首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Of 5 clinically isolated strains of Streptococcus pyogenes, 3 showed high-level resistance to erythromycin and lincomycin that was inducible by subinhibitory concentrations of these drugs (IR strains) while 2 strains exhibited constitutive erythromycin and lincomycin resistance (CR strains) which was expressed without prior exposure to low drug concentrations. The CR strain 15346 showed spontaneous loss of resistance whereas resistance in the other strains was quite stable even under curing conditions. The IR strain 13234 was found to be polylysogenic for at least 4 different phages designated P13234ma, mi, mu, and mo. Phage mo, antigenically distinct from the other three, was shown to mediate the transfer of the resistance determinant ERL1 of strain 13234. ERL1 if borne by appropriate strains was also transducible by the virulent phage A25. ERL1 behaved as a discrete genetic unit in transduction experiments, was not linked to either of two chromosomal regions governing resistance to antibiotics that affect the ribosome, could be transferred to recombination deficient hosts, represented a relatively large UV inactivation target, and showed no stimulation of transduction by low UV doses. These findings suggest that resistance to erythromycin and lincomycin in certain natural isolates of S. pyogenes is specified by, or under the control of, a plasmid.  相似文献   

3.
Summary By using electron microscopy of self-annealed DNA and restriction enzyme analysis, we have compared the physical maps of two group A streptococcal plasmids associated with conventional MLS resistance (pEL1; 20 Md) and zonal lincomycin resistance (pSM10419; 15 Md). Of their monomeric molecules, about 40% and 60%, respectively, are occupied by identical non-tandem inverted repeats containing sequences specifying putative replication functions. Sequence homology also exists between their resistance determinants which are located in unique DNA. Moreover, homology between additional regions of unknown function is so extensive and restriction fragment arrangement so similar that, formally, pSM10419 can be considered a deletion variant of pEL1. The results suggest that MLS and zonal lincomycin resistance have the same biochemical basis (i.e. methylation of 23S ribosomal RNA) and differ only quantitatively in the inducible control systems.  相似文献   

4.
Antibiotic resistance, along with the resolution of antibiotic-ribosomal subunit complexes at the atomic level, has provided new insights into modifications of clinically relevant antimicrobials that target the ribosome. Modifications to the aminoglycoside or negamycin scaffolds have been reported in the past, but few derivatives appear to be greatly improved compared to their parent compound. Computational and/or traditional screening efforts have yielded novel compounds that bind to the decoding site of the small (30S) ribosomal subunit; naphthyridones appear to bind only in the presence of poly(U) and tRNA(Phe), whereas quinolines bind in a similar manner to aminoglycosides. Streptogramin B analogs were designed that have an amide replacement of the labile ester bond. The resultant molecules were not substrates for the inactivating lyase, but were no longer inhibitors of translation. The synthesis of 16-membered macrolides that are modified at the C6 position with peptidyl moieties as well as conjugates of chloramphenicol to either nucleotide groups or pyrene have been described, but no antibacterial activity has been reported. X-ray crystal structures are now available that can be used to improve on natural or synthetic antibiotics that bind to either the 30S or the 50S ribosomal subunit.  相似文献   

5.
6.

Background and Aims

Selective pressures exerted by agriculture on populations of arable weeds foster the evolution of adaptive traits. Germination and emergence dynamics and herbicide resistance are key adaptive traits. Herbicide resistance alleles can have pleiotropic effects on a weed''s life cycle. This study investigated the pleiotropic effects of three acetyl-coenzyme A carboxylase (ACCase) alleles endowing herbicide resistance on the seed-to-plant part of the life cycle of the grass weed Alopecurus myosuroides.

Methods

In each of two series of experiments, A. myosuroides populations with homogenized genetic backgrounds and segregating for Leu1781, Asn2041 or Gly2078 ACCase mutations which arose independently were used to compare germination dynamics, survival in the soil and seedling pre-emergence growth among seeds containing wild-type, heterozygous and homozygous mutant ACCase embryos.

Key Results

Asn2041 ACCase caused no significant effects. Gly2078 ACCase major effects were a co-dominant acceleration in seed germination (1·25- and 1·10-fold decrease in the time to reach 50 % germination (T50) for homozygous and heterozygous mutant embryos, respectively). Segregation distortion against homozygous mutant embryos or a co-dominant increase in fatal germination was observed in one series of experiments. Leu1781 ACCase major effects were a co-dominant delay in seed germination (1·41- and 1·22-fold increase in T50 for homozygous and heterozygous mutant embryos, respectively) associated with a substantial co-dominant decrease in fatal germination.

Conclusions

Under current agricultural systems, plants carrying Leu1781 or Gly2078 ACCase have a fitness advantage conferred by herbicide resistance that is enhanced or counterbalanced, respectively, by direct pleiotropic effects on the plant phenology. Pleiotropic effects associated with mutations endowing herbicide resistance undoubtedly play a significant role in the evolutionary dynamics of herbicide resistance in weed populations. Mutant ACCase alleles should also prove useful to investigate the role played by seed storage lipids in the control of seed dormancy and germination.  相似文献   

7.
Summary Cells of Streptococcus pyogenes were prepared under rigid conditions. The microorganisms were then incubated for 3 hours in the presence or absence of chloramphenicol, actinomycin or puromycin. RNA, ribosomal fraction and ribosomal proteins were isolated from the cells. The materials were invesigated with the help of infra red spectroscopy using the potassium bromide pellet method. Quantitative differences in the 1750–1500 cm-1 region were observed with materials treated with the antibiotics. Synthetic mixtures of ribosomal RNA with progressively larger amounts of ribosomal proteins show analogous changes, namely a progressive increase in the strength of the 1650 cm-1 band relative to the 1685 cm-1 band, and an increase in the 1535 cm-1 band. The analytical results obtained with the ribosomal RNA isolated from S. pyogenes treated with antibiotics indicated increased amounts of proteins which could not be removed by the applied extraction method. The evidence presented suggests a change in the binding between ribosomal RNA and ribosomal proteins in the material isolated from the antibiotic treated microorganisms. The I. R. spectroscopy seems to be an useful tool in the investigation of some aspects of biological materials.  相似文献   

8.
The genetics of antibiotic resistance in mutant strains of Streptococcus pyrogenes was studied. Utilizing a type 6 strain (9440) primarily resistant to strepttomycin (Strr), classes of mutant strains were isolated that were resistant to one of the following antibiotics: rifampin (Rifr), erythromycin (Eryr), thiostrepton (Tstr), spiramycin (Sprr), fusidic acid (Fusr), gramicidin (Grcr), ethidium bromide (Ebrr), kanamycin (Kanr), neomycin (Neor), oleandomycin (Oler), gentamicin (Genr), and novobiocin (Novr). Transduction experiments separated antibiotic resistance markers into two distinct groups: transducible markers, including Fusr, Bacr, Ksg+, Spcr, Eryr, Sprr, Rifr, Stlr, and Tstr (Bacr, Ksgr, Spcr, and Stlr refer to resistance to bacitracin, kasugamycin, spectinomycin, and streptolydigan, respectively), and nontransducible markers, including Grcr, Ebrr, Kanr, Neor, Oler, Genr, and Novr. By means of two- and three-point crosses, transducible markers (excluding tst) were located in three separate linkage groups. spr was found to be linked with ery and spc in the order spc-ery-spr, whereas in a separate linkage group the order was determined to be str-fus-bac-ksg. The third linkage group contained the rif and stl markers.  相似文献   

9.
The important human pathogen Streptococcus pyogenes (group A streptococcus, GAS) initiates infection by pilus-mediated attachment to host tissue. Thus, the pilus is an excellent target for design of anti-infective strategies. The T3 pilus of GAS is composed of multiple covalently linked subunits of the T3 protein to which the two minor pilins, Cpa and OrfB, are covalently attached. Because the proteins of GAS pili do not contain either of the motifs required for pilus polymerization in other Gram-positive bacteria, we investigated the residues involved in their linkage. We show that linkage of Cpa to T3 by the sortase family transpeptidase SrtC2 requires the VPPTG motif in the cell wall-sorting signal of Cpa. We also demonstrate that K173 of T3 is required both for T3 polymerization and for attachment of Cpa to T3. Therefore, attachment of Cpa to K173 of a T3 subunit would block further addition of T3 subunits to this end of the growing pilus. This implies that Cpa is located exclusively at the pilus tip, a location supported by immunogold electron microscopy, and suggests that, as for well-studied pili on Gram-negative bacteria, the role of the pilus is to present the adhesin external to the bacterial capsule.  相似文献   

10.
11.
Macrolide and ketolide antibiotics inhibit protein synthesis on the bacterial ribosome. Resistance to these antibiotics is conferred by dimethylation at 23S rRNA nucleotide A2058 within the ribosomal binding site. This form of resistance is encoded by erm dimethyltransferase genes, and is found in many pathogenic bacteria. Clinical isolates of Streptococcus pneumoniae with constitutive erm(B) and Streptococcus pyogenes with constitutive erm(A) subtype (TR) are resistant to macrolides, but remain susceptible to ketolides such as telithromycin. Paradoxically, some strains of S. pyogenes that possess an identical erm(B) gene are clinically resistant to ketolides as well as macrolides. Here we explore the molecular basis for the differences in these streptococcal strains using mass spectrometry to determine the methylation status of their rRNAs. We find a correlation between the levels of A2058-dimethylation and ketolide resistance, and dimethylation is greatest in S. pyogenes strains expressing erm(B). In constitutive erm strains that are ketolide-sensitive, appreciable proportions of the rRNA remain monomethylated. Incubation of these strains with subinhibitory amounts of the macrolide erythromycin increases the proportion of dimethylated A2058 (in a manner comparable with inducible erm strains) and reduces ketolide susceptibility. The designation 'constitutive' should thus be applied with some reservation for most streptococcal erm strains. One strain worthy of the constitutive designation is S. pyogenes isolate KuoR21, which has lost part of the regulatory region upstream of erm(B). In S. pyogenes KuoR21, nucleotide A2058 is fully dimethylated under all growth conditions, and this strain displays the highest resistance to telithromycin (MIC > 64 microg ml-1).  相似文献   

12.
Drug efflux pumps such as MexAB-OprM from Pseudomonas aeruginosa confer resistance to a wide range of chemically different compounds. Within the tripartite assembly, the inner membrane protein MexB is mainly responsible for substrate recognition. Recently, considerable advances have been made in elucidating the drug efflux pathway through the large periplasmic domains of resistance-nodulation-division (RND) transporters. However, little is known about the role of amino acids in other parts of the protein. We have investigated the role of two conserved phenylalanine residues that are aligned around the cytoplasmic side of the central cavity of MexB. The two conserved phenylalanine residues have been mutated to alanine residues (FAFA MexB). The interaction of the wild-type and mutant proteins with a variety of drugs from different classes was investigated by assays of cytotoxicity and drug transport. The FAFA mutation affected the efflux of compounds that have targets inside the cell, but antibiotics that act on cell wall synthesis and membrane probes were unaffected. Combined, our results indicate the presence of a hitherto unidentified cytoplasmic-binding site in RND drug transporters and enhance our understanding of the molecular mechanisms that govern drug resistance in Gram-negative pathogens.  相似文献   

13.
14.
Parasites and pathogens that begin as symbionts, i.e., organisms living together in the same habitat, are some of the most promising drivers of species evolution. Because insects are highly diverse and important as ecosystem service agents and because mites can exert large effects on insect populations (capable of killing at least juveniles), insect–mite interactions have been analyzed from various perspectives, including evolutionary, ecological and pest‐management perspectives. Here, I review and examine insect–mite symbiotic associations to develop hypotheses concerning the factors that maintain and develop their relationships. Previous studies have hypothesized that insect sociality and mite richness and specificity affect insect–mite interactions. I found that both solitary and social insects, including parasocial and subsocial insects, harbor numbers of symbionts including species‐specific ones but few dangerous mite symbionts in their nests or habitats under natural conditions. Nest size or the amount of food resources in a nest may affect mite richness. On the basis of this review, I hypothesize that the insect characteristics relevant for mite symbiotic hosting are sharing the same habitat with mites and living in a nutrient‐rich habitat. I also suggest that many cases of species‐specific symbiosis began with phoresy. To test these hypotheses, phylogenetic information on mites living with insect groups and quantitative analysis to characterize each insect–mite relationship are necessary.  相似文献   

15.
16.
The mouse hybridoma cell line 40-150 secretes antibodies with high affinity toward the cardiac glycosides digoxin and digitoxin. A spontaneous mutant, 40-150 A2.4, produces an antibody which carries a single residue mutation, Ser----Arg, in its heavy chain (H94) and has an altered specificity. A second-order mutant, 40-150 A2.4 P.10, produces two antibody molecules, one the same as 40-150 A2.4, the other lacking two residues at the N-terminus of its H chain, and having a specificity profile approaching that of 40-150 antibody. The N-terminus and the position H94 are distant from the antigen-binding site of the antibody; thus, the structural basis of the specificity changes was not immediately clear. Approximate structures of the 40-150 antibody and its mutants were constructed in the computer, based on atomic coordinates of the homologous mouse antibody McPC 603. Using the program CONGEN, the torsional space of the polypeptide backbone and side chains around position H94 was uniformly sampled, and the lowest energy conformations were analyzed in detail. The results indicate that when Arg-H94 is substituted for Ser, Arg-H94 can hydrogen bond to side chains of Asp-H101, Arg-L46, and Asp-L55. This results in a change in the surface of the combining site which may account for the affinity changes. Deletion of the two N-terminal residues increases solvent accessibility of Arg-H94. The solvation may cause a hydrogen bond between Arg-H94 and Asp-H101 to be lost, restoring the structure to one similar to that of 40-150.  相似文献   

17.
Fibronectin-binding surface proteins are found in many bacterial species. Most strains of Streptococcus pyogenes, a major human pathogen, express the fibronectin-binding protein F1, which promotes bacterial adherence to and entry into human cells. In this study, the role of fibronectin in S. pyogenes virulence was investigated by introducing the protein F1 gene in an S. pyogenes strain lacking this gene. Furthermore, transgenic mice lacking plasma fibronectin were used to examine the relative contribution of plasma and cellular fibronectin to S. pyogenes virulence. Unexpectedly, protein F1-expressing bacteria were less virulent to normal mice, and virulence was partly restored when these bacteria were used to infect mice lacking plasma fibronectin. Dissemination to the spleen of infected mice was less efficient for fibronectin-binding bacteria. These bacteria also disseminated more efficiently in mice lacking plasma fibronectin, demonstrating that plasma fibronectin bound to the bacterial surface downregulates S. pyogenes virulence by limiting bacterial spread. From an evolutionary point of view, these results suggest that reducing virulence by binding fibronectin adds selective advantages to the bacterium.  相似文献   

18.
The rpmBG operon of Escherichia coli codes for ribosomal proteins L28 and L33. Two strains with mutations in the operon are AM81, whose ribosomes lack protein L28, and AM90, whose ribosomes are without protein L33. Neither strain showed major defects in ribosome assembly. However, when the mutations were transferred to other strains of E. coli, ribosome synthesis was greatly perturbed and precursor ribonucleoproteins accumulated. In the new backgrounds, the mutation in rpmB was complemented by synthesis of protein L28 from a plasmid; the rpmG mutation was not complemented by protein L33 because synthesis of protein L28 from the upstream rpmB gene was also greatly reduced. The results suggest that protein L33, in contrast to protein L28, has at best a minor role in ribosome assembly and function.  相似文献   

19.
Some isolates of the significant human pathogen Streptococcus pyogenes, including virulent strains of the M1 serotype, secrete protein SIC. This molecule, secreted in large quantities, interferes with complement function. As a result of natural selection, SIC shows a high degree of variation. Here we provide a plausible explanation for this variation and the fact that strains of the M1 serotype are the most frequent cause of severe invasive S. pyogenes infections. Thus, protein SIC was found to inactivate human neutrophil alpha-defensin and LL-37, two major antibacterial peptides involved in bacterial clearance. This inactivation protected S. pyogenes against the antibacterial effect of the peptides. Moreover, SIC isolated from S. pyogenes of the M1 serotype was more powerful in this respect than SIC variants from strains of M serotypes 12 and 55, serotypes rarely connected with invasive infections.  相似文献   

20.
Survival in aerobic conditions is critical to the pathogenicity of many bacteria. To investigate the means of aerotolerance and resistance to oxidative stress in the catalase-negative organism Streptococcus pyogenes, we used a genomics-based approach to identify and inactivate homologues of two peroxidase genes, encoding alkyl hydroperoxidase (ahpC) and glutathione peroxidase (gpoA). Single and double mutants survived as well as the wild type under aerobic conditions. However, they were more susceptible than the wild type to growth suppression by paraquat and cumene hydroperoxide. In addition, we show that S. pyogenes demonstrates an inducible peroxide resistance response when treated with sublethal doses of peroxide. This resistance response was intact in ahpC and gpoA mutants but not in mutants lacking PerR, a repressor of several genes including ahpC and catalase (katA) in Bacillus subtilis. Because our data indicate that these peroxidase genes are not essential for aerotolerance or induced resistance to peroxide stress in S. pyogenes, genes for a novel mechanism of managing peroxide stress may be regulated by PerR in streptococci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号