首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of caffeine on resting metabolic rate (RMR) was investigated in eight trained and eight nontrained young male subjects. The ingestion of 4 mg/kg caffeine produced a greater increase of RMR in trained subjects. This effect was associated with a greater increase in plasma free fatty acids and a larger fall in respiratory quotient, indicating an enhanced lipid oxidation following caffeine in exercise-trained subjects. An initial fall in plasma glucose was observed but only in trained subjects, and caffeine did not change plasma insulin in either group studied. Caffeine caused a significant fall in plasma norepinephrine and an increase in plasma epinephrine in both groups of subjects, but this action was significantly greater in trained subjects. It is suggested that the greater increase in RMR observed in trained subjects following caffeine ingestion is related to an enhanced lipid mobilization, possibly produced by a greater epinephrine secretion and by subsequent increased lipid oxidation.  相似文献   

2.
The sympathetic nervous system (SNS) plays an important role in the regulation of energy expenditure. However, whether tonic SNS activity contributes to resting metabolic rate (RMR) in healthy adult humans is controversial, with the majority of studies showing no effect. We hypothesized that an intravenous propranolol infusion designed to achieve complete beta-adrenergic blockade would result in a significant acute decrease in RMR in healthy adults. RMR (ventilated hood, indirect calorimetry) was measured in 29 healthy adults (15 males, 14 females) before and during complete beta-adrenergic blockade documented by plasma propranolol concentrations > or =100 ng/ml, lack of heart rate response to isoproterenol, and a plateau in RMR with increased doses of propranolol. Propranolol infusion evoked an acute decrease in RMR (-71 +/- 11 kcal/day; -5 +/- 0.7%, P < 0.0001), whereas RMR was unchanged from baseline levels during a saline control infusion (P > 0.05). The response to propranolol differed from the response to saline control (P < 0.01). The absolute and percent decreases in RMR with propranolol were modestly related to baseline plasma concentration of norepinephrine (r = 0.38, P = 0.05; r = 0.44, P = 0.02, respectively). These findings provide direct evidence for the concept of tonic sympathetic beta-adrenergic support of RMR in healthy nonobese adults.  相似文献   

3.
Adipose tissue lipolytic activity is increased in endurance-trained subjects, but little is known about the mechanisms of this increase. To understand more fully the mechanisms involved and to discover whether sex-related differences exist, biopsies of fat were performed in the periumbilical region of 20 sedentary subjects (10 women (W) and 10 men (M)) and 20 trained subjects (10 W, 10 M); the in vitro response to epinephrine of the collagenase-isolated fat cells was studied. Glycerol release, chosen as an adipocyte lipolysis indicator, was measured by bioluminescence. Dose-response curves with epinephrine (alpha 2 and beta agonist), with isoproterenol (beta agonist) and epinephrine + propranolol and adenosine deaminase, were studied. Epinephrine-induced lipolysis was enhanced in trained subjects and this was due to an increased efficiency of the beta-adrenergic pathway. However, differences were found between the two sexes. In trained men, the lipolysis increase resulted from the enhancement of the beta-adrenergic pathway efficiency without any significant decrease in the alpha 2-adrenergic pathway efficiency. In trained women, the lipolysis increase was not only due to the enhancement of the beta-adrenergic pathway efficiency (which was greater than in trained men), but also to a significant decrease in the alpha 2-adrenergic pathway efficiency. Despite the decrease, the alpha 2-adrenergic pathway remained more efficient in trained women than in trained men, as was the case in sedentary subjects. It is concluded that endurance training led to better lipid mobilization and that this effect seemed greater in women than in men.  相似文献   

4.
Recently, it was demonstrated that 3,5-diiodo-L-thyronine (T2) stimulates the resting metabolic rate (RMR), and reduces body-weight gain of rats receiving a high-fat diet. The aim of this study is to examine the effects of chronic T2 administration on basal metabolic rate and body weight in humans. Two euthyroid subjects volunteered to undergo T2 administration. Body weight, body mass index, blood pressure, heart rate, electrocardiogram, thyroid and liver ultrasonography, glycemia, total cholesterol, triglycerides, free T3 (FT3), free T4 (FT4), T2, thyroid stimulating hormone (TSH) and RMR were evaluated at baseline and at the end of treatment. RMR increased significantly in each subject. After continuing the T2 treatment for a further 3 weeks (at 300 mcg/day), body weight was reduced significantly (p<0.05) (about 4 percent), while the serum levels of FT3, FT4 and TSH, were unchanged. No side effects were observed at the cardiac level in either subject. No significant change was observed in the same subjects taking placebo.  相似文献   

5.
Cardiovascular response to exercise in younger and older men   总被引:2,自引:0,他引:2  
Measurements of cardiac performance for humans at various ages is influenced by the variable examined, the population and techniques employed, and the factors that co-vary with age, including the presence of disease and physical conditioning. Interstudy differences in the extent to which occult coronary disease is present in older subjects and in the level of physical conditioning among subjects may underlie the variable perspectives contained in the literature of how aging affects cardiovascular function. In carefully screened, highly motivated but not athletically trained community-dwelling subjects, resting cardiovascular parameters are not age related except for systolic blood pressure, which increases with age. During vigorous exercise the mechanisms used to achieve a high level of cardiac output shift from a dependence on a catecholamine-mediated increase in heart rate and inotropy to a dependence on the Frank Starling mechanism. One reason for the age difference in cardiovascular response to exercise may be a diminished responsiveness to beta-adrenergic stimulation in these subjects. In other elderly subjects who cannot exercise to high work loads, a decline in stroke volume as well as heart rate at peak exercise has been observed. Whether the inability of these individuals to augment stroke volume is caused by a decrease in the ability of the heart to increase diastolic filling, by a decrease in systolic pump function caused by an increased afterload, by intrinsic myocardial contractile defects, or by a greater diminution of the cardiovascular response to beta-adrenergic stimuli is presently unknown.  相似文献   

6.
The thermic effect of feeding (TEF: increase in energy expenditure following acute energy intake) is an important physiological determinant of total daily energy expenditure and thus energy balance. Approximately 40% of TEF is believed to be mediated by sympathoadrenal activation and consequent beta-adrenergic receptor stimulation of metabolism. In sedentary adults, acute administration of ascorbic acid, a potent antioxidant, augments the thermogenic response to beta-adrenergic stimulation. We hypothesized that acute ascorbic acid administration augments TEF in sedentary overweight and obese adults. Energy expenditure was determined (ventilated hood technique) before and 4 h after consumption of a liquid-mixed meal (caloric equivalent 40% of resting energy expenditure (REE)) in 11 sedentary, overweight/obese adults (5 men, 6 women; age: 24 +/- 2 years; BMI: 28.5 +/- 1.0 kg/m(2) (mean +/- s.e.)) on two separate, randomly ordered occasions: during continuous intravenous administration of saline (placebo control) and/or ascorbic acid (0.05 g/kg fat-free mass). Acute ascorbic acid administration prevented the increase in plasma concentration of oxidized low-density lipoprotein in the postprandial state (P = 0.04), but did not influence REE (1,668 +/- 107 kcal/day vs.1,684 +/- 84 kcal/day; P = 0.91) or the area under the TEF response curve (33.4 +/- 2.4 kcal vs. 30.5 +/- 3.6 kcal; P = 0.52) (control vs. ascorbic acid, respectively). Furthermore, acute ascorbic acid administration had no effect on respiratory exchange ratio, heart rate, or arterial blood pressure in the pre- and postabsorptive states (all P > 0.64). These data imply that the attenuated TEF commonly observed with sedentary lifestyle and obesity is not modulated by ascorbic acid-sensitive oxidative stress.  相似文献   

7.
Exercise training changes autonomic cardiovascular balance in mice.   总被引:1,自引:0,他引:1  
Experiments were performed to investigate the influence of exercise training on cardiovascular function in mice. Heart rate, arterial pressure, baroreflex sensitivity, and autonomic control of heart rate were measured in conscious, unrestrained male C57/6J sedentary (n = 8) and trained mice (n = 8). The exercise training protocol used a treadmill (1 h/day; 5 days/wk for 4 wk). Baroreflex sensitivity was evaluated by the tachycardic and bradycardic responses induced by sodium nitroprusside and phenylephrine, respectively. Autonomic control of heart rate and intrinsic heart rate were determined by use of methylatropine and propranolol. Resting bradycardia was observed in trained mice compared with sedentary animals [485 +/- 9 vs. 612 +/- 5 beats/min (bpm)], whereas mean arterial pressure was not different between the groups (106 +/- 2 vs. 108 +/- 3 mmHg). Baroreflex-mediated tachycardia was significantly enhanced in the trained group (6.97 +/- 0.97 vs. 1.6 +/- 0.21 bpm/mmHg, trained vs. sedentary), whereas baroreflex-mediated bradycardia was not altered by training. The tachycardia induced by methylatropine was significantly increased in trained animals (139 +/- 12 vs. 40 +/- 9 bpm, trained vs. sedentary), whereas the propranolol effect was significantly reduced in the trained group (49 +/- 11 vs. 97 +/- 11 bpm, trained vs. sedentary). Intrinsic heart rate was similar between groups. In conclusion, dynamic exercise training in mice induced a resting bradycardia and an improvement in baroreflex-mediated tachycardia. These changes are likely related to an increased vagal and decreased sympathetic tone, similar to the exercise response observed in humans.  相似文献   

8.
This study tested the hypothesis that 3-acetyl-7-oxo-dehydroepiandrosterone alone (7-Keto) and in combination with calcium citrate, green tea extract, ascorbic acid, chromium nicotinate and cholecalciferol (HUM5007) will increase the resting metabolic rate (RMR) of overweight subjects maintained on a calorie-restricted diet. In this randomized, double-blind, placebo-controlled, crossover trial, overweight adults on a calorie-restricted diet were randomized to three 7-day treatment periods with 7-Keto, HUM5007 or placebo. Resting metabolic rate was measured by indirect calorimetry at the beginning and end of each treatment period with a 7-day washout between testing periods. Of 45 subjects enrolled, 40 completed the study (30 women, 10 men; mean age, 38.5 years; mean mass index, 32.0 kg/m(2)). During the placebo treatment, RMR decreased by 3.9% (75+/-111 kcal/day; mean+/-S.D.); however, RMR increased significantly by 1.4% (21+/-115 kcal/day) and 3.4% (59+/-118 kcal/day) during the 7-Keto and HUM5007 treatment periods, respectively (each compared to placebo, P=.001). No significant differences were found between the treatment periods with respect to compliance or adverse events. In this study, the administration of HUM5007 or 7-Keto reversed the decrease in RMR normally associated with dieting. HUM5007 and 7-Keto increased RMR above basal levels and may benefit obese individuals with impaired energy expenditure. HUM5007 and 7-Keto were generally well tolerated and no serious adverse events were reported.  相似文献   

9.
Decreased maximal O2 uptake (VO2max) and stimulation of the sympathetic nervous system have been previously shown to occur at high altitude. We hypothesized that tachycardia mediated by beta-adrenergic stimulation acted to defend VO2max at high altitude. Propranolol treatment beginning before high-altitude (4,300 m) ascent reduced heart rate during maximal and submaximal exercise in six healthy men treated with propranolol (80 mg three times daily) compared with five healthy subjects receiving placebo (lactose). Compared with sea-level values, the VO2max fell on day 2 at high altitude, but the magnitude of fall was similar in the placebo and propranolol treatment groups (26 +/- 6 vs. 32 +/- 5%, P = NS) and VO2max remained similar at high altitude in both groups once treatment was discontinued. During 30 min of submaximal (80% of VO2max) exercise, propranolol-treated subjects maintained O2 uptake levels that were as large as those in placebo subjects. The maintenance of maximal or submaximal levels of O2 uptake in propranolol-treated subjects at 4,300 m could not be attributed to increased minute ventilation, arterial O2 saturation, or hemoglobin concentration. Rather, it appeared that propranolol-treated subjects maintained O2 uptake by transporting a greater proportion of the O2 uptake with each heartbeat. Thus, contrary to our hypothesis, beta-adrenergic blockade did not impair maximal or submaximal O2 uptake at high altitude due perhaps to compensatory mechanisms acting to maintain stroke volume and cardiac output.  相似文献   

10.
The effect of beta-adrenergic blockade on the drift in O2 consumption (VO2 drift) typically observed during prolonged constant-rate exercise was studied in 14 healthy males in moderate heat at 40% of maximal O2 consumption (VO2max). After an initial maximum cycle ergometer test to determine the subjects' control VO2max, subjects were administered each of three medications: placebo, atenolol (100 mg once daily), and propranolol (80 mg twice daily), in a randomized double-blind fashion. Each medication period was 5 days in length and was followed by a 4-day washout period. On the 3rd day of each medication period, subjects performed a maximal cycle ergometer test. On the final day of each medication period, subjects exercised at 40% of their control VO2max for 90 min on a cycle ergometer in a warm (31.7 +/- 0.3 degrees C) moderately humid (44.7 +/- 4.7%) environment. beta-Blockade caused significant (P less than 0.05) reductions in VO2max, maximal minute ventilation (VEmax), maximal heart rate (HRmax), and maximal exercise time. Significantly greater decreases in VO2max, VEmax, and HRmax were associated with the propranolol compared with the atenolol treatment. During the 90-min submaximal rides, beta-blockade significantly reduced heart rate. Substantially lower values for O2 consumption (VO2) and minute ventilation (VE) were observed with propranolol compared with atenolol or placebo. Furthermore, VO2 drift and HR drift were observed under atenolol and placebo conditions but not with propranolol. Respiratory exchange ratio decreased significantly over time during the placebo and atenolol trials but did not change during the propranolol trial.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Heart rate variability and postexercise heart rate recovery are used to assess cardiac parasympathetic tone in human studies, but in some cases these indexes appear to yield discordant information. We utilized pyridostigmine, an acetylcholinesterase inhibitor that selectively augments the parasympathetic efferent signal, to further characterize parasympathetic regulation of rest and postexercise heart rate. We measured time- and frequency-domain indexes of resting heart rate variability and postexercise heart rate recovery in 10 sedentary adults and 10 aerobically trained athletes after a single oral dose of pyridostigmine (30 mg) and matching placebo in randomized, double-blind, crossover trial. In sedentary adults, pyridostigmine decreased resting heart rate [from 66.7 (SD 12.6) to 58.1 beats/min (SD 7.6), P = 0.005 vs. placebo] and increased postexercise heart rate recovery at 1 min [from 40.7 (SD 10.9) to 45.1 beats/min (SD 8.8), P = 0.02 vs. placebo]. In trained athletes, pyridostigmine did not change resting heart rate or postexercise heart rate recovery when compared with placebo. Time- and frequency-domain indexes of resting heart rate variability did not differ after pyridostigmine versus placebo in either cohort and were not significantly associated with postexercise heart rate recovery in either cohort. The divergent effects of pyridostigmine on resting and postexercise measures of cardiac parasympathetic function in sedentary subjects confirm that these measures characterize distinct aspects of cardiac parasympathetic regulation. The lesser effect of pyridostigmine on either measure of cardiac parasympathetic tone in the trained athletes indicates that the enhanced parasympathetic tone associated with exercise training is at least partially attributable to adaptations in the efferent parasympathetic pathway.  相似文献   

12.
The present study was performed to determine whether differences in non-exercise daily energy expenditure (Md,ne) exist between trained and untrained individuals. The data from seven cross-country skiers were compared with those from eight sedentary men. Daily energy expenditure (Md) was determined using the heart rate-oxygen consumption relationship; resting metabolic rate (Mr) was measured using indirect calorimetry. A physical activity questionnaire and ratios of Md or Md,ne to Mr were used as indices of physical activity. Md and Mr were significantly higher in the trained subjects whereas Md,ne was identical in the two groups. The ratio of Md,ne to Mr and the data from the physical activity questionnaire showed that there was no significant difference in daily energy expenditure and physical activity pattern during the non-exercise time. These results suggest that the exercise-induced increase in daily energy requirements is not compensated by a more sedentary life during the other daily activities in these trained men.  相似文献   

13.
The response to incremental work after placebo and propranolol (80 mg, orally) was studied in 11 sedentary (S) and 11 physically active (PA) healthy subjects. O2 uptake, CO2 output, and minute ventilation were significantly reduced at all or most work rates after propranolol in S subjects, whereas in PA subjects only O2 uptake was occasionally significantly reduced. Maximum work capacity during the propranolol trial was significantly increased by 17% in the S group but was unaltered in the PA group. A subanaerobic threshold constant work test in five sedentary subjects demonstrated that propranolol had no effect on the respiratory response both early and late in exercise. In addition, propranolol did not impair the ability of the respiratory control system to maintain alveolar PCO2 at new set points when external dead space was added during constant load work. We conclude that alterations of gas exchange during incremental work after propranolol administration are related to both physical fitness and type of exercise.  相似文献   

14.
Ten men with stable angina pectoris not fully relieved by optimal doses of propranolol (mean 218 mg daily) were given a single oral dose of 120 mg verapamil or a placebo on alternate mornings; the order of treatment was double blind. Patients had trained in a protocol that precipitated angina after three to six minutes of exercise on a bicycle ergometer. On test days, and with continued propranolol treatment, bicycle exercise was performed just before the administration of verapamil or placebo and hourly thereafter for eight hours. Mean exercise tolerance was 118 seconds greater one hour after verapamil than one hour after placebo (p <0·001), and a significant though somewhat diminished difference of 66 seconds was still present at six hours (p <0·01). Verapamil lowered resting systolic blood pressure by 12 mm Hg (p <0·01) without changing heart rate. None of the 10 patients showed adverse effects from the verapamil-propranolol combination.The results of this study suggest that verapamil is a highly effective antianginal supplement to propranolol.  相似文献   

15.
Daily administration of propranolol to 9 chronically instrumented, trained dogs for 2 weeks caused significant (p less than 0.05) decreases in heart rate (70 +/- 8 to 57 +/- 6 beats/min), cardiac output (3.6 +/- 0.3 to 2.9 +/- 0.2 liters/min), pulmonary arterial pressure (15.7 +/- 0.5 to 10.0 +/- 0.5 mm Hg) and total pulmonary vascular resistance (4.6 +/- 0.6 to 3.3 +/- 0.4 units). Nadolol, a structurally dissimilar beta-adrenergic receptor antagonist, caused a similar decrease in total pulmonary resistance. Acute meclofenamate administration did not return to normal pulmonary arterial pressure and resistance in the dogs chronically treated with beta-adrenergic receptor blockers. We therefore conclude that chronic beta-adrenergic receptor blockade lowered pulmonary arterial pressure and resistance by a mechanism independent of cyclooxygenase. In addition, chronic beta-adrenergic receptor blockade did not affect the potential for hypoxic vasoconstriction.  相似文献   

16.
A hypercoagulable state might contribute to increased atherothrombotic risk in hypertension. The sympathetic nervous system is hyperactive in hypertension, and it regulates hemostatic function. We investigated the effect of nonspecific beta-adrenergic stimulation (isoproterenol) and blockade (propranolol) on clotting diathesis in hypertension. Fifteen hypertensive and 21 normotensive subjects underwent isoproterenol infusion in two sequential, fixed-order doses of 20 and then 40 ng. kg(-1). min(-1) for 15 min/dose. Thirteen subjects were double-blind studied after receiving placebo or propranolol (100 mg/day) for 5 days each. In hypertensive subjects, isoproterenol elicited a dose-dependent increase in plasma von Willebrand factor (vWF) antigen [F(2,34) = 5.02; P = 0.032] and a decrease in D-dimer [F(2,34) = 4.57; P = 0.040], whereas soluble tissue factor remained unchanged. Propranolol completely abolished the increase in vWF elicited by isoproterenol [F(1,12) = 10.25; P = 0.008] but had no significant effect on tissue factor and D-dimer. In hypertension, vWF is readily released from endothelial cells by beta-adrenergic stimulation, which might contribute to increased cardiovascular risk. However, beta-adrenergic stimulation alone may not be sufficient to trigger fibrin formation in vivo.  相似文献   

17.
The present study was undertaken to evaluate the contribution of an increment in glucose storage to the reduced glucose-induced thermogenesis (GIT) characterizing endurance-trained individuals. For that purpose, glucose storage and GIT were determined during an oral glucose tolerance test (OGTT) in eight elite endurance athletes exercising between 6 and 16 h/week. Their values were compared with those obtained in five nontrained subjects submitted to two OGTT, i.e., before and 16 h after they had performed a 90-min vigorous exercise. As expected, endurance athletes exhibited a reduced GIT and a greater glucose storage during the OGTT in comparison to the preexercise values of nontrained subjects. Once the latter subjects had performed the 90-min exercise, their glucose storage during the OGTT was similar to the level found in athletes. This adaptation was accompanied by a significant reduction in GIT, which corresponded to 47% of the difference observed between trained and nontrained subjects when both groups maintained their usual life habits. Unlike GIT, resting metabolic rate (RMR) was found to be higher in athletes than in nontrained individuals. When subdividing the athletes into two subgroups on the basis of the duration of their weekly training, it was found that RMR was mainly elevated in those performing the higher amount of exercise. These results demonstrate that the reduced GIT characterizing endurance-trained individuals is partly explained by an increase in glucose storage during an OGTT. As further discussed, this reduced GIT is likely an indirect consequence of modifications of other energy-requiring energy processes rather than a direct result of the postexercise increment in glucose storage.  相似文献   

18.
The effect of beta-adrenergic receptor blockade on exercise-induced lipid peroxidation in man has been examined by measuring the production of pentane in expired air. For this purpose, five healthy male subjects were subjected to dynamic exercise of graded intensity on a cycle ergometer (10 min at 45%, 5 min at 60% and 75% maximal oxygen uptake 1 h after ingestion of either a placebo or 40-mg propranolol. At rest, mean pentane concentration [( pent]) with placebo was 4.13 pmol.l-1, SD 2.14. After exercise, this value significantly increased by 310% (17.1 pmol.l-1, SD 7.73, P less than 0.01). Oral administration of 40-mg propranolol significantly lowered the mean resting [pent] to 1.75 pmol.l-1, SD 0.77, P less than 0.05. After exercise, the increase of [pent] was much smaller (240%) and was less significant (P less than 0.2) than with the placebo. The mechanism of this inhibitory effect of propranolol remains to be elucidated. However, as indicated by the measurement of plasma myeloperoxidase concentration, it can be concluded that the antioxidant property of propranolol cannot be attributed to the inhibition of neutrophil activation, a possible source of free radicals during exercise.  相似文献   

19.
To assess the role of beta-adrenergic stimulation in cardiovascular conditioning we examined the effects of a beta-adrenergic blocker, propranolol, in mongrel dogs during an 8-wk treadmill-training program. Seven dogs were trained without a drug (NP), six were trained on propranolol 10 mg.kg-1.day-1 (P), and five served as caged controls (C). Effective beta-adrenergic blockade was documented by a decrease in peak exercise heart rate of 54 +/- 11 (SE) beats/min (P less than 0.05) and a one-log magnitude of increase in the isoproterenol-heart rate dose-response curve. Testing was performed before drug treatment or training and again after training without the drug for 5 days. Submaximal exercise heart rate decreased similarly in both NP and P (-26 +/- 4 NP vs. -25 +/- 9 beats/min P, P less than 0.05 for both) but peak heart rate decreased only with NP (-33 +/- 9 beats/min, P less than 0.05). Treadmill exercise time increased similarly in both groups: 3.4 +/- 0.6 min in NP and 3.0 +/- 0.2 min in P (both P less than 0.05). Blood volume also increased after training in both groups: 605 +/- 250 ml (26%) in NP and 377 +/- 140 ml (17%) in P (both P less than 0.05). Submaximal exercise arterial lactates were reduced similarly in both groups but peak exercise lactate was reduced more in NP (-1.4 +/- 0.3 NP vs -0.3 +/- 0.12 mmol/l P, P less than 0.05). Lactate threshold increased in both groups but the increase was greater in NP (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Left ventricular functional capacity in the endurance-trained rodent   总被引:3,自引:0,他引:3  
Cardiac myosin P-light chain phosphorylation [P-LC(P)] has been proposed to augment myocardial force production. This study was undertaken to examine the potential for cardiac myosin P-LC(P) for both equivalent heart rate and work load in exercising endurance-trained and nontrained rodents. A 10-wk training protocol elicited a significant reduction in submaximal running O2 uptake while enhancing peak O2 uptake (-17 and 10%, respectively, P less than 0.05). Left ventricular functional index during submaximal exercise, obtained with a high-fidelity Millar ultraminiature pressure transducer, indicated that the trained animals were able to maintain peak left ventricular pressure (LVP) in comparison to their sedentary counterparts, even though both heart rate and rate of LVP development were significantly reduced (P less than 0.05). When expressed on the basis of equivalent submaximal heart rate, peak LVP was augmented in the trained animals. Cardiac myosin P-LC(P) was examined under two conditions known to produce disparate responses in trained vs. sedentary animals. For an equivalent work load, we observed parallel increases in P-LC(P) (20%) and systolic pressure (17%) in both groups, even though the trained animals exhibited significantly lower heart rates (P less than 0.05). For an equivalent heart rate, training evoked a significant increase in systolic pressure (26%, P less than 0.05) and caused a slight increase in P-LC(P) relative to the nontrained controls. Cardiac myosin adenosinetriphosphatase was reduced approximately 10% in the trained animals (P less than 0.05), commensurate with a 2.0-fold increase in the V3 (low adenosinetriphosphatase) isomyosin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号