首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four isoforms of cardiac troponin T (cTnT), a protein essential for calcium-dependent myocardial force development, are expressed in the human; they differ in charge and length. Their expression is regulated developmentally and is affected by disease states. Human cTnT (hcTnT) isoform effects have been examined in reconstituted myofilaments. In this study, we evaluated the modulatory effects of overexpressing one cTnT isoform on in vitro and in vivo myocardial function. A hcTnT isoform, hcTnT(1), expressed during development and in heart disease but not in the normal adult heart, was expressed in transgenic (TG) mice (1-30% of total cTnT). Maximal active tension measured in skinned myocardium decreased as a function of relative hcTnT(1) expression. The pCa at half-maximal force development, Hill coefficient, and rate of redevelopment of force did not change significantly with hcTnT(1) expression. In vivo maximum rates of rise and fall of left ventricular pressure decreased, and the half-time of isovolumic relaxation increased, with hcTnT(1) expression. Substituting total cTnT charge for hcTnT(1) expression resulted in similar conclusions. Morphometric analysis and electron microscopy revealed no differences between wild-type (non-TG) and TG myocardium. No differences in isoform expression of tropomyosin, myosin heavy chain, essential and regulatory myosin light chains (MLC), TnI, or in posttranslational modifications of mouse cTnT, cTnI, or regulatory MLC were observed. These results support the hypothesis that cTnT isoform amino-terminal differences affect myofilament function and suggest that hcTnT(1) expression levels present during human development and in human heart disease can affect in vivo ventricular function.  相似文献   

2.
We previously reported that the NH(2)-terminal variable region of cardiac troponin T (cTnT) is removed by restrictive μ-calpain cleavage in myocardial ischemia-reperfusion [24]. Selective removal of the NH(2)-terminal variable region of cTnT had a compensatory effect on myocardial contractility [25]. Here we further studied this posttranslational modification under pathophysiological conditions. Thrombin perfusion of isolated mouse hearts and cardiomyocytes induced the production of NH(2)-terminal truncated cTnT (cTnT-ND), suggesting a role of calcium overloading. Ouabain treatment of primary cultures of mouse cardiomyocytes in hypokalemic media, another calcium overloading condition, also produced cTnT-ND. Exploring the molecular mechanisms, we found that cTnT phosphorylation was primarily in the NH(2)-terminal region and the level of cTnT phosphorylation did not change under the calcium overloading conditions. However, alternatively spliced cTnT variants differing in the NH(2)-terminal primary structure produced significantly different levels of cTnT-ND in vivo in transgenic mouse hearts. The results suggest that stress conditions involving calcium overloading may convey an increased sensitivity of cTnT to the restrictive μ-calpain proteolysis, in which structure of the NH(2)-terminal variable region may play a determining role.  相似文献   

3.
Cardiac troponin I (cTnI), the inhibitory subunit of the thin filament troponin-tropomyosin regulatory complex, is required for heart muscle relaxation during the cardiac cycle. Expressed only in cardiac muscle, cTnI is widely used in the clinic as a serum biomarker of cardiac injury. In vivo function of cTnI is influenced by phosphorylation and proteolysis; therefore analysis of post-translational modifications of the intact protein should greatly facilitate the understanding of cardiac regulatory mechanisms and may improve cTnI as a disease biomarker. cTnI (24 kDa, pI approximately 9.5) contains twelve serine, eight threonine, and three tyrosine residues, which presents a challenge for unequivocal identification of phosphorylation sites and quantification of positional isomers. In this study, we used top down electron capture dissociation and electron transfer dissociation MS to unravel the molecular complexity of cTnI purified from human heart tissue. High resolution MS spectra of human cTnI revealed a high degree of heterogeneity, corresponding to phosphorylation, acetylation, oxidation, and C-terminal proteolysis. Thirty-six molecular ions of cTnI were detected in a single ESI/FTMS spectrum despite running as a single sharp band on SDS-PAGE. Electron capture dissociation of monophosphorylated cTnI localized two major basal phosphorylation sites: a well known site at Ser(22) and a novel site at Ser(76)/Thr(77), each with partial occupancy (Ser(22): 53%; Ser(76)/Thr(77): 36%). Top down MS(3) analysis of diphosphorylated cTnI revealed occupancy of Ser(23) only in diphosphorylated species consistent with sequential (or ordered) phosphorylation/dephosphorylation of the Ser(22/23) pair. Top down MS of cTnI provides unique opportunities for unraveling its molecular complexity and for quantification of phosphorylated positional isomers thus allowing establishment of the relevance of such modifications to physiological functions and disease status.  相似文献   

4.
The rapid increase in the prevalence of chronic heart failure (CHF) worldwide underscores an urgent need to identify biomarkers for the early detection of CHF. Post-translational modifications (PTMs) are associated with many critical signaling events during disease progression and thus offer a plethora of candidate biomarkers. We have employed a top-down quantitative proteomics methodology for comprehensive assessment of PTMs in whole proteins extracted from normal and diseased tissues. We systematically analyzed 36 clinical human heart tissue samples and identified phosphorylation of cardiac troponin I (cTnI) as a candidate biomarker for CHF. The relative percentages of the total phosphorylated cTnI forms over the entire cTnI populations (%P(total)) were 56.4 ± 3.5%, 36.9 ± 1.6%, 6.1 ± 2.4%, and 1.0 ± 0.6% for postmortem hearts with normal cardiac function (n = 7), early stage of mild hypertrophy (n = 5), severe hypertrophy/dilation (n = 4), and end-stage CHF (n = 6), respectively. In fresh transplant samples, the %P(total) of cTnI from nonfailing donor (n = 4), and end-stage failing hearts (n = 10) were 49.5 ± 5.9% and 18.8 ± 2.9%, respectively. Top-down MS with electron capture dissociation unequivocally localized the altered phosphorylation sites to Ser22/23 and determined the order of phosphorylation/dephosphorylation. This study represents the first clinical application of top-down MS-based quantitative proteomics for biomarker discovery from tissues, highlighting the potential of PTMs as disease biomarkers.  相似文献   

5.
Adult cardiac muscle normally expresses a single cardiac troponin T (cTnT). As a potential pathogenic mechanism for turkey dilated cardiomyopathy, the splice-out of a normally constitutive exon generates an additional low molecular weight cTnT with altered conformation and function. We further found that aberrant splicing of cTnT also occurs in several mammals correlating to dilated cardiomyopathy. Skipping of the same exon as that in the turkey was found in the canine cTnT. Splice-out of the adjacent exon 6 occurred in the guinea pig cTnT. Retention of the embryonic exon 5 was found in the cTnT of cat, dog, and guinea pig. These aberrant splicing variants significantly altered the structure of cTnT to sustain functional effects as that in the myopathic turkey cTnT. The genomic sequence of canine cTnT gene shows no specific alterations. However, the alternative splicing patterns of canine cTnT are different in developing cardiac and skeletal muscles, suggesting abnormality of trans-regulatory factors. Transgenic expression of the aberrant cTnT variants resulted in contractile changes in mouse cardiomyocytes. The findings support the hypothesis that thin filament heterogeneity due to the co-expression of alternatively spliced cTnT variants may desynchronize myocardial contraction and contribute to the pathogenesis and pathophysiology of cardiomyopathy and heart failure.  相似文献   

6.
In this study we investigated the physiological role of the cardiac troponin T (cTnT) isoforms in the presence of human slow skeletal troponin I (ssTnI). ssTnI is the main troponin I isoform in the fetal human heart. In reconstituted fibers containing the cTnT isoforms in the presence of ssTnI, cTnT1-containing fibers showed increased Ca(2+) sensitivity of force development compared with cTnT3- and cTnT4-containing fibers. The maximal force in reconstituted skinned fibers was significantly greater for the cTnT1 (predominant fetal cTnT isoform) when compared with cTnT3 (adult TnT isoform) in the presence of ssTnI. Troponin (Tn) complexes containing ssTnI and reconstituted with cTnT isoforms all yielded different maximal actomyosin ATPase activities. Tn complexes containing cTnT1 and cTnT4 (both fetal isoforms) had a reduced ability to inhibit actomyosin ATPase activity when compared with cTnT3 (adult isoform) in the presence of ssTnI. The rate at which Ca(2+) was released from site II of cTnC in the cTnI.cTnC complex (122/s) was 12.5-fold faster than for the ssTnI.cTnC complex (9.8/s). Addition of cTnT3 to the cTnI.cTnC complex resulted in a 3.6-fold decrease in the Ca(2+) dissociation rate from site II of cTnC. Addition of cTnT3 to the ssTnI.cTnC complex resulted in a 1.9-fold increase in the Ca(2+) dissociation rate from site II of cTnC. The rate at which Ca(2+) dissociated from site II of cTnC in Tn complexes also depended on the cTnT isoform present. However, the TnI isoforms had greater effects on the Ca(2+) dissociation rate of site II than the cTnT isoforms. These results suggest that the different N-terminal TnT isoforms would produce distinct functional properties in the presence of ssTnI when compared with cTnI and that each isoform would have a specific physiological role in cardiac muscle.  相似文献   

7.
Synapsin 2 proteins are key elements of the synaptic machinery and still hold the centre stage in neuroscience research. Although fully sequenced at the nucleic acid level in mouse and rat, structural information on amino acid sequences and post-translational modifications (PTMs) is limited. Knowledge on protein sequences and PTMs, however, is mandatory for several purposes including conformational studies and the generation of antibodies. Hippocampal proteins from rat and mouse were extracted, run on two-dimensional gel electrophoresis and multi-enzyme digestion was carried out to generate peptides for mass spectrometrical analysis [nano-LC-ESI-(CID/ETD)-MS/MS]. As much as 12 synapsin 2 proteins (6 alpha and 6 beta isoforms) in the mouse and 13 synapsin 2 proteins (6 alpha and 7 beta isoforms) were observed in the rat. Protein sequences were highly identical to nucleic acid sequences, and only few amino acid exchanges probably representing polymorphisms or sequence conflicts were detected. Mouse and rat synapsins 2a differed in three amino acids, while rat and mouse synapsins 2b differed in two amino acids. As much as 13 phosphorylation sites were determined by MS/MS data in rat and mouse hippocampus and 5 were verified by phosphatase treatment. These findings are important for interpretation of previous results and design of future studies on synapsins.  相似文献   

8.
Cardiac troponin T (cTnT) is a key component of contractile regulatory proteins. cTnT is characterized by a ~32 amino acid N-terminal extension (NTE), the function of which remains unknown. To understand its function, we generated a transgenic (TG) mouse line that expressed a recombinant chimeric cTnT in which the NTE of mouse cTnT was removed by replacing its 1–73 residues with the corresponding 1–41 residues of mouse fast skeletal TnT. Detergent-skinned papillary muscle fibers from non-TG (NTG) and TG mouse hearts were used to measure tension, ATPase activity, Ca2+ sensitivity (pCa50) of tension, rate of tension redevelopment, dynamic muscle fiber stiffness, and maximal fiber shortening velocity at sarcomere lengths (SLs) of 1.9 and 2.3 μm. Ca2+ sensitivity increased significantly in TG fibers at both short SL (pCa50 of 5.96 vs. 5.62 in NTG fibers) and long SL (pCa50 of 6.10 vs. 5.76 in NTG fibers). Maximal cross-bridge turnover and detachment kinetics were unaltered in TG fibers. Our data suggest that the NTE constrains cardiac thin filament activation such that the transition of the thin filament from the blocked to the closed state becomes less responsive to Ca2+. Our finding has implications regarding the effect of tissue- and disease-related changes in cTnT isoforms on cardiac muscle function.  相似文献   

9.
We report the initial biochemical characterization of an alternatively spliced isoform of nonmuscle heavy meromyosin (HMM) II-B2 and compare it with HMM II-B0, the nonspliced isoform. HMM II-B2 is the HMM derivative of an alternatively spliced isoform of endogenous nonmuscle myosin (NM) II-B, which has 21-amino acids inserted into loop 2, near the actin-binding region. NM II-B2 is expressed in the Purkinje cells of the cerebellum as well as in other neuronal cells [X. Ma, S. Kawamoto, J. Uribe, R.S. Adelstein, Function of the neuron-specific alternatively spliced isoforms of nonmuscle myosin II-B during mouse brain development, Mol. Biol. Cell 15 (2006) 2138-2149]. In contrast to any of the previously described isoforms of NM II (II-A, II-B0, II-B1, II-C0 and II-C1) or to smooth muscle myosin, the actin-activated MgATPase activity of HMM II-B2 is not significantly increased from a low, basal level by phosphorylation of the 20 kDa myosin light chain (MLC-20). Moreover, although HMM II-B2 can bind to actin in the absence of ATP and is released in its presence, it cannot propel actin in the sliding actin filament assay following MLC-20 phosphorylation. Unlike HMM II-B2, the actin-activated MgATPase activity of a chimeric HMM with the 21-amino acid II-B2 sequence inserted into the homologous location in the heavy chain of HMM II-C is increased following MLC-20 phosphorylation. This indicates that the effect of the II-B2 insert is myosin heavy chain specific.  相似文献   

10.
Electron capture dissociation (ECD) and infrared multiphoton dissociation (IRMPD) present complementary techniques for the fragmentation of peptides and proteins in Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) in addition to the commonly used collisionally activated dissociation (CAD). Both IRMPD and ECD have been shown to be applicable for an efficient sequencing of peptides and proteins, whereas ECD has proven especially valuable for mapping labile posttranslational modifications (PTMs), such as phosphorylations. In this work, we compare the different fragmentation techniques and MS detection in a linear ion trap and the ICR cell with respect to their abilities to efficiently identify and characterize phosphorylated peptides. For optimizing fragmentation parameters, sets of synthetic peptides with molecular weights ranging from approximately 1 to 4 kDa and different levels of phosphorylation were analyzed. The influence of spectrum averaging for obtaining high-quality spectra was investigated. Our results show that the fragmentation methods CAD and ECD allow for a facilitated analysis of phosphopeptides; however, their general applicability for analyzing phosphopeptides has to be evaluated in each specific case with respect to the given analytical task. The major advantage of complementary peptide cleavages by combining different fragmentation methods is the increased amount of information that is obtained during MS/MS analysis of modified peptides. On the basis of the obtained results, we are planning to design LC time-scale compatible, data-dependent MS/MS methods using the different fragmentation techniques in order to improve the identification and characterization of phosphopeptides.  相似文献   

11.
Electron transfer dissociation (ETD) has been developed recently as an efficient ion fragmentation technique in mass spectrometry (MS), being presently considered a step forward in proteomics with real perspectives for improvement, upgrade and application. Available also on affordable ion trap mass spectrometers, ETD induces specific N–Cα bond cleavages of the peptide backbone with the preservation of the post-translational modifications and generation of product ions that are diagnostic for the modification site(s). In addition, in the last few years ETD contributed significantly to the development of top-down approaches which enable tandem MS of intact protein ions. The present review, covering the last 5 years highlights concisely the major achievements and the current applications of ETD fragmentation technique in proteomics. An ample part of the review is dedicated to ETD contribution in the elucidation of the most common posttranslational modifications, such as phosphorylation and glycosylation. Further, a brief section is devoted to top-down by ETD method applied to intact proteins. As the last few years have witnessed a major expansion of the microfluidics systems, a few considerations on ETD in combination with chip-based nanoelectrospray (nanoESI) as a platform for high throughput top-down proteomics are also presented.  相似文献   

12.
The three isoforms of vertebrate troponin T (TnT) are normally expressed in a muscle type-specific manner. Here we report an exception that the cardiac muscle of toad (Bufo) expresses exclusively slow skeletal muscle TnT (ssTnT) together with cardiac forms of troponin I and myosin as determined using immunoblotting, cDNA cloning, and/or LC-MS/MS. Using RT-PCR and 3'- and 5'-rapid amplification of cDNA ends on toad cardiac mRNA, we cloned full-length cDNAs encoding two alternatively spliced variants of ssTnT. Expression of the cloned cDNAs in Escherichia coli confirmed that the toad cardiac muscle expresses solely ssTnT, predominantly the low molecular weight variant with the exon 5-encoded NH(2)-terminal segment spliced out. Functional studies were performed in ex vivo working toad hearts and compared with the frog (Rana) hearts. The results showed that toad hearts had higher contractile and relaxation velocities and were able to work against a significantly higher afterload than that of frog hearts. Therefore, the unique evolutionary adaptation of utilizing exclusively ssTnT in toad cardiac muscle corresponded to a fitness value from improving systolic function of the heart. The data demonstrated a physiological importance of the functional diversity of TnT isoforms. The structure-function relationship of TnT may be explored for the development of new treatment of heart failure.  相似文献   

13.
The conserved central and COOH-terminal regions of troponin T (TnT) interact with troponin C, troponin I, and tropomyosin to regulate striated muscle contraction. Phylogenic data show that the NH2-terminal region has evolved as an addition to the conserved core structure of TnT. This NH2-terminal region does not bind other thin filament proteins, and its sequence is hypervariable between fiber type and developmental isoforms. Previous studies have demonstrated that NH2-terminal modifications alter the COOH-terminal conformation of TnT and thin filament Ca2+-activation, yet the functional core structure of TnT and the mechanism of NH2-terminal modulation are not well understood. To define the TnT core structure and investigate the regulatory role of the NH2-terminal variable region, we investigated two classes of model TnT molecules: (1) NH2-terminal truncated cardiac TnT and (2) chimera proteins consisting of an acidic or basic skeletal muscle TnT NH2-terminus spliced to the cardiac TnT core. Deletion of the TnT hypervariable NH2-terminus preserved binding to troponin I and tropomyosin and sustained cardiac muscle contraction in the heart of transgenic mice. Further deletion of the conserved central region diminished binding to tropomyosin. The reintroduction of differently charged NH2-terminal domains in the chimeric molecules produced long-range conformational changes in the central and COOH-terminal regions to alter troponin I and tropomyosin binding. Similar NH2-terminal charge effects are demonstrated in naturally occurring cardiac TnT isoforms, indicating a physiological significance. These results suggest that the hypervariable NH2-terminal region modulates the conformation and function of the TnT core structure to fine-tune muscle contractility.  相似文献   

14.
Efficient and specific phosphorylation of PKA substrates, elicited in response to β-adrenergic stimulation, require spatially confined pools of PKA anchored in proximity of its substrates. PKA-dependent phosphorylation of cardiac sarcomeric proteins has been the subject of intense investigations. Yet, the identity, composition, and function of PKA complexes at the sarcomeres have remained elusive. Here we report the identification and characterization of a novel sarcomeric AKAP (A-kinase anchoring protein), cardiac troponin T (cTnT). Using yeast two-hybrid technology in screening two adult human heart cDNA libraries, we identified the regulatory subunit of PKA as interacting with human cTnT bait. Immunoprecipitation studies show that cTnT is a dual specificity AKAP, interacting with both PKA-regulatory subunits type I and II. The disruptor peptide Ht31, but not Ht31P (control), abolished cTnT/PKA-R association. Truncations and point mutations identified an amphipathic helix domain in cTnT as the PKA binding site. This was confirmed by a peptide SPOT assay in the presence of Ht31 or Ht31P (control). Gelsolin-dependent removal of thin filament proteins also reduced myofilament-bound PKA-type II. Using a cTn exchange procedure that substitutes the endogenous cTn complex with a recombinant cTn complex we show that PKA-type II is troponin-bound in the myofilament lattice. Displacement of PKA-cTnT complexes correlates with a significant decrease in myofibrillar PKA activity. Taken together, our data propose a novel role for cTnT as a dual-specificity sarcomeric AKAP.  相似文献   

15.
Mass spectrometry (MS) analysis of peptides carrying post‐translational modifications is challenging due to the instability of some modifications during MS analysis. However, glycopeptides as well as acetylated, methylated and other modified peptides release specific fragment ions during CID (collision‐induced dissociation) and HCD (higher energy collisional dissociation) fragmentation. These fragment ions can be used to validate the presence of the PTM on the peptide. Here, we present PTM MarkerFinder, a software tool that takes advantage of such marker ions. PTM MarkerFinder screens the MS/MS spectra in the output of a database search (i.e., Mascot) for marker ions specific for selected PTMs. Moreover, it reports and annotates the HCD and the corresponding electron transfer dissociation (ETD) spectrum (when present), and summarizes information on the type, number, and ratios of marker ions found in the data set. In the present work, a sample containing enriched N‐acetylhexosamine (HexNAc) glycopeptides from yeast has been analyzed by liquid chromatography‐mass spectrometry on an LTQ Orbitrap Velos using both HCD and ETD fragmentation techniques. The identification result (Mascot .dat file) was submitted as input to PTM MarkerFinder and screened for HexNAc oxonium ions. The software output has been used for high‐throughput validation of the identification results.  相似文献   

16.
Linker histone H1 is a major chromatin component that binds internucleosomal DNA and mediates the folding of nucleosomes into a higher-order structure, namely the 30-nm chromatin fiber. Multiple post-translational modifications (PTMs) of core histones H2A, H2B, H3 and H4 have been identified and their important contribution to the regulation of chromatin structure and function is firmly established. In contrast, little is known about histone H1 modifications and their function. Here we address this question in Drosophila melanogaster, which, in contrast to most eukaryotic species, contains a single histone H1 variant, dH1. For this purpose, we combined bottom-up and top-down mass-spectrometry strategies. Our results indicated that dH1 is extensively modified by phosphorylation, methylation, acetylation and ubiquitination, with most PTMs falling in the N-terminal domain. Interestingly, several dH1 N-terminal modifications have also been reported in specific human and/or mouse H1 variants, suggesting that they have conserved functions. In this regard, we also provide evidence for the contribution of one of such conserved PTMs, dimethylation of K27, to heterochromatin organization during mitosis. Furthermore, our results also identified multiple dH1 isoforms carrying several phosphorylations and/or methylations, illustrating the high structural heterogeneity of dH1. In particular, we identified several non-CDK sites at the N-terminal domain that appear to be hierarchically phosphorylated. This study provides the most comprehensive PTM characterization of any histone H1 variant to date.  相似文献   

17.
Mass spectrometry has played an integral role in the identification of proteins and their post-translational modifications (PTM). However, analysis of some PTMs, such as phosphorylation, sulfonation, and glycosylation, is difficult with collision-activated dissociation (CAD) since the modification is labile and preferentially lost over peptide backbone fragmentation, resulting in little to no peptide sequence information. The presence of multiple basic residues also makes peptides exceptionally difficult to sequence by conventional CAD mass spectrometry. Here we review the utility of electron transfer dissociation (ETD) mass spectrometry for sequence analysis of post-translationally modified and/or highly basic peptides. Phosphorylated, sulfonated, glycosylated, nitrosylated, disulfide bonded, methylated, acetylated, and highly basic peptides have been analyzed by CAD and ETD mass spectrometry. CAD fragmentation typically produced spectra showing limited peptide backbone fragmentation. However, when these peptides were fragmented using ETD, peptide backbone fragmentation produced a complete or almost complete series of ions and thus extensive peptide sequence information. In addition, labile PTMs remained intact. These examples illustrate the utility of ETD as an advantageous tool in proteomic research by readily identifying peptides resistant to analysis by CAD. A further benefit is the ability to analyze larger, non-tryptic peptides, allowing for the detection of multiple PTMs within the context of one another.  相似文献   

18.

Background  

Levels of the cardiac muscle regulatory protein troponin T (cTnT) are frequently elevated in patients with acute ischemic stroke and elevated cTnT predicts poor outcome and mortality. The pathomechanism of troponin release may relate to co-morbid coronary artery disease and myocardial ischemia or, alternatively, to neurogenic cardiac damage due to autonomic activation after acute ischemic stroke. Therefore, there is uncertainty about how acute ischemic stroke patients with increased cTnT levels should be managed regarding diagnostic and therapeutic workup.  相似文献   

19.
Cytoplasmic Polyadenylation Element Binding proteins (CPEBs) are a family of polyadenylation factors interacting with 3’UTRs of mRNA and thereby regulating gene expression. Various functions of CPEBs in development, synaptic plasticity, and cellular senescence have been reported. Four CPEB family members of partially overlapping functions have been described to date, each containing a distinct alternatively spliced region. This region is highly conserved between CPEBs-2-4 and contains a putative phosphorylation consensus, overlapping with the exon seven of CPEB3. We previously found CPEBs-2-4 splice isoforms containing exon seven to be predominantly present in neurons, and the isoform expression pattern to be cell type-specific. Here, focusing on the alternatively spliced region of CPEB3, we determined that putative neuronal isoforms of CPEB3 are phosphorylated. Using a new phosphospecific antibody directed to the phosphorylation consensus we found Protein Kinase A and Calcium/Calmodulin-dependent Protein Kinase II to robustly phosphorylate CPEB3 in vitro and in primary hippocampal neurons. Interestingly, status epilepticus induced by systemic kainate injection in mice led to specific upregulation of the CPEB3 isoforms containing exon seven. Extensive analysis of CPEB3 phosphorylation in vitro revealed two other phosphorylation sites. In addition, we found plethora of potential kinases that might be targeting the alternatively spliced kinase consensus site of CPEB3. As this site is highly conserved between the CPEB family members, we suggest the existence of a splicing-based regulatory mechanism of CPEB function, and describe a robust phosphospecific antibody to study it in future.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号