1 corresponds to conserved regions of the P-loop which form part of the phosphate tube.  相似文献   

17.
An antigen-binding fragment (Fab) from a murine monoclonal antibody (4-4-20) with high affinity for fluorescein was cocrystallized with ligand in polyethylene glycol (PEG) and 2-methl-2,4-pentanediol (MPD) in forms suitable for X-ray analyses. In MPD the affinity of the intact antibody for fluorescein was 300 times lower than the value (3.4 × 1010 M?1) obtained in aqueous buffers. This decreased affinity was manifested by the partial release of bound fluorescein when MPD was added to solutions of liganded Feb during crystallization trials, In PEG, the ligand remained firmly bound to the protein. The liganded Feb crystallized in the monoclinic space group P21 in PEG, with a = 58.6, b = 97.2, c = 44.5 Å and β = 95.2°. In MPD the space group was triclinic P1, with a = 58.3, b = 43.4, c = 42.3 Å, α = 83.9°, β = 87.6°, and γ = 84.5°. X-ray diffraction data were collected for both forms to 2.5-Å resolution. Surprisingly, the triclinic form of the liganed antifluorescyl Feb had the same space group, closely similar cell dimensions, and practically the same orientation in the unit cell as an unliganded Fab (BV04-01) with activity against single-stranded DNA.  相似文献   

18.
This study presents circular dichroism (CD) spectra of a high-affinity monoclonal anti-fluorescein antibody (Mab 4-4-20), its Fab fragments, and corresponding single-chain antibody (SCA). In the region 200-250 nm, the differences in the CD spectra between these proteins reflect the uneven distribution of chromophores (tryptophan and tyrosine) rather than a major conformational change. On the basis of near-UV CD spectra, binding of the hapten fluorescein to these protein antibodies elicits an increased asymmetry in the microenvironment of the chromophoric residues in contact with the hapten and also perturbs the interface between VL and VH domains. The hapten-binding site provides a chiral microenvironment for fluorescein that elicits a pronounced induced fluorescein CD spectrum in both the visible and UV regions. In contrast to the parent molecules, SCA is thermolabile. Our results demonstrate that (1) UV CD spectra are useful for assessing the chromophoric microenvironment in the binding portion of antibodies and (2) the extrinsic fluorescein hapten CD spectra provide information about the interaction of hapten with the binding pocket.  相似文献   

19.
The spontaneous dissociation of six small ligands from the active site of FKBP (the FK506 binding protein) is investigated by explicit water molecular dynamics simulations and network analysis. The ligands have between four (dimethylsulphoxide) and eleven (5-diethylamino-2-pentanone) non-hydrogen atoms, and an affinity for FKBP ranging from 20 to 0.2 mM. The conformations of the FKBP/ligand complex saved along multiple trajectories (50 runs at 310 K for each ligand) are grouped according to a set of intermolecular distances into nodes of a network, and the direct transitions between them are the links. The network analysis reveals that the bound state consists of several subbasins, i.e., binding modes characterized by distinct intermolecular hydrogen bonds and hydrophobic contacts. The dissociation kinetics show a simple (i.e., single-exponential) time dependence because the unbinding barrier is much higher than the barriers between subbasins in the bound state. The unbinding transition state is made up of heterogeneous positions and orientations of the ligand in the FKBP active site, which correspond to multiple pathways of dissociation. For the six small ligands of FKBP, the weaker the binding affinity the closer to the bound state (along the intermolecular distance) are the transition state structures, which is a new manifestation of Hammond behavior. Experimental approaches to the study of fragment binding to proteins have limitations in temporal and spatial resolution. Our network analysis of the unbinding simulations of small inhibitors from an enzyme paints a clear picture of the free energy landscape (both thermodynamics and kinetics) of ligand unbinding.  相似文献   

20.
Auto-inactivated EScherichia coli glutamine synthetase contains 1 eq each of L-methionine-S-sulfoximine phosphate and ADP and 2 eq of Mn2+ tightly bound to the active site of each subunit of the dodecameric enzyme (Maurizi, M. R., and Ginsburg, A. (1982) J. Biol. Chem. 257, 4271-4278). Complete dissociation and unfolding in 6 M guanidine HCl at pH 7.2 and 37 degrees C requires greater than 4 h for the auto-inactivated enzyme complex (less than 1 min for uncomplexed enzyme). Release of ligands and dissociation and unfolding of the protein occur in parallel but follow non-first order kinetics, suggesting stable intermediates and multiple pathways for the dissociation reactions. Treatment of Partially inactivated glutamine synthetase (2-6 autoinactivated subunits/dodecamer) with EDTA and dithiobisnitrobenzoic acid at pH 8 modifies approximately 2 of the 4 sulfhydryl groups of unliganded subunits and causes dissociation of the enzyme to stable oligomeric intermediates with 4, 6, 8, and 10 subunits, containing equal numbers of uncomplexed subunits and autoinactivated subunits. With greater than 70% inactivated enzyme, no dissociation occurs under these conditions. Electron micrographs of oligomers, presented in the appendix (Haschemeyer, R. H., Wall, J. S., Hainfeld, J., and Maurizi, M. R., (1982) J. Biol. Chem. 257, 7252-7253) suggest that dissociation of partially liganded dodecamers occurs by cleavage of intra-ring subunit contacts across both hexagonal rings and that these intra-ring subunit contacts across both hexagonal rings and that these intra-ring subunit interactions are stabilized by active site ligand binding. Isolated tetramers (Mr = 200,000; s20,w = 9.5 S) retain sufficient native structure to express significant enzymatic activity; tetramers reassociate to dodecamers and show a 5-fold increase in activity upon removal of the thionitrobenzoate groups with 2-mercaptoethanol. Thus, the tight binding of ligands to the subunit active site strengthens both intra- and inter-subunit bonding domains in dodecameric glutamine synthetase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号