首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The effects of hypothalamic lesions designed to destroy either the anterior median eminence (ME) or the posterior and mid-ME on pulsatile release of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) were determined in castrated male rats. In sham-operated animals, mean plasma FSH concentrations rose to peak at 10 min after the onset of sampling, whereas LH declined to a nadir during this time. In the final sample at 120 min, the mean FSH concentrations peaked as LH decreased to its minimal value. In rats with anterior ME lesions, there was suppression of LH pulses with continuing FSH pulses in 12 of 21 rats. On the other hand, in animals with posterior to mid-ME lesions, 3 out of 21 rats had elimination of FSH pulses, whereas LH pulses were maintained. Fifteen of 42 operated rats had complete ME lesions, and pulses of both hormones were abolished. The remaining 12 rats had partial ME lesions that produced a partial block of the release of both hormones. The results support the concept of separate hypothalamic control of FSH and LH release with the axons of the putative FSH-releasing factor (FSHRF) neuronal system terminating primarily in the mid- to caudal ME, whereas those of the LHRH neuronal system terminate in the anterior and mid-median eminence. We hypothesize that pulses of FSH alone are mediated by release of the FSHRF into the hypophyseal portal vessels, whereas those of LH alone are mediated by LHRH. Pulses of both gonadotropins simultaneously may be mediated by pulses of both releasing hormones simultaneously. Alternatively, relatively large pulses of LHRH alone may account for simultaneous pulses of both gonadotropins since LHRH has intrinsic FSH-releasing activity.  相似文献   

5.
There are situations in which adult female rats release increased amounts of follicle-stimulating hormone (FSH) independent of increased luteinizing hormone (LH) release. This results from, at least in part, a selective increase in the basal FSH release rate. We investigated whether an increase in the basal FSH release rate is contributory to the rise in serum FSH levels which occurs independent of a rise in serum LH levels in the immature female rat. Rats had high serum FSH concentrations on days 7 and 15 after birth, low serum FSH levels on day 23, and low serum LH levels on all three days. In contrast, anterior pituitary gland (APG) FSH and LH concentrations and contents increased from day 7 to day 15 and the contents increased further from day 15 to day 23. Similarly, basal FSH and LH release rates per mg APG or per APG, as assessed by measurement of FSH and LH released into culture medium containing APG(s) from different aged rats, increased from day 7 to day 15 but did not increase further between days 15 and 23. The results indicate that unlike situations observed to date in adult female rats, a mechanism(s) other than an increase in the basal FSH release rate is involved in selective FSH release in the immature female rat.  相似文献   

6.
7.
Complete deafferentation of the medial basal hypothalamus (MBH) in 13 primiparous Sprague-Dawley rats was performed on or about Day 14 of gestation. The most significant result was a depression in litter growth as evidenced by the marked number of dead pups by the postpartal Day 5 and the loss of weight in those that survived. Control animals deafferented in the same region but only along one side (the incomplete deafferented rats, n = 9) adequately maintained young. Animals in both groups gave birth as expected. There were no significant differences in the latency and duration of retrieving and crouching behaviors. Therefore, nursing behavior appeared normal. Only milk ejection seemed disturbed, judging from the fact that suckling alone could not release milk, oxytocin in addition was needed. Thus, by the methods we employed, the MBH appears to be necessary for lactation but not for nursing behavior in the primiparous rat.  相似文献   

8.
Summary Serum concentration of follicle-stimulating hormone (FSH) in the juvenile female rat increases independently from that of luteinizing hormone (LH). The objective of this study was to determine whether this increase in serum FSH is accompanied by a proliferation of FSH-cells greater than the proliferation of LH-cells. Thus, we measured circulating FSH and LH in female rats on days 3, 10, 13, 17, and 20, calculated the percentages of adenohypophyseal cells that contained FSH or LH on days 3, 10, and 20, and determined whether cells containing only FSH existed on day 10. Serum FSH concentrations on days 10 and 13 were significantly greater than those on days 3, 17, or 20. No differences existed in serum LH concentrations. Cells containing FSH or LH were distributed throughout the entire adenohypophyses of 3, 10, and 20-day-old females. Clusters of these cells were observed in the ventral regions of adenohypophyses of 3-day-old females. The percentages of adenohypophyseal cells containing FSH increased significantly from 9% in 3-day-old rats to 17% in 10-day-old rats and then decreased to 14% in 20-day-old animals. At all ages the percentages of adenohypophyseal cells containing FSH were similar to the percentages of cells containing LH. At 10 days of age, all cells containing FSH also contained LH and all cells containing LH also contained FSH. These data suggest that the increase in serum FSH in the juvenile female rat is associated with an increase in the percentage of adenohypophyseal cells containing FSH and that at this time all cells containing FSH also contain LH.  相似文献   

9.
10.
We have investigated the role of mu- and kappa-opioid receptors in the central control of preovulatory LH and FSH release in the proestrous rat. Animals were anesthetized with chloral hydrate at 14:00 h on proestrus day. Following femoral artery cannulation, they were mounted in a stereotaxic apparatus. Morphine and U-50488H (benzene-acetamide methane sulphonate) were infused intracerebroventricularly either alone or in combination with naloxone and MR1452, respectively. Controls received sterile saline alone. Blood samples were obtained at hourly intervals between 15:00 h and 17:00 h. Plasma LH and FSH levels were measured by radioimmunoassay. Morphine did not significantly change plasma LH levels at 15:00 h and 16:00 h sampling intervals. A significant increase was observed at 17:00 h compared to the controls (p<0.05). U-50488H significantly increased LH levels at 16:00 h and 17:00 h (p<0.05). The co-administration of naloxone and MR1452 with mu- and kappa-agonist had no significant effect on LH levels at any sampling interval. In all groups, LH levels showed a linear rise over the sampling period between 15:00 h and 17:00 h. None of the treatments significantly altered plasma FSH levels which however, declined towards the end of the afternoon surge. In conclusion, we suggest that the secretion of LH and FSH is differentially regulated by mu- and kappa-opioid receptors. It is thought that in all groups chloral hydrate interfered with the LH surge secretory systems.  相似文献   

11.
12.
Control of growth hormone (GH) and prolactin (PRL) secretion was investigated in ovariectomized, prepuberal Yorkshire gilts by comparing the effects of anterior (AHD), complete (CHD), and posterior (PHD) hypothalamic deafferentation with sham-operated controls (SOC). Blood samples were collected sequentially via an indwelling jugular catheter at 20-min intervals during surgery and recovery from anesthesia (Day 0) and Days 1 and 2 after cranial surgery. Mean serum concentrations of GH after AHD, CHD, and PHD were reduced (P less than 0.01) when compared with SOC gilts. Furthermore, episodic GH release evident in SOC animals was obliterated after hypothalamic deafferentation. PRL concentrations in peripheral serum of hypothalamic deafferentated gilts remained similar (P greater than 0.05) to those of SOC animals. These results indicate that anterior and posterior hypothalamic neural pathways play a minor role in the control of PRL secretion in the pig in as much as PRL levels remained unchanged after hypothalamic deafferentation. These findings may be interpreted to suggest that the hypothalamus by itself seems able to maintain tonic inhibition of PRL release. In contrast, the maintenance of episodic GH secretion depends upon its neural connections traversing the anterior and posterior aspects of the hypothalamus in the pig.  相似文献   

13.
Experiments were conducted to determine the effects of acute hyperprolactinemia (hyperPRL) on the control of luteinizing hormone and follicle-stimulating hormone secretion in male rats. Exposure to elevated levels of prolactin from the time of castration (1 mg ovine prolactin 2 X daily) greatly attenuated the post-castration rise in LH observed 3 days after castration. By 7 days after castration, LH concentrations in the prolactin-treated animals approached the levels observed in control animals. HyperPRL had no effect on the postcastration rise in FSH. Pituitary responsiveness to gonadotropin hormone-releasing hormone (GnRH), as assessed by LH responses to an i.v. bolus of 25 ng GnRH, was only minimally effected by hperPRL at 3 and 7 days postcastration. LH responses were similar at all time points after GnRH in control and prolactin-treated animals, except for the peak LH responses, which were significantly smaller in the prolactin-treated animals. The effects of hyperPRL were examined further by exposing hemipituitaries in vitro from male rats to 6-min pulses of GnRH (5 ng/ml) every 30 min for 4 h. HyperPRL had no effect on basal LH release in vitro, on GnRH-stimulated LH release, or on pituitary LH concentrations in hemipituitaries from animals that were intact, 3 days postcastration, or 7 days postcastration. However, net GnRH-stimulated release of FSH was significantly higher by pituitaries from hyperprolactinemic, castrated males. To assess indirectly the effects of hyperPRL on GnRH release, males were subjected to electrical stimulation of the arcuate nucleus/median eminence (ARC/ME) 3 days postcastration. The presence of elevated levels of prolactin not only suppressed basal LH secretion but reduced the LH responses to electrical stimulation by 50% when compared to the LH responses in control castrated males. These results suggest that acute hyperPRL suppresses LH secretion but not FSH secretion. Although pituitary responsiveness is somewhat attenuated in hyperprolactinemic males, as assessed in vivo, it is normal when pituitaries are exposed to adequate amounts of GnRH in vitro. Thus, the effects of hyperPRL on pituitary responsiveness appear to be minimal, especially if the pituitary is exposed to an adequate GnRH stimulus. The suppression of basal LH secretion in vivo most likely reflects inadequate endogenous GnRH secretion. The greatly reduced LH responses after electrical stimulation in hyperprolactinemic males exposed to prolactin suggest further that hyperPRL suppresses GnRH secretion.  相似文献   

14.
Shortly after administration of 6-methoxy-1,2,3,4-tetrahydro-beta-carboline (6-MeOTHBC) and yohimbine to normal or hypothyroid rats [the latter exhibiting chronically elevated levels of serotonin (5-HT) neuronal activity in the hypothalamus] there was a highly significant increase in hypothalamic noradrenaline (NA) activity and in ACTH release concomittant with a reduction in hypothalamic 5-HT activity (P less than 0.01) and in growth hormone (GH) (P less than 0.01) and in thyroid stimulating hormone (TSH) (P less than 0.01) release from the pituitary. Both compounds caused an increase in hypothalamic dopamine (DA) metabolism and in pituitary prolactin (PRL) release in normal rats (P less than 0.01) but only yohimbine exerted this action in hypothyroid rats. Lower doses of 6-MeOTHBC exerted a relatively specific effect in hypothyroid rats, reducing (P less than 0.01) 5-HT neuronal activity in parallel with pituitary TSH secretion (P less than 0.05). While gross effects of 6-MeOTHBC and yohimbine were similar with respect to their effects on NA and 5-HT status in the hypothalamus, there were quantitative differences. 6-MeOTHBC always caused a greater decrease in 5-HT turnover and a lesser increase in NA turnover than did yohimbine. On the basis of these studies we suggest that the effect of tetrahydro-beta-carboline-related alkaloids on pituitary hormone release may be due to their influence on hypothalamic monoamine status and the subsequent alteration of the hypothalamic-pituitary control system.  相似文献   

15.
Anterior pituitary (AP) glands were removed from adult female rats at different times throughout the estrous cycle, and the isohormones of follicle-stimulating hormone (FSH) present within them were separated by isoelectric focusing in polyacrylamide gels (PAGE-IEF; pH range 3.0-8.0). Gel eluents were analyzed for FSH content by radioimmunoassay (RIA) and radioreceptor assay (RRA). All AP samples exhibited several peaks of FSH immunoactivity within a pH range of 6.2-4.0; the major peak constantly exhibited an isoelectric point (pI) of 4.9-4.5. To quantify differences in the IEF pattern of AP-FSH between the pituitaries collected during the different days of the cycle, each PAGE-IEF profile was divided into 7 regions (pI 7.0-6.3 = Area 1, 6.2-5.5 = Area 2, 5.4-5.0 = Area 3, 4.9-4.5 = Area 4, 4.4-4.0 = Area 5, 3.9-3.5 = Area 6, and less than 3.5 = Area 7), and the amount of FSH present within each was determined. In all APs collected at 0900 h of diestrus 1 (D1) and 2 (D2), proestrus (P), and estrus (E); at 1300 h of D1, D2 and E; at 2200 h of P; and at 0200 h of E, the majority of FSH immunoactivity (37-55% of total FSH on gel) focused within Area 4, whereas Areas 2 and 3 contained minor amounts of FSH activity (11-26% and 14-24%, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The aim of this study was to determine the bidirectional release of immunoreactive inhibin-alpha (irINH-alpha) by different testicular compartments in the adult ram and to assess the effects of FSH on the distribution of inhibin in the testis. Immunoreactive INH-alpha was measured by RIA in fluid samples collected concurrently from the three testicular compartments--the seminiferous tubules, the interstitium, and the vascular system--through catheters inserted surgically into the rete testis, testicular lymphatic duct system, and spermatic veins, respectively. Overall, the concentration of irINH-alpha in rete testis fluid was 25 times the level in testicular lymph and over 500 times the concentration in peripheral blood. The pattern of irINH-alpha concentration in rete testis fluid was inversely related to that in testicular lymph, but i.v. administration of FSH had a decoupling effect on this relationship by depressing inhibin concentration in testicular lymph without affecting inhibin levels in rete testis fluid. Nevertheless, increased flow of testicular lymph more than compensated for the transient fall in irINH-alpha concentration so that, overall, the total output of inhibin via the testicular lymphatic duct system (and the vascular system) increased significantly. No persistent or significant changes were observed in the flow rate of rete testis fluid or concentration of irINH-alpha in the fluid after administration of FSH. The time frame for the response of the testis to FSH is indicative of the involvement of a mediator. Electrophoretic analysis of serially collected testicular lymph samples consistently revealed an FSH-induced release of a series of proteins in the M(r) range of 30,000-32,000.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The control of reproductive function is manifested centrally through the control of hypothalamic release of gonadotropin-releasing hormone (GnRH) in episodic events or pulses. For GnRH release to occur in pulses, GnRH neurons must coordinate release events periodically to elicit a bolus of GnRH. We used a perifusion culture system to examine the release of GnRH from both intact hypothalami and enzymatically dispersed hypothalamic cells after challenge with GnRH analogs to evaluate the role of anatomical neuronal connections on autocrine/paracrine signals by GnRH on GnRH neurons. The potent GnRH agonist des-Gly(10)-D-Ala(6)-GnRH N-ethylamide, potent GnRH antagonists D-Phe(2)-D-Ala(6)-GnRH and D-Phe(2,6)-Pro(3)-GnRH or vehicle were infused, whereas GnRH release from hypothalamic tissue and cells were measured. PULSAR analysis of GnRH release profiles was conducted to evaluate parameters of pulsatile GnRH release. Infusion of the GnRH agonist resulted in a decrease in mean GnRH (P < 0.001), pulse nadir (P < 0.01), and pulse frequency (P < 0.05) but no effect on pulse amplitude. Infusion of GnRH antagonists resulted in an increase in mean GnRH (P < 0.001), pulse nadir (P < 0.05), and pulse frequency (P < 0.05) and in GnRH pulse amplitude only in dispersed cells (P < 0.05). These results are consistent with the hypothesis that GnRH inhibits endogenous GnRH release by an ultrashort-loop feedback mechanism and that treatment of hypothalamic tissue or cells with GnRH agonist inhibits ultrashort-loop feedback, whereas treatment with antagonists disrupts normal feedback to GnRH neurons and elicits an increased GnRH signal.  相似文献   

18.
Changes at the anterior pituitary gland level which result in follicle-stimulating hormone (FSH) release after ovariectomy in metestrous rats were investigated. Experimental rats were ovariectomized at 0900 h of metestrus and decapitated at 1000, 1100, 1300, 1500, 1700 or 1900 h of metestrus. Controls consisted of untreated rats killed at 0900 or 1700 h and rats sham ovariectomized at 0900 h and killed at 1700 h. Trunk blood was collected and the serum assayed for FSH and luteinizing hormone (LH) concentrations. The anterior pituitary gland was bisected. One-half was used to assay for FSH concentration. The other half was placed in culture medium for a 30-min preincubation and then placed in fresh medium for a 2-h incubation (basal FSH and LH release rates). The basal FSH release rate and the serum FSH concentration rose significantly by 4 h postovariectomy and remained high for an additional 6 h. The basal FSH release rate and the serum FSH concentration correlated positively (r=0.71 with 72 degrees of freedom) and did not change between 0900 and 1700 h in untreated or sham-ovariectomized rats. In contrast, the serum LH concentration and the basal LH release rate did not increase after ovariectomy. Ovariectomy had no significant effect on anterior pituitary gland FSH concentration. The results suggest that the postovariectomy rise in serum FSH concentration is the result, at least in part, of changes which cause an increase in the basal FSH secretion rate (secretion independent of the immediate presence of any hormones of nonanterior pituitary gland origin). The similarities between the selective rises in the basal FSH release rate and the serum FSH concentration in the ovariectomized metestrous rat and in the cyclic rat during late proestrus and estrus raise the possibility that an increase in the basal FSH release rate may be involved in many or all situations in which serum FSH concentration rises independently of LH.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号