首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated the orientation and rotational mobility of spin-labeled myosin heads in muscle fibers as a function of the sarcomere length in the absence of ATP. An iodoacetamide spin label was used to label selectively two-thirds of the sulfhydryl-1 groups in glycerinated rabbit psoas muscle. Conventional electron paramagnetic resonance experiments were used to determine the orientation distribution of the probes relative to the fiber axis, and saturation transfer experiments were used to detect sub-millisecond rotational motion. When fibers are at sarcomere length 2.3 microns (full overlap), spin-labeled heads have a high degree of orientational order. The probes are in a single, narrow orientation distribution (full width 15 degrees), and they exhibit no detectable sub-millisecond rotational motion. When fibers are stretched (sarcomere length increased), either before or after labeling, disorder and microsecond mobility increase greatly, in proportion to the fraction of myosin heads that are no longer in the overlap zone between the thick and thin filaments. Saturation transfer difference spectra show that a fraction of myosin heads equal to the fraction outside the overlap zone have much more rotational mobility than those in fibers at full overlap, and almost as much as in synthetic myosin filaments. The most likely interpretation is that some of the probes, corresponding approximately to the fraction of heads in the overlap zone, remain oriented and immobile, while the rest are highly disordered (angular spread greater than 90 degrees) and mobile (microsecond rotational motion). Thus, it appears that myosin heads are rigidly immobilized by actin, but they rotate through large angles on the microsecond time-scale when detached from actin, even in the absence of ATP.  相似文献   

2.
The rotational motion of rigidly spin-labeled myosin heads of glycerinated myofibrils as reflected in saturation-transfer EPR spectra behaves to a first approximation as though the heads consist of two populations with different rotational motions. An immobilized fraction has a correlation time (tau 2) of approximately 0.5 ms, comparable to that of spin-labeled subfragment-1 (S1) bound to thin filaments, while a mobile fraction has a tau 2 of 10 microseconds, comparable to that of the heads of purified myosin filaments. The effects of nonhydrolyzable ATP analogues, potassium pyrophosphate (PPi), or adenylyl imidodiphosphate, Ca2+, temperature, or ionic strength on the spectra can be analyzed in terms of the fraction of myosin heads immobilized by attachment to thin filaments, without requiring changes in the motion of either attached or detached heads.  相似文献   

3.
P Fajer  D D Thomas  J B Feix    J S Hyde 《Biophysical journal》1986,50(6):1195-1202
We have used saturation-recovery electron paramagnetic resonance (SR-EPR), a time-resolved saturation transfer EPR technique, to measure directly the microsecond rotational diffusion of spin-labeled proteins. SR-EPR uses an intense microwave pulse to saturate a spin population having narrow distribution of orientations with respect to the magnetic field. The time evolution of the signal is then observed. The signal increases in time as saturation is relieved by spin-lattice relaxation (Tl) as well as by saturation transfer due to spectral diffusion (Tsd), which is a function of rotational diffusion (Tr) and spectral position. In the presence of both events, the recovery is biphasic, with the initial phase related to both Tr and Tl, and the second phase determined only by Tl. We have measured the saturation recoveries of spin-labeled hemoglobin tumbling in media of known viscosities as a function of rotational correlation time (Tr) and pulse duration (tp). The Tr values estimated from the initial phase of recovery were in good agreement with theory. Variation of the pulse time can also be used to determine Tr. For tp less than Tsd, the recoveries were observed to be biphasic, for tp greater than Tsd a single-exponential. T1 values were determined from the recoveries after pulses quenching spectral diffusion or from the second phase of recovery after shorter pulses. These results demonstrate that SR-EPR is applicable to the study of motion of spin-labeled proteins. Its time resolution should provide a significant advantage over steady state techniques, particularly in the case of motional anisotropy or system heterogeneity.  相似文献   

4.
The rotational motion of crossbridges, formed when myosin heads bind to actin, is an essential element of most molecular models of muscle contraction. To obtain direct information about this molecular motion, we have performed saturation transfer EPR experiments in which spin labels were selectively and rigidly attached to myosin heads in purified myosin and in glycerinated myofibrils. In synthetic myosin filaments, in the absence of actin, the spectra indicated rapid rotational motion of heads characterized by an effective correlation time of 10 microseconds. By contrast, little or no submillisecond rotational motion was observed when isolated myosin heads (subfragment-1) were attached to glass beads or to F-actin, indicating that the bond between the myosin head and actin is quite rigid on this time scale. A similar immobilization of heads was observed in spin-labeled myofibrils in rigor. Therefore, we conclude that virtually all of the myosin heads in a rigor myofibril are immobilized, apparently owing to attachment of heads to actin. Addition of ATP to myofibrils, either in the presence or absence of 0.1 mM Ca2+, produced spectra similar to those observed for myosin filaments in the absence of actin, indicating rapid submillisecond rotational motion. These results indicate that either (a) most of the myosin heads are detached at any instant in relaxed or activated myofibrils or (b) attached heads bearing the products of ATP hydrolysis rotate as rapidly as detached heads.  相似文献   

5.
In Myxicola axons, substitution of tetramethylammonium (TMA+) for Cs+ alters intramembrane charge movements (gating currents). Although the total charge moved during and following a depolarizing step remains constant, with TMA+ the ON response has additional slower component(s), and the OFF response is retarded. Concommitantly, TMA+ produces the same voltage-dependent block of Na+ inactivation in Myxicola as has been observed in other preparations. At large positive potentials as many as 70% of the Na+ channels fail to inactivate in the steady state. In addition, TMA+ slows Na+ activation, retards the inactivation of those Na+ channels that remain able to inactivate, and decreases the maximum Na+ conductance. The steady-state Na+ conductance induced by internal TMA+ or Na+ is consistent with a scheme in which these internal cations simply modify Na+ channels in an all-or-none fashion so that a fraction become incapable of inactivating.  相似文献   

6.
We have used electron paramagnetic resonance (EPR) spectra to study spin labels selectively and rigidly attached to myosin heads in glycerinated rabbit psoas muscle fibers. Because the angle between the magnetic field and the principal axis of the probe determines the position of the EPR absorption line, spectra from labeled fibers oriented parallel to the magnetic field yielded directly the distribution of spin label orientations relative to the fiber axis. Two spin labels, having reactivities resembling iodoacetamide (IASL) and maleimide (MSL), were used. In rigor fibers with complete filament overlap, both labels displayed a narrow angular distribution, full width at half maximum approximately 15 degrees, centered at angles of 68 degrees (IASL) and 82 degrees (MSL). Myosin subfragments (heavy meromyosin and subfragment-1) were labeled and allowed to diffuse into fibers. The resulting spectra showed the same sharp angular distribution that was found for the labeled fibers. Thus is appears that virtually all myosin heads in a rigor fiber have the same orientation relative to the fiber axis, and this orientation is determined by the actomyosin bond. Experiments with stretched fibers indicated that the spin labels on the fraction of heads not interacting with actin filaments had a broad angular distribution. Addition of ATP to unstretched fibers under relaxing conditions produced orientational disorder, resulting in a spectrum almost indistinguishable from that of an isotropic distribution of probes. Addition of either an ATP analog (AMPPNP) or pyrophosphate produced partial disorder. That is a fraction of the probes remained sharply oriented as in rigor while a second fraction was in a disordered distribution similar to that of relaxed fibers.  相似文献   

7.
We have simulated both conventional (V1) and saturation transfer (V'2) electron paramagnetic resonance spectra for the case of Brownian rotational diffusion restricted in angular amplitude. Numerical solutions of the diffusion-coupled Bloch equations were obtained for an axially symmetric 14N nitroxide spin label with its principal axis rotating within a Gaussian angular distribution of full width delta theta at half maximum. Spectra were first calculated for a macroscopically oriented system with cylindrical symmetry (e.g., a bundle of muscle fibers or a stack of membrane bilayers), with the Gaussian angular distribution centered at theta 0 with respect to the magnetic field. These spectra were then summed over theta 0 to obtain the spectrum of a randomly oriented sample (e.g., a dispersion of myofibrils or membrane vesicles). The angular amplitude delta theta was varied from 0 degrees, corresponding to isotropic motion (order parameter = 0). For each value of delta theta, the rotational correlation time, tau r, was varied from 10(-7) to 10(-2) s, spanning the range from maximal to minimal saturation transfer. We provide plots that illustrate the dependence of spectral parameters on delta theta and tau r. For an oriented system, the effects of changing delta theta and tau r are easily distinguishable, and both parameters can be determined unambiguously by comparing simulated and experimental spectra. For a macroscopically disordered system, the simulated spectra are still quite sensitive to delta theta, but a decrease in tau r produces changes similar to those from an increase in delta theta. If delta theta can be determined independently, then the results of the present study can be used to determine tau r from experimental spectra. Similarly, if tau r is known, then delta theta can be determined.  相似文献   

8.
We have used a recently synthesized indane-dione spin label (2-[-oxyl-2,2,5,5-tetramethyl-3-pyrrolin-3-yl)methenyl]in dane-1,3-dione (InVSL) to study the rotational dynamics of myosin, with saturation-transfer electron paramagnetic resonance (ST-EPR). To determine effective rotational correlation times (tau effr) from InVSL spectra, reference spectra corresponding to known correlation times (tau r) were obtained from InVSL-hemoglobin undergoing isotropic rotational motion in aqueous glycerol solutions. These spectra were used to generate plots of spectral parameters vs. tau r. These plots should be used to analyze ST-EPR spectra of InVSL bound to other proteins, because the spectra are different from those of tempo-maleimide-spin-labeled hemoglobin, which have been used previously as ST-EPR standards. InVSL was covalently attached to the head (subfragment-1; S1) of myosin. EPR spectra and K/EDTA-ATPase activity showed that 70-95% of the heads were labeled, with > or = 90% of the label bound to either cys 707 (SH1) or cys 697 (SH2). ST-EPR spectra of InVSL-S1 attached to glass beads, bound to actin in myofibrils, or precipitated with ammonium sulfate indicated no submillisecond rotational motion. Therefore, InVSL is rigidly immobilized on the protein so that it reports the global rotation of the myosin head. The ST-EPR spectra of InVSL-myosin monomers and filaments indicated tau effr values of 4 and 13 microseconds, respectively, showing that myosin heads undergo microsecond segmental rotations that are more restricted in filaments than in monomers. The observed tau effr values are longer than those previously obtained with other spin labels bound to myosin heads, probably because InVSL binds more rigidly to the protein and/or with a different orientation. Further EPR studies of InVSL-myosin in solution and in muscle fibers should prove complementary to previous work with other labels.  相似文献   

9.
SH-1 thiol of S-1 was modified with N-(1-oxyl-2,2,6,6-tetramethyl-4-piperidinyl) iodoacetoamide spin label (IASL). The extent of dissociation, alpha, of spin-labeled myosin subfragment-1 (IASL-S-1) from acto-IASL-S-1 by a nucleotide was measured by an ultracentrifugal separation method, a light-scattering method, and a saturation transfer EPR method. The alpha values obtained by these three methods were the same within the limits of the experimental errors. The dependence of alpha on the concentrations of AMPPNP, [S], and F-actin, [A], could be described by the equation: alpha-1 = 1 + (1 + Ks/[S])[A]/KA. The Ks and KA values were 0.65-1.2 mM and 1.7-2.7 mg/ml, respectively, in 0.5 M KCl and 4 mM MgCl2 at pH 7.0 and 20 degrees C. The height of the weakly immobilized peak of the conventional EPR spectrum of IASL-S-1, W, increased linearly with increase in the ATP or AMPPNP concentration, and became saturated at 1 mol nucleotide/mol IASL-S-1. No change in W was observed upon the binding of IASL-S-1 with F-actin. The dependence of the extent of change in W, delta W, on [A] and [S] was given by delta W-1 = 1 + Ks/[S], where Ks = Ks/(1 + KA/[A]). This finding indicates that the delta W value is proportional to the amount of a nucleotide bound to IASL-S-1 and independent of the binding of F-actin to IASL-S-1.  相似文献   

10.
The coat protein of Tobacco Mosaic Virus is covalently labeled with a maleimide spin label at the single SH-group of the protein. Saturation transfer electron paramagnetic resonance spectroscopy, a technique that is sensitive to very slow molecular motion with rotational correlation times τc in the range 10?7 to 10?3 sec, shows the dissociation of large oligomers of spin labeled protein with τc~10?4 sec at pH 5.5 to smaller oligomers at higher pH.  相似文献   

11.
Orientation of spin-labeled light chain 2 of myosin heads in muscle fibers   总被引:3,自引:0,他引:3  
Electron paramagnetic resonance (e.p.r.) spectroscopy has been used to monitor the orientation of spin labels attached rigidly to a reactive SH residue on the light chain 2 (LC2) of myosin heads in muscle fibers. e.p.r. spectra from spin-labeled myosin subfragment-1 (S1), allowed to diffuse into unlabeled rigor (ATP-free) fibers, were roughly approximated by a narrow angular distribution of spin labels centered at 66 degrees relative to the fiber axis, indicating a uniform orientation of S1 bound to actin. On the other hand, spectra from spin-labeled heavy meromyosin (HMM) were roughly approximated by two narrow angular distributions centered at 42 degrees and 66 degrees, suggesting that the LC2 domains of the two HMM heads have different orientations. In contrast to S1 or HMM, the spectra from rigor fibers, in which LC2 of endogenous myosin heads was labeled, showed a random orientation which may be due to distortion imposed by the structure of the filament lattice and the mismatch of the helical periodicities of the thick and thin filaments. However, spectra from the fibers in the presence of ATP analog 5'-adenylyl imidodiphosphate (AMPPNP) were approximated by two narrow angular distributions similar to those obtained with HMM. Thus, AMPPNP may cause the LC2 domain to be less flexible and/or the S2 portion to be more flexible, so as to release the distortion of the LC2 domain and make it return to its natural position. At high ionic strength, AMPPNP disoriented the spin labels as ATP did under relaxing conditions, suggesting that the myosin head is detached from and/or weakly (flexibly) attached to a thin filament.  相似文献   

12.
13.
We have measured the microsecond rotational motions of myosin heads in contracting rabbit psoas muscle fibers by detecting the transient phosphorescence anisotropy of eosin-5-maleimide attached specifically to the myosin head. Experiments were performed on small bundles (10-20 fibers) of glycerinated rabbit psoas muscle fibers at 4 degrees C. The isometric tension and physiological ATPase activity of activated fibers were unaffected by labeling 60-80% of the heads. Following excitation of the probes by a 10-ns laser pulse polarized parallel to the fiber axis, the time-resolved emission anisotropy of muscle fibers in rigor (no ATP) showed no decay from 1 microsecond to 1 ms (r infinity = 0.095), indicating that all heads are rigidly attached to actin on this time scale. In relaxation (5 mM MgATP but no Ca2+), the anisotropy decayed substantially over the microsecond time range, from an initial anisotropy (r0) of 0.066 to a final anisotropy (r infinity) of 0.034, indicating large-amplitude rotational motions with correlation times of about 10 and 150 microseconds and an overall angular range of 40-50 degrees. In isometric contraction (MgATP plus saturating Ca2+), the amplitude of the anisotropy decay (and thus the amplitude of the microsecond motion) is slightly less than in relaxation, and the rotational correlation times are about twice as long, indicating slower motions than those observed in relaxation. While the residual anisotropy (at 1 ms) in contraction is much closer to that in relaxation than in rigor, the initial anisotropy (at 1 microsecond) is approximately equidistant between those of rigor and relaxation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Step changes in length (between -3 and +5 nm per half-sarcomere) were imposed on isolated muscle fibers at the plateau of an isometric tetanus (tension T0) and on the same fibers in rigor after permeabilization of the sarcolemma, to determine stiffness of the half-sarcomere in the two conditions. To identify the contribution of actin filaments to the total half-sarcomere compliance (C), measurements were made at sarcomere lengths between 2.00 and 2.15 microm, where the number of myosin cross-bridges in the region of overlap between the myosin filament and the actin filament remains constant, and only the length of the nonoverlapped region of the actin filament changes with sarcomere length. At 2.1 microm sarcomere length, C was 3.9 nm T0(-1) in active isometric contraction and 2.6 nm T0(-1) in rigor. The actin filament compliance, estimated from the slope of the relation between C and sarcomere length, was 2.3 nm microm(-1) T0(-1). Recent x-ray diffraction experiments suggest that the myosin filament compliance is 1.3 nm microm(-1) T0(-1). With these values for filament compliance, the difference in half-sarcomere compliance between isometric contraction and rigor indicates that the fraction of myosin cross-bridges attached to actin in isometric contraction is not larger than 0.43, assuming that cross-bridge elasticity is the same in isometric contraction and rigor.  相似文献   

15.
We have used electron paramagnetic resonance to study the orientation of myosin heads in the presence of nucleotides and nucleotide analogs, to induce equilibrium states that mimic intermediates in the actomyosin ATPase cycle. We obtained electron paramagnetic resonance spectra of an indane dione spin label (InVSL) bound to Cys 707 (SH1) of the myosin head, in skinned rabbit psoas muscle fibers. This probe is rigidly immobilized on the catalytic domain of the head, and the principal axis of the probe is aligned nearly parallel to the fiber axis in rigor (no nucleotide), making it directly sensitive to axial rotation of the head. On ADP addition, all of the heads remained strongly bound to actin, but the spectral hyperfine splitting increased by 0.55 +/- 0.02 G, corresponding to a small but significant axial rotation of 7 degrees. Adenosine 5'-(adenylylim-idodiphosphate) (AMPPNP) or pyrophosphate reduced the actomyosin affinity and introduced a highly disordered population of heads similar to that observed in relaxation. For the remaining oriented population, pyrophosphate induced no significant change relative to rigor, but AMPPNP induced a slight but probably significant rotation (2.2 degrees +/- 1.6 degrees), in the direction opposite that induced by ADP. Adenosine 5'-O-(3-thiotriphosphate) (ATP gamma S) relaxed the muscle fiber, completely dissociated the heads from actin, and produced disorder similar to that in relaxation by ATP. ATP gamma S plus Ca induced a weak-binding state with most of the actin-bound heads disordered. Vanadate had negligible effect in the presence of ADP, but in isometric contraction vanadate substantially reduced both force and the fraction of oriented heads. These results are consistent with a model in which myosin heads are disordered early in the power stroke (weak-binding states) and rigidly oriented later in the power stroke (strong-binding states), whereas transitions among the strong-binding states induce only slight changes in the axial orientation of the catalytic domain.  相似文献   

16.
S M Lewis  D D Thomas 《Biochemistry》1991,30(34):8331-8339
We have measured the microsecond rotational motions of the sarcoplasmic reticulum (SR) Ca-ATPase as a function of enzyme-specific ligands, including those that induce active calcium transport. We labeled the Ca-ATPase with a maleimide spin probe and detected rotational dynamics using saturation-transfer electron paramagnetic resonance (ST-EPR). This probe's ST-EPR spectra have been shown to be sensitive to microsecond protein rotational motion, corresponding to large-scale protein rotations that should be affected by changes in the enzyme's shape, flexibility, protein-protein interactions (oligomeric state), and protein-lipid interactions. We found that the motions of the enzyme-nucleotide and the enzyme-nucleotide/Ca states are indistinguishable from the motions in the absence of ligands. Rotational mobility does decrease in response to the addition of DMSO, a solvent that inhibits Ca-ATPase activity and stabilizes the phosphoenzyme. However, the addition of phosphate to form phosphoenzyme, in the presence or absence of DMSO, does not change the motions significantly. During the steady state of active calcium transport, the microsecond rotational mobility is indistinguishable from that of the resting enzyme. In order to detect any transient changes in mobility that might not be detectable in the steady state and to improve the precision of steady-state measurements, we photolyzed caged ATP with a laser pulse in the presence of calcium and detected the ST-EPR response from the spin-labeled enzyme, with a time resolution of 1 s.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
We have applied the technique of saturation transfer electron paramagnetic resonance to study the rotational diffusion of spin labeled membrane bound cholinergic receptors from Torpedo marmorata. Two different spin labels were used: a spin labeled maleimide derivative which binds covalently to proteins and a long chain spin labeled acylcholine which binds reversibly with a high affinity to the receptor protein. The maleimide spin label has a motion whose rotational correlation time is τ2 > 10?3 sec. The long chain spin labeled acylcholine indicates slightly more motion (τ2 ? 10?4sec), but the nitroxide in this latter case is probably more loosely bound.  相似文献   

18.
Computational methods have been developed to model the effects of constrained or restricted amplitude uniaxial rotational diffusion (URD) on saturation transfer electron paramagnetic resonance (ST-EPR) signals observed from nitroxide spin labels. These methods, which have been developed to model the global rotational motion of intrinsic membrane proteins that can interact with the cytoskeleton or other peripheral proteins, are an extension of previous work that described computationally efficient algorithms for calculating ST-EPR spectra for unconstrained URD (Hustedt and Beth, 1995, Biophys. J. 69:1409-1423). Calculations are presented that demonstrate the dependence of the ST-EPR signal (V'(2)) on the width (Delta) of a square-well potential as a function of the microwave frequency, the correlation time for URD, and the orientation of the spin-label with respect to the URD axis. At a correlation time of 10 micros, the V'(2) signal is very sensitive to Delta in the range from 0 to 60 degrees, marginally sensitive from 60 degrees to 90 degrees, and insensitive beyond 90 degrees. Sensitivity to Delta depends on the correlation time for URD with higher sensitivity to large values of Delta at the shorter correlation times, on the microwave frequency, and on the orientation of the spin-label relative to the URD axis. The computational algorithm has been incorporated into a global nonlinear least-squares analysis approach, based upon the Marquardt-Levenberg method (Blackman et al., 2001, Biophys. J. 81:3363-3376). This has permitted determination of the correlation time for URD and the width of the square-well potential by automated fitting of experimental ST-EPR data sets obtained from a spin-labeled membrane protein and provided a new automated method for analysis of data obtained from any system that exhibits restricted amplitude URD.  相似文献   

19.
M E Johnson  J S Hyde 《Biochemistry》1981,20(10):2875-2880
The extension of saturation transfer electron paramagnetic resonance spectroscopy (ST-EPR) to an observational frequency of 35 GHz (Q band) is described. At this frequency the spectral resolution is greatly enhanced over that afforded at the 9.5-GHz (X-band) frequency used in most of the ST-EPR studies published to date. Thus, Q-band operation may provide an approach for the detailed analysis of the slow anisotropic motions believed to occur in many biomolecular systems. The spectral characteristics and the effects of various instrumental settings are described in detail for a model system of spin-labeled hemoglobin in water-glycerol solutions. Several spectral parameters are defined, and their potential use in monitoring various types of anisotropic motion is considered.  相似文献   

20.
The interaction of actin and spin-labeled heavy meromyosin (MSL-HMM) was studied in the presence and absence of adenosine diphosphate or 5'-adenyl-yl-imidodiphosphate (AMPPNP) to determine the contributions of single and double-headed binding. The extent of single-headed binding to actin was deduced from a comparison of the fraction of immobilized heads (fi) with the fraction of bound molecules (fs) determined by saturation-transfer EPR (ST-EPR) and sedimentation, respectively. The ST-EPR measurements depend on the reduced motion of the spin label rigidly bound to the HMM heads upon the interaction of the latter with actin. During titration of acto-MSL-HMM with nucleotide, we measured changes in fi and fs brought about by dissociation of MSL-HMM from actin. On titration with ADP, fs changed very little, remaining above 0.8, while fi decreased to approximately 0.5 at 10mM ADP, a result consistent with extensive single-headed binding of MSL-HMM to actin. On titration with AMPPNP, single-headed binding was not detected; viz., fi and fs decreased in parallel. It was not necessary to postulate a nucleotide induced state of the bound heads, differing in motional properties from that of rigor heads, to account for the results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号