首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
D L Hwang  A Lev-Ran 《Life sciences》1990,47(8):679-685
Levels of epidermal growth factor (EGF) in serum were significantly decreased in streptozotocin (STZ)-diabetic mice (446 +/- 168 pg/ml after 1 week and 423 +/- 52 after 4 weeks vs 766 +/- 162 pg/ml in controls, P.002 and less than .001. respectively) and in genetically diabetic ob/ob mice (455 +/- 285 vs 962 +/- 453 pg/ml in nondiabetic ob/+ controls, P.043). The urinary excretion of EGF was significantly increased in STZ mice (104 +/- 53 vs 51 +/- 23 ng/h, P.013) but unchanged in ob/ob mice (33 +/- 9 vs 45 +/- 16 ng/h, P.134). However, when expressed per mg creatinine it was decreased in both cases: in STZ mice to 680 +/- 250 ng/mg at 1 week and 684 +/- 211 at 4 weeks vs 1250 +/- 303 ng/mg in controls (P less than .01); and in the ob/ob mice to 552 +/- 117 vs 1237 +/- 300 ng/mg in ob/+ controls (P less than .01). EGF content of the submandibular glands of STZ mice remained unchanged at 1 week (13.1 +/- 2.9 vs 11.0 +/- 1.8 micrograms/mg protein, P.170) but dropped by 4 weeks (4.7 +/- 1.2 micrograms/mg, P less than .001); in the ob/ob mice it was less than 20% that of controls (2.1 +/- 0.8 vs 12.2 +/- 3.6 micrograms/mg protein). In kidneys, the EGF content was not altered in either ob/ob (524 +/- 50 vs 571 +/- 33 pg/mg protein) or STZ mice (652 +/- 183 vs 665 +/- 80 pg/mg). The preproEGF mRNA level in STZ-treated mice was reduced after 4 weeks in submandibular glands but not in kidneys. The results show that diabetes affects EGF production, utilization and/or excretion in mice and that kidneys are spared from suppression of EGF synthesis that is pronounced in the submandibular glands.  相似文献   

2.
Urinary epidermal growth factor (EGF) excretion was calculated as ng EGF per mg creatinine and ng EGF per 24 hr. It was increased 4-9 fold in rats with genetic (BB) or streptozotocin-induced diabetes. It decreased to 2-3 fold control values in insulin-treated animals. In contrast, EGF concentration in serum was lower in diabetic than in control rats (360 +/- 72 vs 524 +/- 150 pg/ml, P .086); EGF level in plasma was unchanged (319 +/- 67 vs 313 +/- 96 pg/ml). In diabetic rats EGF content was increased in submaxillary glands (1018 +/- 259 vs 738 +/- 122 pg/mg protein, P .060) but unchanged in the kidneys (70 +/- 18 vs 65 +/- 6 pg/mg protein in controls). EGF binding to the liver microsomes in diabetic rats was decreased by 30-40% and was not restored by insulin therapy. Binding to the kidneys also showed a tendency to decrease in diabetic animals. The EGF excretion and receptor binding were normal in obese normoglycemic Zucker fa/fa rats. We suggest that hyperglycemia and/or glucosuria may affect EGF synthesis and/or excretion in the kidneys and EGF synthesis or accumulation in the megakaryocytes. The mechanism of decreased EGF receptor binding remains to be clarified.  相似文献   

3.
The alpha-dicarbonyl compounds formed in the degradation of glucose and fructose were analyzed by HPLC using 2,3-diaminonaphthalene as derivatizing reagent, and identified as glucosone (GLUCO), 3-deoxyglucosone (3DG), 3-deoxyxylosone (3DX), tetrosone (TSO), triosone (TRIO), 3-deoxytetrosone (3DT), glyoxal (GO), and methylglyoxal (MGO). The results suggest that alpha-dicarbonyl compounds were formed from glucose via non-oxidative 3-deoxyglucosone formation and oxidative glucosone formation in glucose degradation. In addition, TRIO, GO, and MGO were also formed from glyceraldehyde as intermediate. The alpha-dicarbonyl compounds might be formed from glucose via these pathways in diabetes.  相似文献   

4.
Direct effects of altered temperature on renal structure and function   总被引:2,自引:0,他引:2  
Although marked alterations in temperature often accompany ischemic, acute renal failure (ARF), the effects of altered temperature on renal structure and function have received little attention. In the present investigation, isolated rat kidneys perfused at 41 degrees C had extensive tubular damage and decreased function compared to kidneys perfused at 37 degrees C. In contrast, kidneys perfused at 30 degrees C had less tubular damage, and better function, than kidneys perfused at 37 degrees C. Increased temperature caused a 50% reduction in renal ATP (0.46 +/- 0.04 microM/100 mg tissue protein. 37 degrees C vs. 0.26 +/- 0.03 microM/100 mg tissue protein, 41 degrees C; p less than 0.05). The decreased ATP occurred despite reduced sodium reabsorption (129 +/- 8 microM/min/g, 37 degrees C vs. 65 +/- 12 microM/min/g, 41 degrees C, p less than 0.05) and normal renal oxygen consumption (QO2). These results suggest that increased temperature may cause an uncoupling of QO2 and sodium chloride transport, and an increase in nontransport mediated, basal metabolic rate may result in depleted cellular ATP levels and renal tubular cell death.  相似文献   

5.

Background

Obstructed nephropathy is a common complication of several disease processes. Accurate evaluation of the functional status of the obstructed kidney is important to achieve a good outcome. The purpose of this study was to investigate renal cortical and medullary perfusion changes associated with unilateral ureteral obstruction (UUO) using whole-organ perfusion imaging with 320-detector row computed tomography (CT).

Methodology/Principle Findings

Sixty-four patients with UUO underwent whole-organ CT perfusion imaging. Patients were divided into 3 groups, mild, moderate, and severe, based on hydronephrosis severity. Twenty sex- and age-matched patients without renal disease, who referred to abdominal CT, were chosen as control subjects. Mean cortical and medullary perfusion parameters of obstructed and contralateral kidneys were compared, and mean perfusion ratios between obstructed and contralateral kidneys were calculated and compared. Mean cortical or medullary blood flow (BF) and blood volume (BV) of the obstructed kidneys in the moderate UUO and BF, BV, and clearance (CL) in the severe UUO were significantly lower than those of the contralateral kidneys (p < 0.05). The mean cortical or medullary BF of the obstructed kidney in the moderate UUO, and BF, BV, and CL in the severe UUO were significantly lower than those of the kidneys in control subjects (p < 0.05). Mean cortical or medullary BF of the non-obstructed kidneys in the severe UUO were statistically greater than that of normal kidneys in control subjects (p < 0.05). An inverse correlation was observed between cortical and medullary perfusion ratios and grades of hydronephosis (p < 0.01).

Conclusions/Significance

Perfusion measurements of the whole kidney can be obtained with 320-detector row CT, and estimated perfusion ratios have potential for quantitatively evaluating UUO renal injury grades.  相似文献   

6.
Role of Toll-like receptor 4 in endotoxin-induced acute renal failure   总被引:18,自引:0,他引:18  
Toll-like receptor 4 (TLR4) is present on monocytes and other cell types, and mediates inflammatory events such as the release of TNF after exposure to LPS. C3H/HeJ mice are resistant to LPS-induced mortality, due to a naturally occurring mutation in TLR4. We therefore hypothesized that LPS-induced acute renal failure (ARF) requires systemic TNF release triggered by LPS acting on extrarenal TLR4. We injected C3H/HeJ mice and C3H/HeOuJ controls with 0.25 mg of LPS, and sacrificed them 6 h later for analysis of blood urea nitrogen (BUN) and kidney tissue (n = 8 per group). In contrast to C3H/HeOuJ controls, C3H/HeJ mice were completely resistant to LPS-induced ARF (6-h BUN of 32.3 +/- 1.1 vs 61.7 +/- 5.6 mg/dl). C3H/HeJ mice released no TNF into the circulation at 2 h (0.00 vs 1.24 +/- 0.16 ng/ml), had less renal neutrophil infiltration (6.4 +/- 1.0 vs 11.4 +/- 1.3 neutrophils per high power field), and less renal apoptosis, as assessed by DNA laddering. Transplant studies showed that C3H/HeJ recipients of wild-type kidneys (n = 9) were protected from LPS-induced ARF, while wild-type recipients of C3H/HeJ kidneys (n = 11) developed severe LPS-induced ARF (24-h BUN 44.0 +/- 4.1 vs 112.1 +/- 20.0 mg/dl). These experiments support our hypothesis that LPS acts on extrarenal TLR4, thereby leading to systemic TNF release and subsequent ARF. Renal neutrophil infiltration and renal cell apoptosis are potential mechanisms by which endotoxemia leads to functional ARF.  相似文献   

7.
It is well known that nonselective, nonsteroidal anti-inflammatory drugs inhibit renal renin production. Our previous studies indicated that angiotensin-converting enzyme inhibitor (ACEI)-mediated renin increases were absent in rats treated with a cyclooxygenase (COX)-2-selective inhibitor and in COX-2 -/- mice. The current study examined further whether COX-1 is also involved in mediating ACEI-induced renin production. Because renin increases are mediated by cAMP, we also examined whether increased renin is mediated by the prostaglandin E(2) receptor EP(2) subtype, which is coupled to G(s) and increases cAMP. Therefore, we investigated if genetic deletion of COX-1 or EP(2) prevents increased ACEI-induced renin expression. Age- and gender-matched wild-type (+/+) and homozygous null mice (-/-) were administered captopril for 7 days, and plasma and renal renin levels and renal renin mRNA expression were measured. There were no significant differences in the basal level of renal renin activity from plasma or renal tissue in COX-1 +/+ and -/- mice. Captopril administration increased renin equally [plasma renin activity (PRA): +/+ 9.3 +/- 2.2 vs. 50.1 +/- 10.9; -/- 13.7 +/- 1.5 vs. 43.9 +/- 6.6 ng ANG I x ml(-1) x h(-1); renal renin concentration: +/+ 11.8 +/- 1.7 vs. 35.3 +/- 3.9; -/- 13.0 +/- 3.0 vs. 27.8 +/- 2.7 ng ANG I x mg protein(-1) x h(-1); n = 6; P < 0.05 with or without captopril]. ACEI also increased renin mRNA expression (+/+ 2.4 +/- 0.2; -/- 2.1 +/- 0.2 fold control; n = 6-10; P < 0.05). Captopril led to similar increases in EP(2) -/- compared with +/+. The COX-2 inhibitor SC-58236 blocked ACEI-induced elevation in renal renin concentration in EP(2) null mice (+/+ 24.7 +/- 1.7 vs. 9.8 +/- 0.4; -/- 21.1 +/- 3.2 vs. 9.3 +/- 0.4 ng ANG I x mg protein(-1) x h(-1); n = 5) as well as in COX-1 -/- mice (SC-58236-treated PRA: +/+ 7.3 +/- 0.6; -/- 8.0 +/- 0.9 ng ANG I x ml(-1) x h(-1); renal renin: +/+ 9.1 +/- 0.9; -/- 9.6 +/- 0.5 ng ANG I x mg protein(-1) x h(-1); n = 6-7; P < 0.05 compared with no treatment). Immunohistochemical analysis of renin expression confirmed the above results. This study provides definitive evidence that metabolites of COX-2 rather than COX-1 mediate ACEI-induced renin increases. The persistent response in EP(2) nulls suggests involvement of prostaglandin E(2) receptor subtype 4 and/or prostacyclin receptor (IP).  相似文献   

8.
This investigation examines the role of Angiotensin II in renal hemodynamic functions during acute unilateral ureteral obstruction (UUO) in a dog model. An electro magnetic flow probe was utilized to assess renal blood flow while the arteriovenous extraction technique of technetium 99m DTPA was utilized for the assessment of changes in filtration fraction and glomerular filtration rate. The effects of Angiotensin II receptor blockade on renal hemodynamic functions during acute UUO was evaluated in six dogs and compared to acute ureteral obstruction without receptor blockade in seven dogs. Angiotensin II blockade with (Sar1, Thr8)-Angiotensin II during UUO led to a striking increase in renal blood flow that was significantly different in comparison to normalized values from UUO alone (+delta 63 +/- 17 vs. +delta 22 +/- 6% at 30 min; p less than 0.05). There were, however, no significant differences in the magnitude of the decrease in filtration fraction and glomerular filtration rate in comparison to UUO alone. This investigation demonstrates that Angiotensin II has an inhibitory effect on the initial increase in renal blood flow with acute UUO. The possibility of successful pharmacologic intervention in the setting of UUO can be examined using animal models similar to the one described here. Pharmacologic treatment in the setting of acute UUO in patients might permit better preservation of renal function.  相似文献   

9.
Chronic renal failure is associated with significant reductions in total phospholipids, phosphatidylinositol, phosphatidylserine, and phosphatidylethanolamine of brain synaptosomes. These derangements in synaptosomal phospholipid metabolism were attributed to the state of secondary hyperparathyroidism of chronic renal failure (CRF) and the parathyroid hormone-induced accumulation of calcium in synaptosomes. This study examined whether a calcium channel blocker, verapamil, would prevent this synaptosomal calcium accumulation and correct the abnormalities in synaptosomal phospholipids in CRF. Verapamil treatment of normal rats for 21 days did not affect synaptosomal content of calcium or phospholipids. CRF of 21 days' duration was associated with a significant (P less than 0.01) increase in synaptosomal calcium (10.2 +/- 0.5 vs 7.4 +/- 0.6 nmol/mg protein) and a significant reduction (P less than 0.01) in total phospholipids (397 +/- 12 vs 529 +/- 19 nmol phospholipid P/mg protein), phosphatidylinositol (2.7 +/- 0.22 vs 4.6 +/- 0.27 nmol phospholipid P/mg protein), and phosphatidylserine (37 +/- 1.9 vs 83 +/- 5.2 nmol phospholipid P/mg protein). Simultaneous treatment of CRF rats with verapamil for 21 days reversed the synaptosomal abnormalities in calcium and phospholipid contents. Our data support the notion that the effect of excess parathyroid hormone of CRF on synaptosomal phospholipids is mainly due to the parathyroid hormone-induced calcium accumulation.  相似文献   

10.
Studies suggest that the inflammatory cytokine TNF-alpha plays a role in the prognosis of end-stage renal diseases. We previously showed that TNF-alpha inhibition slowed the progression of hypertension and renal damage in angiotensin II salt-sensitive hypertension. Thus, we hypothesize that TNF-alpha contributes to renal inflammation in a model of mineralocorticoid-induced hypertension. Four groups of rats (n = 5 or 6) were studied for 3 wk with the following treatments: 1) placebo, 2) placebo + TNF-alpha inhibitor etanercept (1.25 mg.kg(-1).day(-1) sc), 3) deoxycorticosterone acetate + 0.9% NaCl to drink (DOCA-salt), or 4) DOCA-salt + etanercept. Mean arterial blood pressure (MAP) measured by telemetry increased in DOCA-salt rats compared with baseline (177 +/- 4 vs. 107 +/- 3 mmHg; P < 0.05), and TNF-alpha inhibition had no effect in the elevation of MAP in these rats (177 +/- 8 mmHg). Urinary protein excretion significantly increased in DOCA-salt rats compared with placebo (703 +/- 76 vs. 198 +/- 5 mg/day); etanercept lowered the proteinuria (514 +/- 64 mg/day; P < 0.05 vs. DOCA-salt alone). Urinary albumin excretion followed a similar pattern in each group. Urinary monocyte chemoattractant protein (MCP)-1 and endothelin (ET)-1 excretion were also increased in DOCA-salt rats compared with placebo (MCP-1: 939 +/- 104 vs. 43 +/- 7 ng/day, ET-1: 3.30 +/- 0.29 vs. 1.07 +/- 0.03 fmol/day; both P < 0.05); TNF-alpha inhibition significantly decreased both MCP-1 and ET-1 excretion (409 +/- 138 ng/day and 2.42 +/- 0.22 fmol/day, respectively; both P < 0.05 vs. DOCA-salt alone). Renal cortical NF-kappaB activity also increased in DOCA-salt hypertensive rats, and etanercept treatment significantly reduced this effect. These data support the hypothesis that TNF-alpha contributes to the increase in renal inflammation in DOCA-salt rats.  相似文献   

11.
Fluorofenidone (FD) is a novel pyridone agent with significant antifibrotic effects in vitro. The purpose of this study is to investigate the effects of FD on renal interstitial fibrosis in rats with obstructive nephropathy caused by unilateral ureteral obstruction (UUO). With pirfenidone (PD, 500 mg/kg/day) and enalapril (10 mg/kg/day) as the positive treatment controls, the rats in different experimental groups were administered with FD (500 mg/kg/day) from day 4 to day 14 after UUO. The tubulointerstitial injury, interstitial collagen deposition, and expression of type I and type III collagen, transforming growth factor-β(1) (TGF-β(1)), connective tissue growth factor (CTGF), platelet-derived growth factor (PDGF), α-smooth muscle actin (α-SMA), and tissue inhibitor of metalloproteinase-1 (TIMP-1) were assessed. FD treatment significantly attenuated the prominently increased scores of tubulointerstitial injury, interstitial collagen deposition, and protein expression of type I and type III collagen in ureter-obstructed kidneys, respectively. As compared with untreated rats, FD also significantly reduced the expression of α-SMA, TGF-β(1), CTGF, PDGF, and inhibitor of TIMP-1 in the obstructed kidneys. Fluorofenidone attenuates renal interstitial fibrosis in the rat model of obstructive nephropathy through its regulation on fibrogenic growth factors, tubular cell transdifferentiation, and extracellular matrix.  相似文献   

12.
To determine how starvation affects adrenal steroidogenesis we measured the activities of 3 adrenal enzymes involved in corticosterone biosynthesis in a group of adult female rats. The animals were either starved for 7 days or fed ad libitum for the same period. Relative adrenal weight and plasma corticosterone levels were increased in the experimental group of animals compared to the control group (40 +/- 2 vs 27 +/- 1 mg/100 g body weight, P less than 0.001, and 45 +/- 4 vs 30 +/- 5 ng/dl, P less than 0.05 respectively). There were no differences in plasma ACTH levels between the groups (34 +/- 5 vs 26 +/- 4 pg/ml). 11-Hydroxylase activity was increased in the starved group of animals (18 +/- 3 vs 8 +/- 2 nmol/mg protein/min, P less than 0.01). 3 beta-Hydroxysteroid dehydrogenase and 21-hydroxylase activities were not different between the groups (19 +/- 2 vs 16 +/- 1 nmol/mg protein/min, and 100 +/- 10 vs 110 +/- 10 pmol/mg protein/min respectively). These results suggest that acute starvation in rats produces an increase in adrenal 11-hydroxylase activity.  相似文献   

13.
The main hallmark of chronic kidney disease (CKD) is excessive inflammation leading to interstitial tissue fibrosis. It has been recently reported that NOV/CCN3 could be involved in kidney damage but its role in the progression of nephropathies is poorly known. NOV/CCN3 is a secreted multifunctional protein belonging to the CCN family involved in different physiological and pathological processes such as angiogenesis, inflammation and cancers. The purpose of our study was to determine the role of NOV/CCN3 in renal inflammation and fibrosis related to primitive tubulointerstitial injury. After unilateral ureteral obstruction (UUO), renal histology and real-time PCR were performed in NOV/CCN3-/- and wild type mice. NOV/CCN3 mRNA expression was increased in the obstructed kidneys in the early stages of the obstructive nephropathy. Interestingly, plasmatic levels of NOV/CCN3 were strongly induced after 7 days of UUO and the injection of recombinant NOV/CCN3 protein in healthy mice significantly increased CCL2 mRNA levels. Furthermore, after 7 days of UUO NOV/CCN3-/- mice displayed reduced proinflammatory cytokines and adhesion markers expression leading to restricted accumulation of interstitial monocytes, in comparison with their wild type littermates. Consequently, in NOV/CCN3-/- mice interstitial renal fibrosis was blunted after 15 days of UUO. In agreement with our experimental data, NOV/CCN3 expression was highly increased in biopsies of patients with tubulointerstitial nephritis. Thus, the inhibition of NOV/CCN3 may represent a novel target for the progression of renal diseases.  相似文献   

14.
The objective of this study was to examine the effect of unilateral ureteral obstruction on the apparent diffusion coefficient (ADC) in pig kidney. Changes in ADC is suggested to reflect changes in the ratio of extracellular to intracellular volume. Thirteen pigs were allocated into three groups: 1) pigs subjected to acute unilateral ureteral obstruction (AUO) (n = 3), 2) pigs subjected to chronic partial unilateral obstruction (CPUO) (n = 3), and 3) control pigs (n = 7). The extra- to intracellular volume ratio was indirectly measured in both the ipsilateral obstructed kidney and contralateral non-obstructed kidney by the ADC of the renal tissue using diffusion-weighted echo-planar magnetic resonance imaging. ADC was 2.07 +/- 0.27 x 10(-3) mm2/s in the cortex and 2.10 +/- 0.24 x 10(-3) mm2/s in the medulla of normal control kidneys. In the obstructed kidney from the AUO group the ADC of the medulla was significantly reduced 24 hours after occlusion of the ureter (1.65 +/- 0.05 x 10(-3) mm2/s vs 2.10 +/- 0.24 x 10(-3) mm2/s; p < 0.05). Similarly ADC decreased slightly in the cortex of the ipsilateral kidney. In contrast, ADC of the ipsilateral kidney of CPUO pigs was increased both in the renal medulla (3.13 +/- 0.21 x 10(-3) mm2/s vs. 2.10 +/- 0.24 x 10(-3) mm2/s; p < 0.05) and cortex (3.09 +/- 0.14 x 10(-3) mm2/s vs. 2.07 x 10(-3) mm2/s, p < 0.05). In conclusion, the results of the present study suggest that diffusion weighted imaging (ADC) may be a useful parameter to incorporate when identifying whether a ureteric obstruction is acute or chronic.  相似文献   

15.
Ketoconazole (K) is an antifungal imidazole derivative which has been shown to be a potent inhibitor of testosterone (T) biosynthesis in rodents and humans. To study the effect of K on rat testicular steroidogenesis we measured the activities of five testicular microsomal steroidogenic enzymes in K-treated rats and controls. Thirty male adult rats were given either 2 mg K or water every 12 hours by mouth during 5 days. Mean testicular weight was similar in both groups of animals. The K-treated group had a T serum concentration of 83 +/- 14 ng/dL whereas it was 94 +/- 16 ng/dL in the control group (NS). The K-treated animals had decreased activities of the 3 beta-hydroxysteroid dehydrogenase (830 +/- 48 vs 2,245 +/- 109 pmol/mg protein/min, P less than 0.001), 17-hydroxylase (243 +/- 5 vs 676 +/- 17 pmol/mg protein/min, P less than 0.001), 17-ketosteroid reductase (31 +/- 2 vs 169 +/- 7 pmol/mg protein/min, P less than 0.001), and aromatase enzymes (92 +/- 6 vs 123 +/- 7 pmol/mg protein/min, P less than 0.01). The 17,20-desmolase activity was similar in both groups of animals (210 +/- 4 vs 171 +/- 18 pmol/mg protein/min). We conclude that K given orally to rats inhibits the activity of several testicular steroidogenic enzymes.  相似文献   

16.
Glomerular filtration rate (GFR) and effective renal plasma flow (ERPF) are decreased and mean arterial pressure (MAP) and renal vascular resistance (RVR) are increased after unilateral release of bilateral ureteral obstruction (BUO) of 24 hr duration. An imbalance between vasoconstrictor and vasodilator substances may explain these hemodynamic changes. We examined the role of the cytochrome P-450 pathway in this setting. After unilateral release of BUO, GFR and ERPF (ml/min/kg body wt) were significantly lower in these rats than in sham-operated rats (SOR) 1.14 +/- 0.09 vs 6.7 +/- 0.5 and 3.09 +/- 0.2 vs 23.5 +/- 3.4, respectively). BUO rats had significantly higher MAP (mm Hg) and RVR (mm Hg/ml/min/kg body wt) than SOR (155 +/- 5 vs 120 +/- 1 and 29.1 +/- 1.7 vs 3.2 +/- 0.4, respectively). SOR given 3-methylcholanthrene and beta-naphthoflavone to induce the cytochrome P-450 system had no significant changes in renal function, RVR, or MAP. SOR given ketoconazole to inhibit the cytochrome P-450 system had significantly lower GFR (4.8 +/- 0.5) than temporal control rats without significant changes in ERPF (21.2 +/- 4.6), MAP (127 +/- 6), or RVR (4.2 +/- 0.9). Rats with BUO given ketoconazole had lower but not significantly different GFR (0.84 +/- .1) and ERPF (2.61 +/- .4) than BUO controls. Values for MAP did not differ in BUO rats given ketoconazole versus BUO temporal controls. BUO rats given 3-methylcholanthrene and beta-naphthoflavone had significantly higher GFR and ERPF (2.01 +/- 0.24 and 6.66 +/- 1.36, respectively) and significantly lower RVR (14.7 +/- 3.9) than control rats with BUO; MAP was unchanged. Microsomal preparations from indomethacin-treated isolated kidneys obtained from BUO rats when compared with preparations obtained from SOR had significantly less activity of the P-450 cytochrome-dependent omega/omega-1 hydroxylase (103 +/- 6 vs 130 +/- 7 pmol hydroxyeicosatetraenoic acids produced per mg of protein/min, P < 0.02) and the P-450 cytochrome-dependent epoxygenase (11 +/- 0.3 vs 30 +/- 4 pmol lipoxyeicosatrienoic acids produced per mg of protein/min, P < 0.04). Indomethacin-treated microsomes prepared from kidneys of BUO rats converted significantly less 14C-arachidonic acid through the P-450-dependent hydroxylases (13.5 +/- 0.8 vs 17.0 +/- 0.1% of 14C-arachidonic acid converted to 19- and 20-hydroxyeicosatetraenoic acids, P < 0.02), and significantly less through the epoxygenases (1.4 +/- 0.4 vs. 3.8 +/- 0.5% of 14C-arachidonic acid converted to epoxyeicosatrienoic acids).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
SCF-Skp2 E3 ubiquitin ligase (Skp2 hereafter) targets several cell cycle regulatory proteins for degradation via the ubiquitin-dependent pathway. However, the target-specific physiological functions of Skp2 have not been fully elucidated in kidney diseases. We previously reported an increase in Skp2 in progressive nephropathy and amelioration of unilateral ureteral obstruction (UUO) renal injury associated with renal accumulation of p27 in Skp2(-/-) mice. However, it remains unclear whether the amelioration of renal injury in Skp2(-/-) mice is solely caused by p27 accumulation, since Skp2 targets several other proteins. Using Skp2(-/-)p27(-/-) mice, we investigated whether Skp2 specifically targets p27 in the progressive nephropathy mediated by UUO. In contrast to the marked suppression of UUO renal injury in Skp2(-/-) mice, progression of tubular dilatation associated with tubular epithelial cell proliferation and tubulointerstitial fibrosis with increased expression of collagen and α-smooth muscle actin were observed in the obstructed kidneys in Skp2(-/-)p27(-/-) mice. No significant increases in other Skp2 target proteins including p57, p130, TOB1, cyclin A and cyclin D1 were noted in the UUO kidney in Skp2(-/-) mice, while p21, c-Myc, b-Myb and cyclin E were slightly increased. Contrary to the ameliorated UUO renal injure by Skp2-deficiency, the amelioration was canceled by the additional p27-deficiency in Skp2(-/-)p27(-/-) mice. These findings suggest a pathogenic role of the reduction in p27 targeted by Skp2 in the progression of nephropathy in UUO mice.  相似文献   

18.
19.
Glycation reactions leading to protein modifications (advanced glycation end products) contribute to various pathologies associated with the general aging process and long term complications of diabetes. However, only few relevant compounds have so far been detected in vivo. We now report on the first unequivocal identification of the lysine-arginine cross-links glucosepane 5, DOGDIC 6, MODIC 7, and GODIC 8 in human material. For their accurate quantification by coupled liquid chromatography-electrospray ionization mass spectrometry, (13)C-labeled reference compounds were synthesized independently. Compounds 5-8 are formed via the alpha-dicarbonyl compounds N(6)-(2,3-dihydroxy-5,6-dioxohexyl)-l-lysinate (1a,b), 3-deoxyglucosone (), methylglyoxal (), and glyoxal (), respectively. The protein-bound dideoxyosone 1a,b seems to be of prime significance for cross-linking because it presumably is not detoxified by mammalian enzymes as readily as 2-4. Hence, the follow-up product glucosepane 5 was found to be the dominant compound. Up to 42.3 pmol of 5/mg of protein was identified in human serum albumin of diabetics; the level of 5 correlates markedly with the glycated hemoglobin HbA(1c). In the water-insoluble fraction of lens proteins from normoglycemics, concentration of 5 ranges between 132.3 and 241.7 pmol/mg. The advanced glycoxidation end product GODIC 8 is elevated significantly in brunescent lenses, indicating enhanced oxidative stress in this material. Compounds 5-8 thus appear predestined as markers for pathophysiological processes.  相似文献   

20.
Denervation supersensitivity in chronically denervated kidneys increases renal responsiveness to increased plasma levels of norepinephrine. To determine whether this effect is caused by presynaptic (i.e., loss of uptake) or postsynaptic changes, we studied the effect of continuous infusion of norepinephrine (330 ng/min, i.v.) and methoxamine (4 micrograms/min, i.v.), an alpha 1-adrenergic agonist that is not taken up by nerve terminals, on renal function of innervated and denervated kidneys. Ganglionic blockade was used to eliminate reflex adjustments in the innervated kidney and mean arterial pressure was maintained at preganglionic blockade levels by an infusion of arginine vasopressin. With renal perfusion pressure controlled there was a significantly greater decrease in renal blood flow (-67 +/- 9 vs. -33 +/- 8%), glomerular filtration rate (-60 +/- 9 vs. -7 +/- 20%), urine flow (-61 +/- 7 vs. -24 +/- 11%), sodium excretion (-51 +/- 15 vs. -32 +/- 21%), and fractional excretion of sodium (-50 +/- 9 vs. -25 +/- 15%) from the denervated kidneys compared with the innervated kidneys during the infusion of norepinephrine. During the infusion of methoxamine there was a significantly greater decrease from the denervated compared with the innervated kidneys in renal blood flow (-54 +/- 10 vs. -30 +/- 14%), glomerular filtration rate (-51 +/- 11 vs. -19 +/- 17%), urine flow (-55 +/- 10 vs. -39 +/- 10%), sodium excretion (-70 +/- 9 vs. -59 +/- 11%), and fractional excretion of sodium (-53 +/- 10 vs. -41 +/- 10%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号