共查询到18条相似文献,搜索用时 109 毫秒
1.
2.
对利用底物广泛的乙醇发酵菌株马克斯克鲁维(Kluyveromyces marxianus)DL1菌株与工业用乙醇发酵菌株酿酒酵母(Saccharomyces cerevisiae)6525利用己糖(葡萄糖、甘露糖、半乳糖)和戊糖(木糖、阿拉伯糖)的情况进行对比研究。结果发现:以己糖为底物时,K.marxianus DL1均表现出细胞生长快、乙醇得率高的特点;在不通气、糖20 g/L条件下,K.marxianus DL1的最大乙醇质量浓度均比S.cerevisiae 6525高出10%左右,细胞量及乙醇生产强度分别是S.cerevisiae 6525的近2和1.7倍。当以戊糖为底物时,K.marxianus DL1可以利用木糖和阿拉伯糖;在不通气、糖20g/L条件下,K.marxianus DL1利用木糖产木糖醇和乙醇,乙醇终质量浓度可达7.68 g/L,木糖醇质量浓度为9.12 g/L;以阿拉伯糖为发酵底物时,阿拉伯糖醇的产量可达6 g/L左右;而S.cerevisiae 6525不能利用戊糖。马克斯克鲁维酵母比酿酒酵母更适合纤维乙醇生产。 相似文献
3.
蔗渣水解液发酵乙醇的研究 总被引:14,自引:0,他引:14
研究了酵母(Pichiastipitis)Y7124在限制供氧条件下尽管反应初期葡萄糖消耗速率大于木糖,但在一定时间后,葡萄糖的消耗速率变慢,而木糖消耗速率变快直至耗尽的现象。建立了气升柱以P.Stipitis转化木糖为目的和以溢流柱Sacharomycescerivisiae转化残留葡萄糖为目的的串联发酵乙醇工艺,即流加5倍浓缩的蔗渣水解液,D=0.1h-1,还原糖总利用率为97.2%,酒精浓度为46.5g/L,生产率为4.1g/L·h。 相似文献
4.
木糖是木质纤维素原料水解液中的第二大组分,木糖和葡萄糖的充分利用是有经济性地生产纤维素乙醇的关键。通过基因克隆手段构建了一株可以高效利用木糖产乙醇的重组运动发酵单胞菌Zymomonas mobilis TSH01,并进行了利用单糖溶液、混合糖溶液及玉米秸秆水解液发酵产乙醇效率的研究。结果表明,利用单一葡萄糖或单一木糖溶液发酵时,当糖浓度为8%、发酵72 h后,糖利用率分别为100%和98.9%,乙醇代谢收率分别为87.8%和78.3%;利用8%葡萄糖和8%木糖的混合溶液发酵时,72 h后,葡萄糖和木糖的利用率分别为98.5%和97.4%,乙醇代谢收率为94.9%。利用含3.2%葡萄糖和3.5%木糖的玉米秸秆水解液发酵72 h后,葡萄糖和木糖的利用率分别为100%和92.3%,乙醇代谢收率为91.5%。此外,磷酸二氢钾对发酵过程中木糖利用率以及乙醇收率的提高有明显促进作用。 相似文献
5.
6.
7.
以1株能够直接利用菊糖产乙醇的酿酒酵母L610为出发菌株,对其利用菊糖生产乙醇的发酵条件进行了一系列研究。结果表明,L610最适乙醇发酵温度为37℃,且40℃高温发酵对其产乙醇能力无显著影响;L610对酸性发酵环境有良好的耐受性,当发酵液p H值降至3.5时,其糖醇转化率及乙醇产量仍保持较高水平;以0.025~0.10 vvm的通气量通气12 h有利于L610发酵菊糖产乙醇;L610对350 g/L的高浓度菊糖有良好的转化率,乙醇浓度和生产强度分别达到129 g/L和1.35 g/(L·h);当直接以300 g/L菊芋粗粉为唯一底物进行发酵时,L610发酵产乙醇浓度达到89.6 g/L,为理论产量的78.1%。本研究所取得的成果为酿酒酵母一步法发酵菊芋生产乙醇的工业化发展提供参考。 相似文献
8.
9.
以树干毕赤酵母为发酵菌株,混合糖(木糖、葡萄糖)为发酵底物,通过培养基和培养条件的改变来确定树干毕赤酵母高糖浓度发酵时所需的条件。研究结果表明:在24h发酵周期内初始木糖质量浓度为63.0g/L较适宜;在36h发酵周期内初始木糖质量浓度为72.0g/L较适宜。24h发酵周期内,在36.0g/L木糖中添加的葡萄糖质量浓度以54.0g/L为最佳,发酵结束乙醇质量浓度达32.9g/L;36h发酵周期内,添加的葡萄糖质量浓度以72.0g/L为最佳,发酵结束乙醇质量浓度为36.9g/L。以(NH4)2SO4为N源时较适合戊糖发酵制备乙醇,(NH2)2SO4的最佳质量浓度为1.1g/L。发酵前8h摇床转速为90r/min,后16h为150r/min,乙醇质量浓度较高,可达17.5g/L。 相似文献
10.
耐高温酵母乙醇间歇发酵动力学研究 总被引:2,自引:0,他引:2
该研究采用耐高温型酵母,在不同葡萄糖浓度(5%~30%wt)下进行了乙醇间歇发酵的动力学研究,确定了适合该酵母的最佳底物浓度范围为16%~20%(wt)。同时选取合适的动力学模型,通过实验数据的非线性性拟合,得出了不同底物浓度下对应的动力学参数值,并分析了各动力学参数值随底物浓度增加而变化的趋势。结果显示,该酵母的最大比生长速率μmax随着葡萄糖浓度的增加而有所降低,且呈线性关系:μmax=0.3161-4.1820×104s(100g/L相似文献
11.
L P Yomano S W York L O Ingram 《Journal of industrial microbiology & biotechnology》1998,20(2):132-138
Genetically engineered Escherichia coli KO11 is capable of efficiently producing ethanol from all sugar constituents of lignocellulose but lacks the high ethanol
tolerance of yeasts currently used for commercial starch-based ethanol processes. Using an enrichment method which selects
alternatively for ethanol tolerance during growth in broth and for ethanol production on solid medium, mutants of KO11 with
increased ethanol tolerance were isolated which can produce more than 60 g ethanol L−1 from xylose in 72 h. Ethanol concentrations and yields achieved by the LY01 mutant with xylose exceed those reported for
recombinant strains of Saccharomyces and Zymomonas mobilis, both of which have a high native ethanol tolerance.
Received 18 September 1997/ Accepted in revised form 07 January 1998 相似文献
12.
13.
Shen Tian Jinxin Zang Yaping Pan Jikai Liu Zhenhong Yuan Yongjie Yan Xiushan Yang 《生物学前沿》2008,3(2):165-169
Candida shehatae gene xyll and Pichia stipitis gene xyl2,encoding xylose reductase (XR) and xylitol dehydrogenase (XD) respectively,were amplified by PCR.The genes xyl1 and xyl2 were placed under the control of promoter GAL in vector pYES2 to construct the recombinant expression vector pYES2-PI2.Subsequently the vector pYES2-P12 was transformed into S.cerevisiae YS58 by LiAc to produce the recombinant yeast YS58-12.The alcoholic ferment indicated that the recombinant yeast YS58-12 could convert xylose to ethanol with the xylose consumption rate of 81.3%. 相似文献
14.
Kenneth M. Bischoff Siqing Liu Timothy D. Leathers Ronald E. Worthington Joseph O. Rich 《Biotechnology and bioengineering》2009,103(1):117-122
The emergence of antibiotic‐resistant bacteria may limit the effectiveness of antibiotics to treat bacterial contamination in fuel ethanol plants, and therefore, new antibacterial intervention methods and tools to test their application are needed. Using shake‐flask cultures of Saccharomyces cerevisiae grown on saccharified corn mash and strains of lactic acid bacteria isolated from a dry‐grind ethanol facility, a simple model to simulate bacterial contamination and infection was developed. Challenging the model with 108 CFU/mL Lactobacillus fermentum decreased ethanol yield by 27% and increased residual glucose from 6.2 to 45.5 g/L. The magnitude of the effect was proportional to the initial bacterial load, with 105 CFU/mL L. fermentum still producing an 8% decrease in ethanol and a 3.2‐fold increase in residual glucose. Infection was also dependent on the bacterial species used to challenge the fermentation, as neither L. delbrueckii ATCC 4797 nor L. amylovorus 0315‐7B produced a significant decrease in ethanol when inoculated at a density of 108 CFU/mL. In the shake‐flask model, treatment with 2 µg/mL virginiamycin mitigated the infection when challenged with a susceptible strain of L. fermentum (MIC for virginiamycin ≤2 ppm), but treatment was ineffective at treating infection by a resistant strain of L. fermentum (MIC = 16 ppm). The model may find application in developing new antibacterial agents and management practices for use in controlling contamination in the fuel ethanol industry. Biotechnol. Bioeng. 2009;103: 117–122. Published 2008 Wiley Periodicals, Inc. 相似文献
15.
Altintas MM Eddy CK Zhang M McMillan JD Kompala DS 《Biotechnology and bioengineering》2006,94(2):273-295
Zymomonas mobilis engineered to express four heterologous enzymes required for xylose utilization ferments xylose along with glucose. A network of pentose phosphate (PP) pathway enzymatic reactions interacting with the native glycolytic Entner Doudoroff (ED) pathway has been hypothesized. We have investigated this putative reaction network by developing a kinetic model incorporating all of the enzymatic reactions of the PP and ED pathways, including those catalyzed by the heterologous enzymes. Starting with the experimental literature on in vitro characterization of each enzymatic reaction, we have developed a kinetic model to enable dynamic simulation of intracellular metabolite concentrations along the network of interacting PP and ED metabolic pathways. This kinetic model is useful for performing in silico simulations to predict how varying the different enzyme concentrations will affect intracellular metabolite concentrations and ethanol production rate during continuous fermentation of glucose and xylose mixtures. Among the five enzymes whose concentrations were varied as inputs to the model, ethanol production in the continuous fermentor was optimized when xylose isomerase (XI) was present at the highest level, followed by transaldolase (TAL). Predictions of the model that the interconnecting enzyme phosphoglucose isomerase (PGI) does not need to be overexpressed were recently confirmed through experimental investigations. Through such systematic analysis, we can develop efficient strategies for maximizing the fermentation of both glucose and xylose, while minimizing the expression of heterologous enzymes. 相似文献
16.
Abdelghani El Asli Eckhard Boles Cornelis P. Hollenberg Mohamed Errami 《Biotechnology letters》2002,24(13):1101-1105
A xylose-fermenting bacterium of the family Enterobacteriaceae was isolated from olive mill wastewater. It converted xylose to ethanol with a yield of 0.19 g ethanol g–1 xylose. Although phenolic compounds normally inhibit pentose-utilizing microorganisms, this isolate was tolerant to phenol. Both the yield and the productivity of xylose fermentation decreased by 30% when phenol was added at a final concentration of 0.8 g phenol l–1. Xylose (23 g l–1) was totally fermented to ethanol (4.3 g l–1) within 48 h in the absence of phenol; however, in the presence of 0.8 g phenol l–1, only 3.3 g ethanol l–1 was obtained from the same starting concentration of xylose after 70 h. 相似文献
17.
Numerous routes are being explored to lower the cost of cellulosic ethanol production and enable large‐scale production. One critical area is the development of robust cofermentative organisms to convert the multiple, mixed sugars found in biomass feedstocks to ethanol at high yields and titers without the need for processing to remove inhibitors. Until such microorganisms are commercialized, the challenge is to design processes that exploit the current microorganisms' strengths. This study explored various process configurations tailored to take advantage of the specific capabilities of three microorganisms, Z. mobilis 8b, S. cerevisiae, and S. pastorianus. A technoeconomic study, based on bench‐scale experimental data generated by integrated process testing, was completed to understand the resulting costs of the different process configurations. The configurations included whole slurry fermentation with a coculture, and separate cellulose simultaneous saccharification and fermentation (SSF) and xylose fermentations with none, some or all of the water to the SSF replaced with the fermented liquor from the xylose fermentation. The difference between the highest and lowest ethanol cost for the different experimental process configurations studied was $0.27 per gallon ethanol. Separate fermentation of solid and liquor streams with recycle of fermented liquor to dilute the solids gave the lowest ethanol cost, primarily because this option achieved the highest concentrations of ethanol after fermentation. Further studies, using methods similar to ones employed here, can help understand and improve the performance and hence the economics of integrated processes involving enzymes and fermentative microorganisms. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010 相似文献