首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vizcacha is a photoperiodic rodent living in the southern hemisphere. The adult males exhibit an annual reproductive cycle characterized by a gonadal regression period during winter with, in some animals, an almost complete loss of spermatogenesis. In this study, we investigated whether biochemical parameters involved in melatonin synthesis in the vizcacha pineal gland exhibited an annual rhythm in parallel with the annual reproductive cycle. By use of in situ hybridization, an annual variation of mRNA encoding ß 1 -adrenoceptor was shown, with a maximum during autumn and winter. In situ hybridization for mRNA encoding AA-NAT enzyme also exhibited an annual rhythm with the lowest and highest levels in May and August, respectively. Likewise, in August the activity of arylalkylamine N-acetyltransferase enzyme also reached a maximum. Finally, dertermination of the serum concentrations of melatonin by use of radioimmunoassay showed an increase during winter. Moreover, our results are in concordance with several biochemical and morphological parameters of the reproductive axis of the male vizcacha, which support the reproductive rhythmicity of this rodent. Thus, our data suggest that the pineal gland and melatonin, which is activated via the sympathetic system, could be involved in the photoperiodically dependent annual reproductive behavior of the vizcacha.  相似文献   

2.
The viscacha (Lagostomus maximus maximus) is a seasonal rodent living in the Southern Hemisphere. The adult males exhibit an annual reproductive cycle characterized by a gonadal regression period during winter. In this study, we investigated the effects of bilateral enucleation and captivity on their annual reproductive cycle. Testicular volume relative to body weight was recorded monthly in intact and bilaterally enucleated animals placed under natural photoperiod, water, and food ad lib. and constant temperature. Testes and accessory organs were evaluated by qualitative and quantitative light microscopic studies. The intact animals showed an annual reproductive cycle with complete gonadal atrophy in the first year. In the second year, testicular regression was observed but attenuated in regard to that recorded in the first winter period, indicating that adaptive changes might be involved. Bilateral enucleation in the viscacha dampened and extended the period of its annual reproductive cycle. The results suggest that both conditions, constant captivity and enucleation, produced stimulatory effects on the reproductive system of this rodent. Furthermore, local control mechanisms might be responsible for the morphological differences observed in testes, epididymis, and seminal vesicles from both groups, which exhibited similar levels of serum testosterone. Finally, an intact retinohypothalamic-pineal axis and/or photoperiodic input would be necessary to maintain the reproductive cycle amplitude and timing in viscacha.  相似文献   

3.
F. pennanti presented a clear biphasic pineal mediated seasonal sexual cycle. This sexual cycle was essentially characterised by a very short period of sexual quiescence with an arrest of spermatogenesis during October-November. A small but clear decrease in sexual activity was also observed during March-April. This decrease in sexual activity, however, had no quantifiable effect on spermatogenesis. Sexual recrudescence was observed from December-January. The testes remained sexually active from January till September. Almost an inverse relationship was observed between pineal and testicular weight. Pinealectomy, however, prevented naturally induced gonadal regression during both the periods, i.e. September-November and February-April. Exposure of animals to high RH (80 +/- 4%) during sexually active phase induced a steep regression in testicular weight of sham-operated animals even in the presence of gonad stimulatory long photoperiod (16L:8D) and high temperature (40 degrees +/- 5 degrees C) while exposure of animals to moderate RH (65 +/- 5%) during sexual regression phase partially prevented testicular regression even in presence of inhibitory short photoperiod (11L:13D) and normal environmental temperature (30 degrees +/- 5 degrees C). Pinealectomized animals, neither exhibited testicular regression in February-March nor had involuted testes in September-October, thus, suggesting that the effect of humidity is mediated via the pineal gland.  相似文献   

4.
The Leydig cells of viscacha (seasonal rodent) show cytoplasmic hypertrophy and regional distribution during the breeding period (summer-autumn). The dominant organelles are smooth endoplasmic reticulum (SER) and mitochondria. A moderately well-developed Golgi, abundant lipid inclusions, dense bodies like lysosomes in different stages, and centrioles are observed. Extensive or focal desmosome and gap-like junctions between neighbouring Leydig cells are present. These cells exhibit an evident hypotrophy and an increase in the number of dense bodies during the gonadal regression in winter (July and August). Cells in different stages of involution are observed in this period. Their nuclei are irregular and heterochromatic. The cytoplasm contains few mitochondria. The vesicular SER is scarse. Irregular and large intercellular spaces with microvilli and amorphous material are present. The junctional complexes are absent. The nuclear and cytoplasmic volume and development of SER and mitochondria increase during the recovery period (spring). The lipid inclusions decrease. Dilatations of the intercellular space with microvilli and limited by focal desmosome-like junctions are observed. In conclusion, the Leydig cells of Lagostomus maximus maximus show deep changes alongside the reproductive cycle. The photoperiod variations, through pineal hypothalamus pituitary axis and the hormone melatonin, are probably responsible for them. Moreover, the fall of serum and tubular testosterone would be one of the factors responsible for gonadal regression.  相似文献   

5.
The reproductive and adaptative behavior of wild rodents is synchronized primarily by the photoperiod. The viscacha, a South American rodent of nocturnal habits and seasonal reproduction is photoperiod‐dependent and its reproductive behavior is regulated by the retinohypothalamic‐pituitary pineal axis. Adult males exhibit an annual reproductive cycle with periods of maximum gonadal activity (summer‐early autumn) and gonadal regression (winter). The corpus and the cauda, the most sensitive segments of the epididymis to changes induced by the photoperiod, were analyzed using electron microscopy and enzymatic biochemistry. During gonadal regression, principal and clear cells showed signs of involution with respect to the activity period. These were characterized by more irregular nuclei, smaller cytoplasms, large vacuoles, altered mitochondria, and glycogen deposits. All cellular populations of the epididymal epithelium in regression presented abundant lysosome‐like dense bodies during the active period. In addition, we measured the activity of four acid glycosidases in the cauda epididymis along the reproductive cycle. N‐acetyl‐β‐D‐glucosaminidase (NAG), an enzyme that degrades endocytosed substances from the epididymal lumen, increased significantly during gonadal regression relative to the active period. These results demonstrate that the viscacha epididymis exhibits significant ultrastructural and biochemical changes during the reproductive cycle. We demonstrate that during regression, melatonin secretion in viscacha increases. This study shows that the epididymal epithelium is reduced. Thus, we postulate that the changes observed in the epididymis are modulated by pineal melatonin. Despite these changes, the epididymis might maintain a microenvironment suitable for the survival of stored spermatozoa. J. Morphol. 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
In the present work we investigated the presence of testosterone in serum and follicle-stimulating hormone (FSH) receptors in testes of the vizcacha (Lagostomus maximus maximus), a South American rodent. We also investigated the effect of constant light on both parameters. The control group consisted of vizcachas caught in their natural habitat and maintained under continuous darkness; the experimental group consisted of animals maintained under constant light (1076 lx) for 8 days. The results revealed a significant decrease in serum testosterone and FSH receptors when the animals were maintained under constant light, as compared to the control group. Androstenedione was elevated in the serum obtained from the experimental group. It is postulated that the pineal gland may regulate testosterone secretion through FSH receptors and through an enzymatic blockade in the steroidogenic pathway; this supposition, however, remains to be proved.  相似文献   

7.
Seasonal changes in pineal function are well coordinated with seasonal reproductive activity of tropical birds. Further, immunomodulatory property of melatonin is well documented in seasonally breeding animals. Present study elucidates the interaction of peripheral melatonin with seasonal pattern of immunity and reproduction in Indian tropical male bird Perdicula asiatica. Significant seasonal changes were noted in pineal, testicular and immune function(s) of this avian species. Maximum pineal activity along with high immune status was noted during winter month while maximum testicular activity with low immune status was noted in summer. During summer month's long photoperiod suppressed pineal activity and high circulating testosterone suppressed immune parameters, while in winter short photoperiod elevated pineal activity and high circulating melatonin maintained high immune status and suppressed gonadal activity. Therefore, seasonal levels of melatonin act like a major temporal synchronizer to maintain not only the seasonal reproduction but also immune adaptability of this avian species.  相似文献   

8.
The gonadotropes, LH and FSH cells, were immunohistochemically identified in the pituitary pars distalis of the adult male viscacha (Lagostomus maximus maximus) using specific antibodies against hLHbeta and hFSHbeta with the streptavidin-biotin-peroxidase complex. The distribution, size and percentage immunopositive area of these cells were analyzed by image analysis in viscachas captured during the annual reproductive cycle and after the chronic administration of melatonin. The LHbeta and FSHbeta cells showed seasonal changes in the distribution, size and percentage immunopositive area. The LHbeta cells were found widely distributed throughout the pars distalis during the reproductive period, and they were found in the ventro-medial region in the pars distalis during the gonadal regression and gonadal recovery periods. The LHbeta cells reached the largest size and immunopositive area during the reproductive period and the smallest size and immunopositive area during the gonadal regression period. The FSHbeta cells were found in the ventro-medial region during reproductive and gonadal regression periods. The FSHbeta cells were found widely distributed throughout the pars distalis during the gonadal recovery period when they showed the maximum percentage immunopositive area. A decrease in the size of LHbeta and FSHbeta cells was observed after the chronic administration of melatonin. Moreover, it produces a decrease in the immunopositive area occupied by the LHbeta cells but not in the immunopositive area occupied by the FSHbeta cells. Our results show great activity of LHbeta and FSHbeta cells in different moments of the annual reproductive cycle demonstrating that these cells do not secrete in parallel. Moreover, melatonin acts differentially on the activity of the gonadotrope cells.  相似文献   

9.
Development of the reproductive apparatus was delayed in grasshopper mice maintained from birth in short photoperiods (10 h light/day). The inhibitory effects of short photoperiods on sexual maturation eventually waned and mice in 10L:14D became reproductively active. Adult mice transferred from long (14 h light/day) to short photoperiods underwent testicular regression after 10 weeks and complete gonadal redevelopment after 30 weeks. A similar phenomenon was observed in adult female mice; oestrous cycles ceased within 3 weeks and resumed after 13 weeks in the short photoperiod. The regressive effects of short photoperiods on the male reproductive system were mimicked by daily injections of melatonin administered to mice housed in 14L:10D. Responsiveness of the female reproductive system to melatonin was reduced among photorefractory as compared to photosensitive mice. We suggest that the initial rate of sexual maturation and the timing of seasonal breeding in adult mice are regulated by photoperiod; effects of short daylengths on the neuroendocrine-reproductive axis appear to be mediated by the pineal gland.  相似文献   

10.
In a previous study (1) we demonstrated that lithium administration (1.0 mmol/kg b.wt., per day for 4 weeks) in intact vizcacha (Lagostomus maximus maximus) leads to significant histological alterations in the kidneys, ovarie and testicles, while these three tissues were not damaged in rats. Male vizcachas died within 4 days when administered LiCl 3 mmol/kg b.wt., while females were not affected. The lithium renal clearance presented no changes in either males or females. The 1.0 mmol/kg b.wt. dose was used in the experiments (2). In this study we examined the distribution of lithium in various tissues of male and female vizcacha (Lagostomus maximus maximus) administered LiCl by injection (1 mmol/kg b.wt.) for one day (Group I) and thirty days (Group II). Blood sample was obtained after 24 hours (Group I) and 30 days (Group II). The tissues investigated were: pituitary, hypothalamus, cerebral cortex, cerebellum, corpus callous, small and large intestine, kidney and suprarenal. The concentration of lithium in tissues and serum was determined by atomic absortion spectrometry (3,4). In Group I a significant lithium concentration increment (mumol/g of tissue) was observed in all the tissues of male vizcachas as compared to female vizcacha. A similar distribution was obtained in animals treated for 30 days. In the pituitary, however this difference between males and females was not significant. The male lithium serum levels were significantly higher than those of female animals. In conclusion, we suggest that the particular structure of the cell membrane (e.g., number and characteristic of sodium channels) of each tissue and/or the intracellular mechanisms of transport, elimination and metabolism might explain the unequal lithium distribution and the difference recovery from the damage produced. The results suggest that the vizcacha could be a useful model for the study of lithium toxicity.  相似文献   

11.
Photoperiodic response in the male laboratory rat   总被引:2,自引:0,他引:2  
Normally photoperiodic laboratory rats can be induced to respond reproductively to a change in the length of the day by various experimental manipulations. One such paradigm that results in significant gonadal regression involves the treatment of rats with exogenous testosterone during exposure to short days. Studies were undertaken to assess various aspects of this model system including 1) the testicular response of testosterone-treated rats exposed to various photoperiods, 2) the time course for testicular regression under a short photoperiod, and 3) the role of the pineal gland as a mediator of the effects of day length on the neuroendocrine-gonadal axis. Photoperiods ranging in length from 2 to 22 h/24 h had no effect on testicular size in untreated rats. In contrast, while near normal testicular weights were maintained in laboratory rats treated with testosterone and exposed to 10 or more h of light per day, testicular regression occurred in rats implanted with testosterone-filled capsules and exposed to photoperiods of 8 or fewer h of light per day. Maximal testicular regression was reached in about 9 wk in testosterone-treated rats exposed to 6L:18D. Removal of the pineal gland totally blocked the inhibitory effects of exposure to short day lengths in testosterone-treated rats. These studies define some of the characteristics of an extant, but dormant, system for photoperiodic time measurement in the common laboratory rat and implicate a role for the pineal gland in this system. These experiments offer evidence that neuroendocrine factors that regulate continuous vs. seasonal reproductive patterns are malleable. Such flexibility in the photoperiodic response may also contribute to the evolution of seasonal to non-seasonal species and vice versa.  相似文献   

12.
In contrast to most mammalian species, females of the South American plains vizcacha, Lagostomus maximus, show an extensive suppression of apoptosis-dependent follicular atresia, continuous folliculogenesis, and massive polyovulation. These unusual reproductive features pinpoint to an eventual peculiar modulation of the hypothalamo-hypophyseal-gonadal axis through its main regulator, the gonadotropin-releasing hormone (GnRH). We explored the hypothalamic histological landscape and cellular and subcellular localization of GnRH in adult non-pregnant L. maximus females. Comparison to brain atlases from mouse, rat, guinea pig and chinchilla enabled us to histologically define and locate the preoptic area (POA), the ventromedial nucleus, the median eminence (ME), and the arcuate nucleus (Arc) of the hypothalamus in vizcacha's brain. Specific immunolocalization of GnRH was detected in soma of neurons at medial POA (MPA), ventrolateral preoptic nucleus, septohypothalamic nucleus (SHy) and Arc, and in beaded fibers of MPA, SHy, ventromedial hypothalamic nucleus, anterior hypothalamic area and ME. Electron microscopy examination revealed GnRH associated to cytoplasmic vesicles of the ME and POA neurons, organized both in core and non-core vesicles within varicosities, and in neurosecretory vesicles within the myelinated axons of the MPA. Besides the peculiar and unusual features of folliculogenesis and ovulation in the vizcacha, these results show that hypothalamus histology and GnRH immune-detection and localization are comparable to those found in other mammals. This fact leads to the possibility that specific regulatory mechanisms should be in action to maintain continuous folliculogenesis and massive polyovulation.  相似文献   

13.
Synopsis Annual changes in testicular activity and concentration of two serum androgens were monitored in two groups of the river-sculpin Cottus hangiongensis collected from the upper and lower reaches of a river at southern Hokkaido, Japan. One of them (early maturing group) underwent testicular maturation with aberrant spermatids and spermatid masses produced during the reproductive cycle. Moreover, regular seasonal changes in serum testosterone and 11-ketotestosterone concentrations were observed. On the other hand, in the other group (delayed maturing group), although body size of the fish was large enough to undergo reproduction, annual changes in gonadosomatic index and testicular activity did not vary much. During the months of active testicular development in the early maturing group, spermatogenesis was observed to begin in some regions of the testes of delayed maturing fish, but always resulted in the formation of aberrant spermatids and spermatid masses. Moreover, concentration of serum androgens did not significantly vary throughout the year. Results suggest that low androgen production is a proximal factor for delayed sexual maturity in the delayed maturing group, and that the occurrence of aberrant spermatids and spermatid masses during spermatogenesis is not linked to the delayed maturity.  相似文献   

14.
To analyze the role of environmental temperature and photoperiod in the regulation of the annual testicular cycle in Rana perezi, we performed experiments combining high (25 +/- 1 degrees C) or low (6 +/- 1 degrees C) temperature and different photoperiod regimens (18L:6D, 12L:12D, and 6L:18D (hours light:hours dark)) during three phases of the reproductive cycle: winter stage (December) and prebreeding (February) and postbreeding (May, June) periods. Low temperature and short photoperiod in winter induced the arrest of the maturation phase of spermatogenesis and the activation of primary spermatogonia proliferation and spermiohistogenesis. Rana perezi testis responded to long days stimulus in winter, even at low temperature, with induction of the maturation phase of the cycle. Exposure of male frogs to either high temperature or long photoperiod induced a decrease in testosterone levels in winter. During the prebreeding period, an increase in environmental temperature caused a reduction in testosterone, and a lengthening in photoperiod produced the opposite effect. Photoperiod had no effect on testosterone levels during the postbreeding period, but low temperature increased testosterone plasma levels. These results suggest that both temperature and photoperiod effects can vary seasonally, depending on the phase of the annual reproductive cycle in R. perezi.  相似文献   

15.
Testicular development in the captive male dojo loach Misgurnus anguillicaudatus was examined monthly in relation to the levels of plasma sex steroids [testosterone (T), 11-ketotestostrone (11-KT), and 17,20β-dihydroxy-4-pregnen-3-one (DHP)]. On the basis of testicular histology, the annual gonadal cycle was found to be divisible into 3 periods: the recovery and proliferation period, which mainly consists of early spermatogenic testis from August to November (reproductive phase I); the preparation period for the next spawning period, which mainly consists of late spermatogenic testis from December to April (reproductive phase II); and the mature period, characterized by a high proportion of mature testis from May to July (reproductive phase III). Individual variability in testicular development was high, and continuous spermatogenesis was observed throughout the year. High levels of plasma T, 11-KT, and DHP were observed during reproductive phase III. 11-KT began to increase in February, while T was present at low levels in reproductive phase II. These results suggest that the physiologically active season of testis development for breeding in the dojo loach is from May to July, although spermatogenesis occurs throughout the year.  相似文献   

16.
Most male mammals in temperate regions demonstrate seasonal sexual behaviors that coincide with seasonal variations in gonadal activities and androgen hormones. The Yangtze finless porpoise is a temperate freshwater cetacean species and an obvious seasonal breeder. To investigate the relationship between sexual behavior and gonadal activity in this animal, testicular size (volume) and structure (ultrasonogram pixel intensity) of two adult male porpoises (AF, AB) and one sub-adult male (TT) were longitudinally monitored from November 2008 to November 2009. Serum testosterone concentration was also monitored during the same period. Variations in the frequency of sexual behavior in AF and AB had similar, but seasonal trends. Their testicular size and pixel intensity also varied seasonally. Testicular size increased in March, peaked from April through June, and decreased gradually from August through September, whereas testicular pixel intensity started to increase in early February. The frequency of sexual behavior was positively correlated with testicular volume and pixel intensity (P = 0.000018 and P = 0.00012, respectively) in AF. Serum testosterone concentrations also varied. The sub-adult male porpoise, TT, was undergoing puberty, as evidenced by its marked increase in testicular volume, testicular pixel intensity, and serum testosterone concentrations from the beginning of 2009. Interestingly, TT exhibited the highest frequency of sexual behavior, most of which was same-sex pairing. However, its oversexed behavior neither quantitatively correlated with its smaller testicular volume (P = 0.61) nor with its testicular pixel intensity (P = 0.69).  相似文献   

17.
The seasonality, size, age, colour phases and sexual dimorphism of 13 reproductive classes of hogfish Lachnolaimus maximus are described. Analysis of histological sections of gonads ( n = 1662) confirmed earlier conclusions that L. maximus is a monandric, protogynous hermaphrodite. Sex change was initiated at the end of the spawning season and over a broad range of sizes and ages. It occurred after a functional female phase (postmaturation) and proceeded more slowly (months) than previously believed. Eventually all individuals changed sex to a terminal male phase. Females were batch spawners, spawning as often as every day during winter and spring. There was no evidence of precocious sperm crypts in active females, sperm competition or other alternative male sexual strategies. Mating has been reported elsewhere to be haremic. The sexual development of L. maximus appears to be adaptive in terms of Ghiselin's size-advantage model, which links monandric protogyny and polygyny. The slow rate of sex change, however, poses problems when fishing pressure is high because harvest of a single male has the potential to reduce the reproductive output of an entire harem.  相似文献   

18.
The effects of pinealectomy on testicular activity and secretory activity of seminal vesicles were examined in the catfish Heteropneustes fossilis under various combinations of photoperiod and temperature during different periods of the annual reproductive cycle. Pinealectomy had no effect on gonadal activity during the preparatory, prespawning and spawning periods of the reproductive cycle. However, during the postspawning period, under long (LD 14:10) or short (LD 9:15) photoperiod at 25° C or at gradually increasing ambient temperature, pinealectomy accelerated testicular recrudescence and secretory activity of the seminal vesicles. Nevertheless. during this period the presence of the pineal facilitated the recrudescence of testes and seminal vesicles in catfish exposed to continuous light (LL), continuous darkness (DD) and 12 hL:l2 hD (LD) at 25° C. These findings suggest that the role of the pineal in catfish reproduction is variable and depends upon the photoperiod and temperature regimes to which the fish are exposed, as well as on the time of the year and the state of the reproductive cycle. The results also suggest that the effects of pinealectomy in catfish are mediated through an influence on the hypothalamo-hypophyseal gonadal axis.  相似文献   

19.
The male reproductive cycle in the European wild boar (Sus scrofa) was characterized in free-ranging and captive animals. Puberty is attained at 10 months of age when testis weight averages 53 g. Thereafter, the sexual function follows a clearly marked seasonal pattern. In mature animals, testicular weight and related plasma testosterone levels were significantly higher in winter than during the summer months. These variations parallel the seasonal sexual activity of females. The results are discussed with emphasis on the possible role of daylength in seasonal changes of testicular function.  相似文献   

20.
In Syrian hamsters, exposure to short photoperiods or constant darkness induces a decrease in gonadotrophin secretion and gonadal regression. After 10-12 weeks, animals undergo spontaneous gonadal reactivation, gonadotrophin concentrations rise, and in males, testes size increases and spermatogenesis resumes. The tau mutation shortens the period of circadian wheel-running activity by 4 h in the homozygote. Here, we examine the impact of this mutation on the reproductive response to photoperiod change. Seventeen adult tau mutant and nine adult wild-type males were housed in complete darkness for 25 weeks and testes size determined at weekly intervals. Gonadal regression and subsequent recrudescence occurred in both groups of animals. Regression occurred more rapidly in tau mutants, with a nadir significantly earlier than wild-types but after a similar number of circadian cycles. Rates of testicular recrudescence were similar in both groups. Our data suggest that an acceleration of the circadian period increases the rate of reproductive inhibition in animals exposed to inhibitory photoperiods. Once initiated, the rate of spontaneous reactivation may be independent of the circadian axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号