首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Polyclonal antibodies raised against isolated subunit V from beef heart cytochrome oxidase or against the intact enzyme increase its apparent affinity for the substrate cytochrome c at the high-affinity site while diminishing the turnover at that site. At the low-affinity site the major action of both types of antibody is to reduce the apparent affinity for cytochrome c. At high ionic strengths the kinetic effect of anti-subunit V is very small although it still binds to the enzyme. The results are interpreted in terms of a model for the enzyme in which antibodies can modulate cytochrome oxidase kinetics by affecting the binding of cytochrome c, even if the antibody-binding site is on a subunit not directly involved in substrate binding.  相似文献   

2.
Aspirin induces apoptosis through mitochondrial cytochrome c release   总被引:15,自引:0,他引:15  
Aspirin and other non-steroidal anti-inflammatory drugs induce apoptosis in many cell types. Although the involvement of caspases has been demonstrated, the mechanism leading to caspase activation remains unknown. We have studied the role of the mitochondrial pathway in aspirin-induced apoptosis. The apoptotic effect of aspirin was analyzed in different cell lines (Jurkat, MOLT-4, Raji and HL-60) showing induction of mitochondrial cytochrome c release and caspases 9, 3 and 8 processing. Furthermore, early aspirin-induced cytochrome c release was not affected by the caspase inhibitor Z-VAD·fmk and preceded loss of mitochondrial membrane potential. Therefore, aspirin-induced apoptosis involves caspase activation through cytochrome c release.  相似文献   

3.
J. A. Berden  E. C. Slater 《BBA》1970,216(2):237-249
1. Succinate-cytochrome c reductase activity was reconstituted by incubating a mixture of succinate dehydrogenase, cytochrome c1, ubiquinone-10, phospholipid and a preparation of cytochrome b, made by the method of .

2. Preparations of cytochrome b active in reconstitution contained 5–28% native cytochrome b, as adjudged by reducibility with succinate in the reconstituted preparation and by lack of reaction with CO. Preparations of cytochrome b containing no native cytochrome b according to this criterion were inactive in reconstitution.

3. With a fixed amount of cytochrome b, the activity of the reconstituted preparation increased with increasing amounts of cytochrome c1 until a ratio of about 2b (total): 1c1 (allowing for the cytochrome c1 present in the cytochrome b preparation) was reached.

4. The amount of antimycin necessary for maximal inhibition of the reconstituted enzyme is a function of the amount of the cytochrome b and is independent of the amount of cytochrome c1. It is equal to about one half the amount of native cytochrome b.

5. Preparations of intact or reconstituted succinate-cytochrome c reductase or of cytochrome b completely quench the fluorescence of added antimycin, until an amount of antimycin equal to onehalf the amount of native cytochrome b present was added. Antimycin added in excess of this amount fluoresces with normal intensity. The quenching is only partial in the presence of Na2S2O4. Denatured cytochrome b does not quench the fluorescence.

6. Since preparations of cytochrome b active in reconstitution contained cytochrome c1 in an amount exceeding one half the amount of native cytochrome b present in the preparation, there is no evidence that native cytochrome b has been resolved from cytochrome c1. The stimulatory action of cytochrome c1 may be due to the restoration of a damaged membrane conformation.

7. Based on the assumption that the bc1 segment of the respiratory chain contains 2b:1c1:1 antimycin-binding sites, the specific quenching of antimycin fluorescence by binding to cytochrome b enables an accurate determination of the absorbance coefficients of cytochromes b and c1. These are 25.6 and 20.1 mM−1×cm−1 for the wavelength pairs 563–577 nm and 553–539 nm, respectively, in the difference spectrum reduced minus oxidized.  相似文献   


4.
Gary O. Gray  David B. Knaff 《BBA》1982,680(3):290-296
The sulfide:cytochrome c oxidoreductase activity of the flavocytochrome c-522 from the purple sulfur bacterium Chromatium vinosum has been investigated. The oxidized sulfur product of the sulfide:cytochrome c reductase activity has been shown to be elemental sulfur. Cytochrome c-552 has been found to form a stable complex with horse heart cytochrome c that appears to be held together by electrostatic interactions. The stability of this complex and the sulfide:cytochrome c reductase activity of cytochrome c-552 are both ionic strength dependent, with maximal rates of cytochrome c reduction and extent of complex formation occurring over the same ionic strength range. Trifluoroacetylated cytochrome c is not reduced in the presence of cytochrome c-552 and sulfide, nor does it form a complex with cytochrome c-552. These results suggest the possible involvement of cytochrome c lysine residues in complex formation. Cytochrome c-552 migrates with an anomalously high apparent molecular weight on gel filtration columns equilibrated with low ionic strength buffers, suggesting the possibility of conformational changes or dimerization of the protein. However, complexation of cytochrome c-552 with cytochrome c still occurs at low ionic strength.  相似文献   

5.
Mitochondrial dysfunction has been implicated in the regulation of myofiber loss during aging, possibly by apoptotic pathways. However, the mitochondrial-mediated pathway of apoptosis by cytochrome c in skeletal muscle remains ambiguous. To understand this, we have studied the upstream and downstream events of cytochrome c release, and assessed the efficacy of carnitine and lipoic acid cosupplementation. The results show that elevated levels of cytosolic cytochrome c activate apoptosis in aged rats, and was confirmed further by in vitro caspase-3 assay. Interestingly, the exogenous addition of cytochrome c results in a much higher increase of caspase-3 activity in aged treated rats than age-matched control rats, strongly suggesting that cytochrome c is a limiting factor for caspase-3 activation in the cytosol. Carnitine and lipoic acid supplement decreased apoptosis in aged rats by maintaining mitochondrial membrane integrity and thereby preventing further loss of cytochrome c in vivo. Furthermore, the upregulation of p53 observed in aged rats is attributed to the loss of outer mitochondrial membrane integrity and subsequent release of cytochrome c through BH3-only proteins. In conclusion, the p53-dependent activation of the mitochondrial-cytochrome c pathway of apoptosis in the present study suggests the existence of cross talk between mitochondria and nucleus. However, the exact molecular mechanism remains to be explored. Oral supplements of carnitine and lipoic acid play an antiapoptotic role in aged rat skeletal muscle by protecting mitochondrial membrane integrity.  相似文献   

6.
A Schejter  B Plotkin  I Vig 《FEBS letters》1991,280(2):199-201
The spectral changes caused by binding soft ligands to the cytochrome c iron and their correlation to ligand affinities support the hypothesis that the iron—methionine sulfur bond of this heme protein is enhanced by delocalization of the metal l2, electrons into the empty 3d orbitals of the ligand atom. These findings also explain the unique spectrum of cytochrome c in the far red.  相似文献   

7.
Scott Power  Graham Palmer 《BBA》1980,593(2):400-413
We have prepared and characterized resealed erythrocyte ghosts in which the only discernible pigment is cytochrome c. The resealed ghosts have the normal orientation and are free of ‘leaky’ species; they are stable and can be maintained at 4°C for many days without lysis.

The internal cytochrome c participates in redox reactions with both soluble and insolubilized cytochrome c present externally, and with external cytochrome b5. No reaction was observed with plastocyanin, cytochrome c oxidase or NADPH-cytochrome c reductase.

A study has been made of the reaction of the internal cytochrome c with the low molecular weight reductants, ascorbate and glutathione. Complex kinetics are observed with both reagents: with ascorbate the results are best explained by assuming the existence, in the membrane, of a redox-active species able to undergo dedimerization. A protein bound disulfide bond would satisfy the requirement.  相似文献   


8.
The primary structure of Pseudomonas cytochrome c peroxidase is presented. The intact protein was fragmented with cyanogen bromide into five fragments; partial cleavage was observed at a Met-His bond of the protein. The primary structure was established partly by automatic Edman degradations, partly by manual sequencing of peptides obtained with trypsin, thermolysin, chymotrypsin, pepsin, subtilisin and Staphylococcus aureus V8 endopeptidase. The order of the cyanogen bromide fragments was further confirmed by overlapping peptides obtained by specific cleavage of the whole protein. Pseudomonas cytochrome c peroxidase consists of 302 amino acid residues giving a calculated Mr of 33 690.  相似文献   

9.
The low-spin ferric cyanide complex of beef heart cytochrome aa3 can be partially reduced by stoichiometric additions of ferrous cytochrome c or by similar additions of N,N,N′,N′-tetramethyl-p-phenylene diamine. In both cases the initial ratio of cytochrome c oxidized: cytochrome a reduced or Wurster's Blue: cytochrome a reduced approximates the value 2. It is concluded that the binding of a single HCN prevents the reduction of both cytochrome a3 and its associated EPR-invisible Cu atom.  相似文献   

10.
Linda Yu  Jian-Hua Dong  Chang-An Yu 《BBA》1986,852(2-3):203-211
Cytochrome c1 from a photosynthetic bacterium Rhodobacter sphaeroides R-26 has been purified to homogeneity. The purified protein contains 30 nmol heme per mg protein, has an isoelectric point of 5.7, and is soluble in aqueous solution in the absence of detergents. The apparent molecular weight of this protein is about 150 000, determined by Bio Gel A-0.5 m column chromatography; a minimum molecular weight of 30 000 is obtained by sodium dodecylsulfate polyacrylamide gel electrophoresis. The absorption spectrum of this cytochrome is similar to that of mammalian cytochrome c1, but the amino acid composition and circular dichroism spectral characteristics are different. The heme moiety of cytochrome c1 is more exposed than is that of mammalian cytochrome c1, but less exposed than that of cytochrome c2. Ferricytochrome c1 undergoes photoreduction upon illumination with light under anaerobic conditions. Such photoreduction is completely abolished when p-chloromercuriphenylsulfonate is added to ferricytochrome c1, suggesting that the sulfhydryl groups of cytochrome c1 are the electron donors for photoreduction. Purified cytochrome c1 contains 3 ± 0.1 mol of the p-chloromercuriphenylsulfonate titratable sulfhydryl groups per mol of protein. In contrast to mammalian cytochrome c1, the bacterial protein does not form a stable complex with cytochrome c2 or with mammalian cytochrome c at low ionic strength. Electron transfer between bacterial ferrocytochrome c1 and bacterial ferricytochrome c2, and between bacterial ferrocytochrome c1 and mammalian ferricytochrome c proceeds rapidly with equilibrium constants of 49 and 3.5, respectively. The midpoint potential of purified cytochrome c1 is calculated to be 228 mV, which is identical to that of mammalian cytochrome c1.  相似文献   

11.
Chemotherapeutic drugs that inhibit the synthesis of DNA precursor thymidine triphosphate cause apoptosis, although the mechanism underlying this process remains rather unknown. Here, we describe thymineless death of human myeloid leukemia U937 cells treated with the thymidylate-synthase inhibitor 5-fluoro-2-deoxyuridine (FUdR). This apoptotic process was shown to be independent of p53, reactive oxygen species generation and CD95 activation. Caspases were activated downstream of cytochrome c but upstream of mitochondrial depolarization. Furthermore, FUdR-induced apoptosis required the presence of glucose in the culture medium at a step upstream of the release of cytochrome c from mitochondria.  相似文献   

12.
The primary life-supporting function of cytochrome c (cyt c) is control of cellular energetic metabolism as a mobile shuttle in the electron transport chain of mitochondria. Recently, cyt c's equally important life-terminating function as a trigger and regulator of apoptosis was identified. This dreadful role is realized through the relocalization of mitochondrial cyt c to the cytoplasm where it interacts with Apaf-1 in forming apoptosomes and mediating caspase-9 activation. Although the presence of heme moiety of cyt c is essential for the latter function, cyt c's redox catalytic features are not required. Lately, two other essential functions of cyt c in apoptosis, that may rely heavily on its redox activity have been suggested. Both functions are directed toward oxidation of two negatively charged phospholipids, cardiolipin (CL) in the mitochondria and phosphatidylserine (PS) in the plasma membrane. In both cases, oxidized phospholipids seem to be essential for the transduction of two distinctive apoptotic signals: one is participation of oxidized CL in the formation of the mitochondrial permeability transition pore that facilitates release of cyt c into the cytosol and the other is the contribution of oxidized PS to the externalization and recognition of PS (and possibly oxidized PS) on the cell surface by specialized receptors of phagocytes. In this review, we present a new concept that cyt c actuates both of these oxidative roles through a uniform mechanism: its specific interactions with each of these phospholipids result in the conversion and activation of cyt c, transforming it from an innocuous electron transporter into a calamitous peroxidase capable of oxidizing the activating phospholipids. We also show that this new concept is compatible with a leading role for reactive oxygen species in the execution of the apoptotic program, with cyt c as the main executioner.  相似文献   

13.
Nitric oxide (NO) from (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (NOC-18) induces apoptosis in human leukemia HL-60 cells. This effect was prevented by the pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (Z-VAD-FMK), thereby implicating caspase activity in the process. NOC-18 treatment resulted in the activation of several caspases including caspase-3, -6, -8, and -9(-like) activities and the degradation of several caspase substrates such as nuclear lamins and SP120 (hnRNP-U/SAF-A). Moreover, release of cytochrome c from mitochondria was also observed during NOC-18-induced apoptosis. This change was substantially prevented by Z-VAD-FMK, thereby suggesting that the released cytochrome c might function not only as an initiator but also as an amplifier of the caspase cascade. Bid, a death agonist member of the Bcl-2 family, was processed by caspases following exposure of cells to NOC-18, supporting the above notion. Thus, NO-mediated apoptosis in HL-60 cells involves a caspase/cytochrome c-dependent mechanism.  相似文献   

14.
In this study we investigated the lipid specificity for destabilization of the native structure of horse heart cytochrome c by model membranes. From (i) the enhanced release of deuterium from deuterium-labelled cytochrome c and (ii) the increased proteolytic digestion of the protein in the presence of anionic lipids, it was concluded that these lipids are able to destabilize the native structure of cytochrome c. Changes in the absorbance at 695 nm indicated that the destabilization was accompanied by a diminished ligation of Met-80 to the heme. Beef heart cardiolipin was found to be more effective than DOPS, DOPG or DOPA, while no protein destabilization was observed in the presence of the zwitterionic lipid DOPC or, surprisingly, in the presence of E. coli cardiolipin. Experimnts with mitoplasts showed that the protein can also be destabilized in its native structure by a biological membrane.  相似文献   

15.
David F. Wilson  David Nelson 《BBA》1982,680(3):233-241
A new coulometric-potentiometric titration cuvette is described which permits accurate measurements of oxidation-reduction components in membranous systems. This cuvette has been utilized to measure the properties of cytochrome c oxidase in intact membranes of pigeon breast muscle mitochondria. The reducing equivalents accepted and donated by the portion of the respiratory chain with half-reduction potentials greater than 200 mV are equal to those required for the known components (cytochrome a3 and the high-potential copper plus cytochrome a, ‘visible copper’, cytochrome c1, cytochrome c, and the Rieske iron-sulfur protein). Titrations in the presence of CO show that formation of the reduced cytochrome a3-CO complex requires two reducing equivalents per cytochrome a3 (coulometric titration). Potentiometric titrations indicate (Lindsay, J.G., Owen, C.S. and Wilson, D.F. (1975) Arch. Biochem. Biophys. 169, 492–505) that both cytochromes a3 and the high-potential copper must be reduced in order to form the CO complex (n=2.0 with a CO concentration-dependent half-reduction potential, Em). By contrast, titrations in the presence of azide show that the Em value of the high-potential copper is unchanged by the presence of azide and thus azide binds with nearly equal affinity whether the copper is reduced or oxidized.  相似文献   

16.
1. The reduction of cytochrome c oxidase by hydrated electrons was studied in the absence and presence of cytochrome c.

2. Hydrated electrons do not readily reduce the heme of cytochrome c oxidase. This observation supports our previous conclusion that heme a is not directly exposed to the solvent.

3. In a mixture of cytochrome c and cytochrome c oxidase, cytochrome c is first reduced by hydrated electrons (k = 4 · 1010 M−1 · s−1 at 22 °C and pH 7.2) after which it transfers electrons to cytochrome c oxidase with a rate constant of 6 · 107 M−1 · s−1 at 22 °C and pH 7.2.

4. It was found that two equivalents of cytochrome c are oxidized initially per equivalent of heme a reduced, showing that one electron is accepted by a second electron acceptor, probably one of the copper atoms of cytochrome c oxidase.

5. After the initial reduction, redistribution of electrons takes place until an equilibrium is reached similar to that found in redox experiments of Tiesjema, R. H., Muijsers, A. O. and Van Gelder, B. F. (1973) Biochim. Biophys. Acta 305, 19–28.  相似文献   


17.
The interactions of a metal complex [Ru(phen)(2)PMIP](2+) {Ru=ruthenium, phen=1,10-phenanthroline, PMIP=2-(4-methylphenyl)imidazo[4,5-f]1,10-phenanthroline} with yeast tRNA and calf thymus DNA (CT DNA) have been investigated comparatively by UV-vis spectroscopy, fluorescence spectroscopy, viscosity measurements, isothermal titration calorimetry (ITC), as well as equilibrium dialysis and circular dichroism (CD). Spectroscopic studies together with ITC and viscosity measurements indicate that both binding modes of the Ru(II) polypyridyl complex to yeast tRNA and CT DNA are intercalation and yeast tRNA binding of the complex is stronger than CT DNA binding. ITC experiments show that the interaction of the complex with yeast tRNA is driven by a moderately favorable enthalpy decrease in combination with a moderately favorable entropy increase, while the binding of the complex to CT DNA is driven by a large favorable enthalpy decrease with a less favorable entropy increase. The results from equilibrium dialysis and CD suggest that both interactions are enantioselective and the Delta enantiomer of the complex may bind more favorably to both yeast tRNA and CT DNA than the Lambda enantiomer does, and that the complex is a better candidate for an enantioselective binder to yeast tRNA than to CT DNA. Taken together, these results indicate that the structures of nucleic acids have significant effects on the binding behaviors of metal complexes.  相似文献   

18.
Binding of hippuric acid (HA), a uremic toxin, with human serum albumin (HSA) has been examined by isothermal titration calorimetry (ITC), differential scanning calorimetry (DSC), molecular docking, circular dichroism (CD) and fluorescence spectroscopy to understand the reason that govern its impaired elimination through hemodialysis. ITC results shows that the HA binds with HSA at high (K b ∼104) and low affinity (K b ∼103) sites whereas spectroscopic results predict binding at a single site (K b∼103). The HA form complex with HSA that involves electrostatic, hydrogen and hydrophobic binding forces as illustrated by calculated thermodynamic parameters. Molecular docking and displacement studies collectively revealed that HA bound to both site I and site II; however, relatively strongly to the later. Esterase-like activity of HSA confirms the involvement of Arg410 and Tyr411 of Sudlow site II in binding of HA. CD results show slight conformational changes occurs in the protein upon ligation that may be responsible for the discrepancy in van’t Hoff and calorimetric enthalpy change. Furthermore, an increase in and is observed from DSC results that indicate increase in stability of HSA upon binding to HA. The combined results provide that HA binds to HSA and thus its elimination is hindered.  相似文献   

19.
Cytochrome c from Nitrobacter agilis was isolated and purified approx. 60-fold. Absorption spectra of both the oxidized and the reduced Nitrobacter cytochrome c and the oxidized minus reduced difference spectrum of this cytochrome were essentially identical to the corresponding spectra of horse-heart cytochrome c. The redox potential of this cytochrome was determined by spectrophotometric titration with ferrocyanide/ferricyanide and found to be +0.282 V over the pH range 6.0 to 8.7, while a potential of +0.265 V was determined in the same manner for horse-heart cytochrome c. The titration also indicated that the Nitrobacter ferrocytochrome is oxidized by a single electron transfer.  相似文献   

20.
A comparative study on the interaction of (PEG-co-P(FA/SC)-co-PEG) triblock copolymer with bovine and human insulins was carried out using isothermal titration calorimetry (ITC), circular dichroism (CD), and fluorescence spectroscopy. ITC data show that the copolymer has a low affinity for both proteins, with an association constant of about 7-9 x 10(3) M (-1). Results also show that binding is enthalpically driven, and disfavored by conformational entropy. CD spectroscopy studies reveal a small increase in the helical content and a decrease in beta-structure as well as random coil in both proteins. Acrylamide quenching experiments display reduced accessibility of tyrosines, while intrinsic fluorescence spectra show lower tyrosine emission. Furthermore, thermal unfolding experiments, studied by far-UV CD at 222 and 217 nm, demonstrate that upon interaction with the copolymer helix structure becomes less stable while the stability of beta-structure remains unchanged. Altogether, these observations indicate that (PEG-co-P(FA/SC)-co-PEG) triblock copolymer has similar effect(s) on both proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号