首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acute inflammation induced by endotoxin (LPS) administration inhibits insulin-like growth factor (IGF-I) and growth hormone (GH) secretion. The aim of this study was to elucidate the role of glucocorticoids and nitric oxide (NO) in the effect of LPS on hypothalamic somatostatin gene expression. Adult male Wistar rats were injected with different doses of LPS (5, 10 and 100 microg/kg). Rats received two i.p. injections of LPS (at 17:30 and 8:30 h the following day) and were killed 4 h after the second injection. LPS administration at the dose of 100 microg/kg increased the hypothalamic somatostatin mRNA content, as well as the serum concentrations of corticosterone. Glucocorticoids do not seem to be involved in LPS-induced increase in hypothalamic somatostatin mRNA since adrenalectomy did not prevent this effect. In order to analyze the possible effect of NO, aminoguanidine, an inducible nitric oxide synthase inhibitor, was injected (100 mg/kg s.c.) simultaneously with LPS injection. Aminoguanidine administration did not modify somatostatin mRNA in saline injected rats, but it prevented LPS-induced increase in hypothalamic somatostatin mRNA. These data suggest that the stimulatory effect of endotoxin on hypothalamic somatostatin gene expression is not mediated by glucocorticoids, but instead by the increase in NO release.  相似文献   

2.
In this study, we administered aminoguanidine, a relatively selective inducible nitric oxide synthase (iNOS) inhibitor, to study the role of nitric oxide (NO) in LPS-induced decrease in IGF-I and IGFBP-3. Adult male Wistar rats were injected intraperitoneally with LPS (100 microg/kg), aminoguanidine (100 mg/kg), LPS plus aminoguanidine, or saline. Rats were injected at 1730 and 0830 the next day and killed 4 h after the last injection. LPS administration induced an increase in serum concentrations of nitrite/nitrate (P < 0.01) and a decrease in serum concentrations of growth hormone (GH; P < 0.05) and IGF-I (P < 0.01) as well as in liver IGF-I mRNA levels (P < 0.05). The LPS-induced decrease in serum concentrations of IGF-I and liver IGF-I gene expression seems to be secondary to iNOS activation, since aminoguanidine administration prevented the effect of LPS on circulating IGF-I and its gene expression in the liver. In contrast, LPS-induced decrease in serum GH was not prevented by aminoguanidine administration. LPS injection decreased IGFBP-3 circulating levels (P < 0.05) and its hepatic gene expression (P < 0.01), but endotoxin did not modify the serum IGFBP-3 proteolysis rate. Aminoguanidine administration blocked the inhibitory effect of LPS on both IGFBP-3 serum levels and its hepatic mRNA levels. When aminoguanidine was administered alone, IGFBP-3 serum levels were increased (P < 0.05), whereas its hepatic mRNA levels were decreased. This contrast can be explained by the decrease (P < 0.05) in serum proteolysis of this binding protein caused by aminoguanidine. These data suggest that iNOS plays an important role in LPS-induced decrease in circulating IGF-I and IGFBP-3 by reducing IGF-I and IGFBP-3 gene expression in the liver.  相似文献   

3.
Role of nitric oxide in tolerance to lipopolysaccharide in mice.   总被引:2,自引:0,他引:2  
The injection of repeated doses of lipopolysaccharide (LPS) results in attenuation of the febrile response, which is called endotoxin tolerance. We tested the hypothesis that nitric oxide (NO) arising from inducible NO synthase (iNOS) plays a role in endotoxin tolerance, using not only pharmacological trials but also genetically engineered mice. Body core temperature was measured by biotelemetry in mice treated with NG-monomethyl-L-arginine (L-NMMA, 40 mg/kg; a nonselective NO synthase inhibitor) or aminoguanidine (AG, 10 mg/kg; a selective iNOS inhibitor) and in mice deficient in the iNOS gene (iNOS KO) mice. Tolerance to LPS was induced by means of three consecutive LPS (100 microg/kg) intraperitoneal injections at 24-h intervals. In wild-type mice, we observed a significant reduction of the febrile response to repeated administration of LPS. Injection of L-NMMA and AG markedly enhanced the febrile response to LPS in tolerant animals. Conversely, iNOS-KO mice repeatedly injected with LPS did not become tolerant to the pyrogenic effect of LPS. These data are consistent with the notion that NO modulates LPS tolerance in mice and that iNOS isoform is involved in NO synthesis during LPS tolerance.  相似文献   

4.
Lipopolysaccharide (LPS)-regulated contractility in pericytes may play an important role in mediating pulmonary microvascular fluid hemodynamics during inflammation and sepsis. LPS has been shown to regulate inducible nitric oxide (NO) synthase (iNOS) in various cell types, leading to NO generation, which is associated with vasodilatation. The purpose of this study was to test the hypothesis that LPS can regulate relaxation in lung pericytes and to determine whether this relaxation is mediated through the iNOS pathway. As predicted, LPS stimulated NO synthesis and reduced basal tension by 49% (P < 0.001). However, the NO synthase inhibitors N (omega)-nitro-L-arginine methyl ester, aminoguanidine, and N (omega)-monomethyl-L-arginine did not block the relaxation produced by LPS. In fact, aminoguanidine and N (omega)-monomethyl-L-arginine potentiated the LPS response. The possibility that NO might mediate either contraction or relaxation of the pericyte was further investigated through the use of NO donor compounds; however, neither sodium nitroprusside nor S-nitroso-N-acetylpenicillamine had any significant effect on pericyte contraction. The inhibitory effect of aminoguanidine on LPS-stimulated NO production was confirmed. This ability of LPS to inhibit contractility independent of iNOS was also demonstrated in lung pericytes derived from iNOS-deficient mice. This suggests the presence of an iNOS-independent but as yet undetermined pathway by which lung pericyte contractility is regulated.  相似文献   

5.
Elevated production of nitric oxide (NO) by the inducible NO synthase (type II, iNOS) may contribute to the vascular hyporesponsiveness and hemodynamic alterations associated with sepsis. Selective inhibition of this isoenzyme is a possible therapeutic intervention to correct these pathophysiological alterations. Aminoguanidine has been shown to be a selective iNOS inhibitor and to correct the endotoxin-mediated vascular hypocontractility in vitro. However, to date aminoguanidine has not been shown to selectively block iNOS activity in vivo. The in vivo effects of aminoguanidine were assessed in the cecal ligation and perforation model of sepsis in rats. Aminoguanidine (1.75-175 mg/kg) was administered to septic and sham-operated rats for 3 h before euthanasia and harvest of tissues. NOS activities were determined in the thoracic aorta and lung from these animals. Aminoguanidine (17.5 mg/kg) did not alter the mean arterial pressure; however, it did inhibit induced iNOS (but not constitutive NOS) activity in the lung and thoracic aorta from septic animals. Only the higher dose of aminoguanidine (175 mg/kg) was able to increase the mean arterial pressure in septic and sham-operated animals. Thus selective inhibition of iNOS in vivo with aminoguanidine is possible, but our data suggest that other mechanisms, in addition to iNOS induction, are responsible for the loss of vascular tone characteristic of sepsis.  相似文献   

6.
Contractile dysfunction of the respiratory muscles plays an important role in the genesis of respiratory failure during sepsis. Nitric oxide (NO), a free radical that is cytotoxic and negatively inotropic in the heart and skeletal muscle, is produced in large amounts during sepsis by a NO synthase inducible (iNOS) by LPS and/or cytokines. The aim of this study was to investigate whether iNOS was induced in the diaphragm of Escherichia coli endotoxemic rats and whether inhibition of iNOS induction or of NOS synthesis attenuated diaphragmatic contractile dysfunction. Rats were inoculated intravenously (IV) with 10 mg/kg of E. coli endotoxin (LPS animals) or saline (C animals). Six hours after LPS inoculation animals showed a significant increase in diaphragmatic NOS activity (L-citrulline production, P < 0.005). Inducible NOS protein was detected by Western-Blot in the diaphragms of LPS animals, while it was absent in C animals. LPS animals had a significant decrease in diaphragmatic force (P < 0.0001) measured in vitro. In LPS animals, inhibition of iNOS induction with dexamethasone (4 mg/kg IV 45 min before LPS) or inhibition of NOS activity with N(G)-methyl-L-arginine (8 mg/kg IV 90 min after LPS) prevented LPS-induced diaphragmatic contractile dysfunction. We conclude that increased NOS activity due to iNOS was involved in the genesis of diaphragmatic dysfunction observed in E. coli endotoxemic rats.  相似文献   

7.
Kamerman P  Fuller A 《Life sciences》2000,67(21):2639-2645
We investigated the effect of N-nitro-L-arginine methyl ester (L-NAME), an unspecific nitric oxide synthase (NOS) inhibitor, and aminoguanidine, a relatively selective inhibitor of the inducible NOS enzyme, on both gram-negative lipopolysaccharide (LPS) and gram-positive muramyl dipeptide (MDP) fever in guinea pigs. Intraperitoneal injection of either 10 mg/kg L-NAME or 25 mg/kg aminoguanidine inhibited the febrile response to an intramuscular injection of 50 microg/kg MDP. However, LPS fever (20 microg/kg) was inhibited only by L-NAME. The development of LPS fever may therefore occur independently of the synthesis of nitric oxide by the inducible NOS enzyme, while MDP fever may involve synthesis of nitric oxide by both the inducible and the constitutively expressed NOS enzymes.  相似文献   

8.
This study was designed to determine the role of endogenous prostaglandins (PG) and nitric oxide (NO) in the lipopolysaccharide (LPS)-induced ACTH and corticosterone secretion in conscious rats. LPS (0.5 and 1 mg/kg) given i.p. stimulated the hypothalamic-pituitary-adrenocortical (HPA) activity measured 2 h later. A non-selective cyclooxygenase inhibitor indomethacin (10 mg/kg i.p.), piroxicam (2 mg/kg i.p.), a more potent antagonist of constitutive cyclooxygenase (COX-1) and compound NS-398 (2 mg/kg i.p.), a selective inhibitor of inducible cyclooxygenase (COX-2) given 30 min before LPS (1 mg/kg i.p.) significantly diminished both the LPS-induced ACTH and corticosterone secretion. COX-2 blocker was the most potent inhibitor of ACTH secretion (72.3%). Nomega-nitro-L-arginine methyl ester (L-NAME 2 and 10 mg/kg i.p.), a non-selective nitric oxide synthase (NOS) blocker given 15 min before LPS did not substantially alter plasma ACTH and corticosterone levels 2 h later. Aminoguanidine (AG 100 mg/kg i.p.), a selective inducible nitric oxide synthase (iNOS) inhibitor, considerably enhanced ACTH and corticosterone secretion induced by a lower dose (0.5 mg/kg) of LPS and did not significantly alter this secretion after a larger dose (1 mg/kg) of LPS. L-NAME did not markedly affect the indomethacin-induced inhibition of ACTH and corticosterone response. By contrast, aminoguanidine abolished the indomethacin-induced reduction of ACTH and corticosterone secretion after LPS. These results indicate an opposite action of PG generated by cyclooxygenase and NO synthesized by iNOS in the LPS-induced HPA-response.  相似文献   

9.
Nitric oxide (NO) produced by inducible nitric oxide synthase (iNOS) is responsible for sepsis-induced hypotension and plays a major contributory role in the ensuing multiorgan failure. The present study aimed to elucidate the role of endothelial NO in lipopolysaccharide (LPS)-induced iNOS expression, in isolated rat aortic rings. Exposure to LPS (1 mug/ml, 5 h) resulted in a reversal of phenylephrine precontracted tone in aortic rings (70.7 +/- 3.2%). This relaxation was associated with iNOS expression and NF-kappaB activation. Positive immunoreactivity for iNOS protein was localized in medial and adventitial layers of LPS-treated aortic rings. Removal of the endothelium rendered aortic rings resistant to LPS-induced relaxation (8.9 +/- 4.5%). Western blotting of these rings demonstrated an absence of iNOS expression. However, treatment of endothelium-denuded rings with the NO donor, diethylamine-NONOate (0.1 mum), restored LPS-induced relaxation (61.6 +/- 6.6%) and iNOS expression to levels comparable with arteries with intact endothelium. Blockade of endothelial NOS (eNOS) activation using geldanamycin and radicicol, inhibitors of heat shock protein 90, in endothelium-intact arteries suppressed both LPS-induced relaxation and LPS-induced iNOS expression (9.0 +/- 8.0% and 2.0 +/- 6.2%, respectively). Moreover, LPS treatment (12.5 mg/kg, intravenous, 15 h) of wild-type mice resulted in profound elevation of plasma [NO(x)] measurements that were reduced by approximately 50% in eNOS knock-out animals. Furthermore, LPS-induced changes in vascular reactivity and iNOS expression evident in wild-type tissues were profoundly suppressed in tissues taken from eNOS knockout animals. Together, these data suggest that eNOS-derived NO, in part via activation of NF-kappaB, regulates iNOS-induction by LPS. This study provides the first demonstration of a proinflammatory role of vascular eNOS in sepsis.  相似文献   

10.
We investigated whether nitric oxide (NO) exposure alters the balance between NO and endothelium-derived hyperpolarizing factor (EDHF) released from rat renal arteries. To produce states of acutely or chronically excessive NO, lipopolysaccharide (LPS) was administered intraperitoneally to rats in a single dose of 4 mg/kg (LPS-single group) or in stepwise doses of 0.5, 1.0 and 2.0 mg/kg every other day (LPS-repeated group). On the day after LPS treatment, the protein levels of inducible NO synthase (iNOS) and endothelial NOS (eNOS) were measured, and the relaxation responses were determined in the renal arteries. The protein levels of iNOS markedly increased in both LPS-treated groups, while those of eNOS significantly increased in the LPS-repeated group compared with those in the respective control groups. In both LPS-treated groups, the relaxations in response to acetylcholine (ACh) and sodium nitroprusside remained unchanged. The ACh-induced relaxations in the presence of N(G)-nitro-L-arginine methyl ester, a NOS inhibitor, or by 1H-[1, 2, 4-] oxadiazole [4, 3-a] quinoxalin-1-one, a soluble guanylyl cyclase inhibitor, i.e. EDHF-mediated relaxations were significantly impaired in the LPS-repeated group but not in the LPS-single group, indicating increase in NO-mediated relaxation in the LPS-repeated group. These changes in the protein levels and EDHF-mediated relaxations induced by ACh observed in the LPS-repeated group were restored by treatment with NOX-100, a NO scavenger. These results suggest that persistent but not acute excessive NO exposure in rats impairs EDHF-mediated relaxation in renal arteries, leading to a compensatory upregulation of the eNOS/NO pathway.  相似文献   

11.
Nitric oxide is thought to be an important modulator of various functions in normal and inflamed airways. In the present study, we evaluated the effects of high vitamin E (250 mg and 1250 mg alpha-tocopheryl acetate (TA)/kg diet/10 days) on nitric oxide (NO(.)) release by alveolar macrophages (AMs) in response to lipopolysaccharide (LPS), interleukin-1beta (IL-1beta) and tumor necrosis factor (TNF-alpha). LPS and IL-1beta treatment (1-10 microg/ml) enhanced NO(.) release in AMs from control animals fed on 50 mg vitamin E/kg diet in a concentration dependent manner. However, this enhancement of NO(.) was attenuated in the AMs of animals fed with 250 mg or 1250 mg vitamin E/kg diet. TNF-alpha had no effect in eliciting the release of NO(.) in AMs obtained either from control or from hyper vitamin E fed animals. Further, LPS (1-10 microg/ml) enhanced the inducible nitric oxide synthase (iNOS) activity of AMs of control group and TA-fed animals almost to equal extent. Similarly, LPS-induced formation of N-nitrosamine (N-nitroso-L-[(14)C]-proline) in AMs of control and TA-supplemented animals were not different statistically. On the other hand, in vitro addition of vitamin E (200 microM) in AMs of control animals, when triggered with 10 microg LPS/ml, caused a significant decrease in N-nitroso-L-[(14)C]-proline formation. It seems that high doses of TA in diet may play a role in reducing the lipopolysaccharide and proinflammatory cytokines-induced NO(.)-mediated damage by AMs.  相似文献   

12.
13.
The mechanisms by which endotoxemia causes cardiac depression have not been fully elucidated. The present study examined the involvement of nitric oxide (NO) in this pathology. Rats were infused with lipopolysaccharide (LPS) or saline, and the plasma and myocardial NO(2)(-) and NO(3)(-) (NOx) concentrations were measured before or 3, 6, and 24 h after treatment. The hearts were then immediately isolated and mounted in a Langendorff apparatus, and left ventricular developed pressure (LVDP) was determined before biochemical analysis of the myocardium. LPS injection effected the expression of inducible NO synthase (iNOS) in the myocardium, a marked increase in plasma and myocardial NOx levels, and a significant decline in LVDP compared with saline controls. The LPS-induced NO production and concomitant cardiac depression were most pronounced 6 h after LPS injection and were accompanied by a significant increase in myocardial cGMP content. Myocardial ATP levels were not significantly altered after LPS injection. Significant negative correlation was observed between LVDP and myocardial cGMP content, as well as between LVDP and plasma NOx levels. Aminoguanidine, an inhibitor of iNOS, significantly attenuated the LPS-induced NOx production and contractile dysfunction. Furthermore, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, an inhibitor of soluble guanylate cyclase, significantly decreased myocardial cGMP content and attenuated the contractile depression, although aminoguanidine or 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one was not able to completely reverse myocardial dysfunction. Our data suggest that endotoxin-induced contractile dysfunction in rat hearts is associated with NO production by myocardial iNOS and a concomitant increase in myocardial cGMP.  相似文献   

14.
Inducible NO-synthase inhibitor aminoguanidine (AG) was used for investigation into enhanced nitric oxide (NO) production influence on elevated pressure in the pulmonary circulation (pulmonary hypertension, PH) under endothelial dysfunction. PH was simulated by subcutaneous injection of 60 mg/kg MCT to Wistar rats. Experimental groups were given AG in drinking water (15 mg/(kg x day)), and control groups were given drinking water. Rate of nitrite/nitrate excretion (RENOx) with urine was measured. The RENOx was elevated since second week as long as through the PH development. Chronic AG administration led to RENOx and soluble guanylate cyclase (sGC) NO-dependent activity restoration, and also it led to partial restoration of the right ventricular pressure. AG administration restored the perfusion pressure responses of isolated pulmonary arteries to acetylcholine. These results suggest that chronic inducible NO-synthase inhibition restores the impaired endothelium-dependent and sGC-dependent relaxation of pulmonary artery in MC-induced PH.  相似文献   

15.
Nitric oxide (NO) has been shown to be an important mediator of febrile response to lipopolisaccharide (LPS). To clarify the role of different isoforms of NO synthase (NOS) in febrile response to immune challenge, effects of selective iNOS and nNOS inhibitors on fever to LPS were examined in freely moving biotelemetered rats. Vinyl-L-NIO (N(5) - (1-Imino-3-butenyl) - ornithine (vL-NIO), a neuronal nitric oxide synthase (nNOS) inhibitor, and aminoguanidine hydrochloride, an inducible nitric oxide synthase (iNOS) inhibitor, were injected intracerebroventricularly at a dose of 10 microg/rat just before intraperitoneal injection of LPS at a dose of 50 microg/kg. Both inhibitors injected at a selected doses had no effect on normal day-time body temperature (T(b)) and normal night-time T(b). vinyl-L-NIO and aminoguanidine injected intracerebroventricularly at a dose of 10 microg/animal suppressed the LPS-induced fever in rats. The fever index calculated for rats pretreated with v-LNIO or with aminoguanidine and injected with LPS was reduced by 43% and 72%, respectively, compared to that calculated for water-pretreated and LPS-injected rats. Whereas vL-NIO partly attenuated both phases of febrile rise in T(b), administration of aminoguanidine into the brain completely prevented fever induced by LPS. These data indicate that activation of iNOS inside the brain is not only responsible for triggering but also for maintaining of LPS-induced fever in rats. It is, therefore, reasonable to hypothesize that, activation of iNOS inside the brain is more important in fever development than activation of nNOS.  相似文献   

16.
The NADPH-diaphorase (NADPH-d) histochemical technique is commonly used to localize the nitric oxide (NO) produced by the enzyme nitric oxide synthase (NOS) in neural tissue. The expression of inducible nitric oxide synthase (iNOS) is induced in the late stage of cerebral ischemia, and NO produced by iNOS contributes to the delay in recovery from brain neuronal damage. The present study was performed to investigate whether the increase in nitric oxide production via inducible nitric oxide synthase was suppressed by the administration of aminoguanidine, a selective iNOS inhibitor, as it follows a decrease of NADPH-diaphorase activity (a marker for NOS) after four-vessel occlusion used as an ischemic model. The administration of aminoguanidine (100 mg/kg i.p., twice per day up to 3 days immediately after the ischemic insult) reduced the number of NADPH-diaphorase positive cells to control levels. Our results indicated that aminoguanidine suppressed NADPH-diaphorase activity, and also decreased the number of NADPH-diaphorase positive cells in the CA1 region of the hippocampus following ischemic brain injury.  相似文献   

17.
Interaction studies with inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) inhibitor have been conducted to assess the nature of interaction and the possible therapeutic advantage. The interaction between meloxicam--a selective COX-2 inhibitor--and aminoguanidine hydrochloride--a selective iNOS inhibitor-- was examined in carrageenan-induced paw edema in rats. Appropriate statistical method was applied to detect the nature of anti-inflammatory interaction. Different doses of meloxicam (1, 3, 10 and 30 mg/kg) or aminoguanidine hydrochloride (10, 30, 100 and 300 mg/kg) were administered orally to adult male albino rats. Higher doses of meloxicam (3, 10 and 30 mg/kg) showed statistically significant anti-inflammatory effect. However, aminoguanidine hydrochloride did not show any anti-inflammatory activity. Combination of sub-threshold dose of meloxicam (1 mg/kg) with increasing doses of aminoguanidine hydrochloride (30, 100 and 300 mg/kg) resulted in synergistic anti-inflammatory effect. Combined therapy with sub-threshold dose of aminoguanidine hydrochloride (30 mg/kg) with increasing doses of meloxicam (1, 3, 10 and 30 mg/kg) also resulted in synergistic anti-inflammatory effect. The possible mechanism of interaction could be the stimulation of COX-2 activity by nitric oxide (NO) by combining with heme component. These results suggest that co-administration of meloxicam and aminoguanidine hydrochloride may be an alternative in clinical control of inflammation.  相似文献   

18.
Left ventricular (LV) dysfunction caused by myocardial infarction (MI) is accompanied by endothelial dysfunction, most notably a loss of nitric oxide (NO) availability. We tested the hypothesis that endothelial dysfunction contributes to impaired tissue perfusion during increased metabolic demands as produced by exercise, and we determined the contribution of NO to regulation of regional systemic, pulmonary, and coronary vasomotor tone in exercising swine with LV dysfunction produced by a 2- to 3-wk-old MI. LV dysfunction resulted in blunted systemic and coronary vasodilator responses to ATP, whereas the responses to nitroprusside were maintained. Exercise resulted in blunted systemic and pulmonary vasodilator responses in MI that resembled the vasodilator responses in normal (N) swine following blockade of NO synthase with N(omega)-nitro-L-arginine (L-NNA, 20 mg/kg iv). However, L-NNA resulted in similar decreases in systemic (43 +/- 3% in N swine and 49 +/- 4% in MI swine), pulmonary (45 +/- 5% in N swine and 49 +/- 4% in MI swine), and coronary (28 +/- 4% in N and 35 +/- 3% in MI) vascular conductances in N and MI swine under resting conditions; similar effects were observed during treadmill exercise. Selective inhibition of inducible NO synthase with aminoguanidine (20 mg/kg iv) had no effect on vascular tone in MI. These findings indicate that while agonist-induced vasodilation is already blunted early after myocardial infarction, the contribution of endothelial NO synthase-derived NO to regulation of vascular tone under basal conditions and during exercise is maintained.  相似文献   

19.
Reactive oxygen and nitrogen species have been implicated in the pathogenesis of bleomycin-induced lung fibrosis. The effects of aminoguanidine and erdosteine on the bleomycin-induced lung fibrosis were evaluated in rats. The animals were placed into five groups: Vehicle + vehicle, vehicle + bleomycin (2.5 U/kg), bleomycin + aminoguanidine (200 mg/kg), bleomycin + erdosteine (10 mg/kg), and bleomycin + erdosteine + aminoguanidine. Bleomycin administration resulted in prominent lung fibrosis as measured by lung hydroxyproline content and lung histology, which is completely prevented by erdosteine and aminoguanidine. A strong staining for nitro tyrosine antibody in lung tissue and increased levels of lung NO were found in bleomycin group, that were significantly reduced by aminoguanidine and erdosteine. Aminoguanidine and erdosteine significantly prevented depletion of superoxide dismutase and glutathione peroxidase and elevated myeloperoxidase activities, malondialdehyde level in lung tissue produced by bleomycin. Data presented here indicate that aminoguanidine and erdosteine prevented bleomycin-induced lung fibrosis and that nitric oxide mediated tyrosine nitration of proteins plays a significant role in the pathogenesis of bleomycin-induced lung fibrosis. Also our data suggest that antifibrotic affect of antioxidants may be due to their inhibitory effect on nitric oxide generation in this model.  相似文献   

20.
Hyperoxic exposure enhances airway reactivity in newborn animals, possibly due to altered relaxation. We sought to define the role of prostaglandinand nitric oxide-mediated mechanisms in impaired airway relaxation induced by hyperoxic stress. We exposed 7-day-old rat pups to either room air or hyperoxia (>95% O2) for 7 days to assess airway relaxation and cAMP and cGMP production after electrical field stimulation (EFS). EFS-induced relaxation of preconstricted trachea was diminished in hyperoxic vs. normoxic animals (P < 0.05). Indomethacin (a cyclooxygenase inhibitor) reduced EFS-induced airway relaxation in tracheae from normoxic (P < 0.05), but not hyperoxic, rat pups; however, in the presence of NG-nitro-L-arginine methyl ester (a nitric oxide synthase inhibitor) EFS-induced airway relaxation was similarly decreased in tracheae from both normoxic and hyperoxic animals. After EFS, the increase from baseline in the production of cAMP was significantly higher in tracheae from normoxic than hyperoxic rat pups, and this was accompanied by greater prostaglandin E2 release only in the normoxic group. cGMP production after EFS stimulation did not differ between normoxic and hyperoxic groups. We conclude that hyperoxia impairs airway relaxation in immature animals via a mechanism primarily involving the prostaglandin-cAMP signaling pathway with an impairment of prostaglandin E2 release and cAMP accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号