首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although GA3 doubled the numbers of cells in dwarf pea internodes,it caused no significant acceleration of cell division ratesin the apical meristem, estimated using cell doubling times,mitotic indices, or percentage labelled mitoses data. Increasedcell numbers in GA3-treated pea stems must be generated withinthe extending internodes. Key words: Cell division cycle, gibberellin, pea, Pisum, shoot apical meristem  相似文献   

2.
Koi S  Kato M 《Annals of botany》2007,99(6):1121-1130
BACKGROUND AND AIMS: In angiosperms, the shoot apical meristem produces a shoot system composed of stems, leaves and axillary buds. Podostemoideae, one of three subfamilies of the river-weed family Podostemaceae, have a unique 'shoot' that lacks a shoot apical meristem and is composed only of leaves. Tristichoideae have been interpreted to have a shoot apical meristem, although its branching pattern is uncertain. The shoot developmental pattern in Weddellinoideae has not been investigated with a focus on the meristem. Weddellinoideae are in a phylogenetically key position to reveal the process of shoot evolution in Podostemaceae. METHODS: The shoot development of Weddellina squamulosa, the sole species of Weddellinoideae, was investigated using scanning electron microscopy and semi-thin serial sections. KEY RESULTS: The shoot of W. squamulosa has a tunica-corpus-organized apical meristem. It is determinate and successively initiates a new branch extra-axillarily at the base of an immediately older branch, resulting in a sympodial, approximately plane branching pattern. Large scaly leaves initiate acropetally on the flanks of the apical meristem, as is usual in angiosperms, whereas small scaly leaves scattered on the stem initiate basipetally in association with the elongation of internodes. CONCLUSIONS: Weddellinoideae, like Tristichoideae, have a shoot apical meristem, leading to the hypothesis that the meristem was lost in Podostemoideae. The patterns of leaf formation in Podostemoideae and shoot branching in Weddellinoideae are similar in that these organs arise at the bases of older organs. This similarity leads to another hypothesis that the 'branch' in Weddellinoideae (and possibly Tristichoideae) and the 'leaf' in Podostemoideae are comparable, and that the shoot apical meristem disappeared in the early evolution of Podostemaceae.  相似文献   

3.
本文对组织培养过程中,槐树(Sophora japonica L.)再生植株正常苗和玻璃苗的叶、茎及茎端的解剖结构进行了比较研究。结果表明:正常苗结构基本类似于实生苗,玻璃苗结构变异较大;玻璃苗叶片变厚,表皮细胞形状不规则,气孔保卫细胞萎缩变形,叶肉无明显的栅栏组织与海绵组织分化,叶绿体含量较少,叶维管组织发育不良;茎横切面形状不规则,表皮上气孔数目较多,皮层厚角组织不明显,维营束大致分布成一轮,形成不规则维管柱;茎端分生组织细胞层数较少,不呈现典型的原套原体结构。  相似文献   

4.
Climbing stems in the rattan genus Calamus can reach lengths of well over 100 m, are long-lived, and yet their vascular tissue is entirely primary. Such a combination suggests that stem vasculature is efficient and resistant to hydraulic disruption. By means of an optical shuttle and video recording of sequential images we analyzed the stem of a cultivated species. The stem has vascular features that are unusual compared with those in arborescent palms and seemingly inefficient in terms of long-distance water transport. Axial bundles are discontinuous basally because leaf traces, when followed downwards, always end blindly below. Furthermore, there is no regular distal branching of each leaf trace at its level of departure into a leaf, so that neither a continuing axial bundle nor bridges to adjacent axial bundles are produced as in the standard palm construction. Instead, the axial bundles in the stem periphery are connected to leaf traces and to each other by narrow and irregular transverse or oblique commissures that are not the developmental homologues of bridges. As in other palms, metaxylem within a leaf trace is not continuous into the leaf so that the only connection to a leaf is via protoxylem. Within the stem, protoxylem (tracheids) and metaxylem (vessels) are never contiguous, unlike in other palms, which suggests that water can only move from metaxylem to protoxylem, and hence into the leaf, across a hydraulic resistance. We suggest that this minimizes cavitation of vessels and/or may be associated with an unknown mechanism that refills embolized vessels. Also, the metaxylem can be significant in stem water storage in the absence of abundant ground parenchyma.  相似文献   

5.
A fate map for the shoot apical meristem of Zea mays L. at the time of germination was constructed by examining somatic sectors (clones) induced by -rays. The shoot apical meristem produced stem, leaves, and reproductive structures above leaf 6 after germination and the analysis here concerns their formation. On 160 adult plants which had produced 17 or 18 leaves, 277 anthocyanin-deficient sectors were scored for size and position. Sectors found on the ear shoot or in the tassel most often extended into the vegetative part of the plant. Sectors ranged from one to six internodes in length and some sectors of more than one internode were observed at all positions on the plant. Single-internode sectors predominated in the basal internodes (7,8,9) while longer sectors were common in the middle and upper internodes. The apparent number of cells which gave rise to a particular internode was variable and sectors were not restricted to the lineage unit: a leaf, the internode below it, and the axillary bud and prophyll at the base of the internode. These observations established two major features of meristem activity: 1) at the time of germination the developmental fate of any cell or group of cells was not fixed, and 2) at the time of germination cells at the same location in a meristem could produce greatly different amounts of tissue in the adult plant. Consequently, the developmental fate of specific cells in the germinating meristem could only be assigned in a general way.Abbreviations ACN apparent cell number - LI, LII, LI-LII sectors restricted to the epidermis, the subepidermis, or encompassing epidermis and subepidermis - PCN progenitor cell  相似文献   

6.
Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes   总被引:19,自引:0,他引:19  
BACKGROUND: Shoots of all land plants have a radial pattern that can be considered to have an adaxial (central)-abaxial (peripheral) polarity. In Arabidopsis, gain-of-function alleles of PHAVOLUTA and PHABULOSA, members of the class III HD-ZIP gene family, result in adaxialization of lateral organs. Conversely, loss-of-function alleles of the KANADI genes cause an adaxialization of lateral organs. Thus, the class III HD-ZIP and KANADI genes comprise a genetic system that patterns abaxial-adaxial polarity in lateral organs produced from the apical meristem. RESULTS: We show that gain-of-function alleles of REVOLUTA, another member of the class III HD-ZIP gene family, are characterized by adaxialized lateral organs and alterations in the radial patterning of vascular bundles in the stem. The gain-of-function phenotype can be obtained by changing only the REVOLUTA mRNA sequence and without changing the protein sequence; this finding indicates that this phenotype is likely mediated through an interference with microRNA binding. Loss of KANADI activity results in similar alterations in vascular patterning as compared to REVOLUTA gain-of-function alleles. Simultaneous loss-of-function of PHABULOSA, PHAVOLUTA, and REVOLUTA abaxializes cotyledons, abolishes the formation of the primary apical meristem, and in severe cases, eliminates bilateral symmetry; these phenotypes implicate these three genes in radial patterning of both embryonic and postembryonic growth. CONCLUSIONS: Based on complementary vascular and leaf phenotypes of class III HD-ZIP and KANADI mutants, we propose that a common genetic program dependent upon miRNAs governs adaxial-abaxial patterning of leaves and radial patterning of stems in the angiosperm shoot. This finding implies that a common patterning mechanism is shared between apical and vascular meristems.  相似文献   

7.
寄生植物锁阳茎的发育解剖学研究   总被引:4,自引:1,他引:3  
锁阳茎的初生分生组织由原表皮、基本分生组织以及在基本分生组织中呈波浪式环状排列的原形成层束组成。茎的增粗是由于呈波浪式环状排列的维管束,其“波浪”上下幅度逐渐增大,即从“浪”的基部到“浪”顶端维管束数目由4个逐渐增加到10-12个。维管束数目不断增加是由于:(1)由髓射线薄壁细胞反分化产生分生组织束,分生组织束活动产生新的维管束;(2)维管束中分化出一列或几列薄壁细胞,导致该维管束被分化出的薄壁细胞分成2-3个独立的维管束。  相似文献   

8.
? Premise of the study: This study seeks to determine how hydraulic factors vary with ontogeny and whether they begin to limit further height growth in palms. Palms are an attractive group for physiological research because their columnar trunks and simple leaf habit allow key intrinsic and extrinsic hydraulic variables to be estimated more easily than in complex arborescent dicotyledons. ? Methods: We measured various biometric and physiological factors including sap flux, leaf areas, turnover rates, and internode lengths in two Amazonian rainforest species: terra firme Iriartea deltoidea and swamp-adapted Mauritia flexuosa. These two palm species differ markedly in edaphic conditions, leaf type (pinnately compound vs. palmate), and bole development, making physiological comparisons between them important as well. ? Key results: The species exhibited differing patterns in height growth rate along boles, which appear to relate to their differences in bole development. Growth rates ultimately slowed at the tops of tall palms in both species. We also found a high degree of convergence in total leaf area with height in both species even though they exhibited contrasting patterns in both live frond number and leaf area per frond with height. Sap flux density from leaves was constant with height but four times greater in M. flexuosa than in I. deltoidea. ? Conclusions: Although height growth rates slow considerably in tall palms, neither species shows evidence that hydraulic factors become limiting because they are able to support much greater leaf areas with similar sap flux densities as shorter palms.  相似文献   

9.
The ontogeny of Epilobium hirsutum grown under natural summer photoperiod in a glasshouse was divided into vegetative, early transitional, transitional, and floral stages. Bijugate phyllotaxy, common to both the vegetative and early transitional stages, is transformed into spiral phyllotaxy during the transitional stage by an initial change in the divergence angle of a single primordium inserted at a unique level on the shoot. Leaf primordia subsequently are inserted in a spiral arrangement in the indeterminate floral shoot apex. The early transitional shoot apical meristem is about 1.5 times the volume of the vegetative meristem but expands at about two-thirds the relative plastochron rate of volume increment of the vegetative meristem. There are progressive decreases in the plastochron and relative plastochron rates of radial and vertical shoot growth through ontogeny. Relative chronological rates of shoot growth, however, are not altered during ontogeny. Spiral transformation results from changes in the relative points of insertion of leaf primordia on the shoot meristem. These changes are accompanied by an increased rate of primordia initiation on a more circular shoot meristem. The change in phyllotaxy during ontogeny is similar to that which was artificially induced by chemical modification of auxin concentration gradients in the shoot apex, with the additional feature that there is an initial increase in the volume of the shoot meristem prior to the natural spiral transformation. Size of the shoot apical meristem, however, appears to have little influence on Epilobium phyllotaxy; but the geometric shape of the meristem is well correlated with bijugate to spiral transformations. This suggests that geometric parameters of the shoot meristem should be considered in theoretical models of phyllotaxy.  相似文献   

10.
The vascular system in the stems of Nymphaea odorata and N. mexicana subgenus Castalia, and N. blanda subgenus Hydrocallis consists of continuing axial stem bundles with eight being the usual number. The stem bundles are concentric and xylem maturation is mesarch. Xylem elements consist of tracheids with spirally or weakly reticulated secondary wall thickenings. The phloem is made up of companion cells and short sieve tube members with simple sieve plates that are nearly transverse. At the node each leaf is supplied with two lateral leaf traces and a median leaf trace. A root trace is also present and supplies a series of adventitious roots borne on the leaf base. Flowers and vegetative buds develop directly from the apical meristem and occupy leaf sites in a single genetic spiral. Each flower or vegetative bud is related to a leaf through specific spatial and vascular association. The related leaf is separated from the related flower by three members of the genetic spiral and occupies an adjacent orthostichy. Vascular tissue for the related flower arises from the inner surfaces of the four stem bundles supplying leaf traces to the related leaf and extends through the pith to the flower or vegetative bud via a peduncle fusion bundle. The vascular system organization in the investigated species of Castalia and Hydrocallis is not typically monocotyledonous or dicotyledonous, nor can it be considered transitional between them. The ontogeny of the vascular system is similar to typical dicotyledons and the investigated species of Nymphaea can, therefore, be considered to represent highly specialized and modified dicotyledons.  相似文献   

11.
Expansins and Internodal Growth of Deepwater Rice   总被引:10,自引:0,他引:10       下载免费PDF全文
Cho HT  Kende H 《Plant physiology》1997,113(4):1145-1151
The distribution and activity of the cell wall-loosening protein expansin is correlated with internodal growth in deepwater rice (Oryza sativa L.). Acid-induced extension of native cell walls and reconstituted extension of boiled cell walls were confined to the growing region of the internode, i.e. to the intercalary meristem (IM) and the elongation zone. Immunolocalization by tissue printing and immunoblot analysis, using antibody against cucumber expansin 29 as a probe, confirmed that rice expansin occurred primarily in the IM and elongation zone. Rice expansin was localized mainly around the vascular bundles at the base of the IM and along the inner epidermal cell layer surrounding the internodal cavity. Submergence greatly promoted the growth of rice internodes, and cell walls of submerged internodes extended much more in response to acidification than did the cell walls of air-grown internodes. Susceptibility of cell walls to added expansin was also increased in submerged internodes, and analysis by immunoblotting showed that cell walls of submerged internodes contained more expansin than did cell walls of air-grown internodes. Based on these data, we propose that expansin is involved in mediating rapid internodal elongation in submerged deepwater rice internodes.  相似文献   

12.
The rice homeobox gene OSH15 (Oryza sativa homeobox) is a member of the knotted1-type homeobox gene family. We report here on the identification and characterization of a loss-of-function mutation in OSH15 from a library of retrotransposon-tagged lines of rice. Based on the phenotype and map position, we have identified three independent deletion alleles of the locus among conventional morphological mutants. All of these recessive mutations, which are considered to be null alleles, exhibit defects in internode elongation. Introduction of a 14 kbp genomic DNA fragment that includes all exons, introns and 5'- and 3'- flanking sequences of OSH15 complemented the defects in internode elongation, confirming that they were caused by the loss-of-function of OSH15. Internodes of the mutants had abnormal-shaped epidermal and hypodermal cells and showed an unusual arrangement of small vascular bundles. These mutations demonstrate a role for OSH15 in the development of rice internodes. This is the first evidence that the knotted1-type homeobox genes have roles other than shoot apical meristem formation and/or maintenance in plant development.  相似文献   

13.
14.
报道了波温苏铁Bowenia spectabilis Hook.ex Hook. f)根、茎、叶的解剖结构.根的初生结构由表皮、皮层和中柱三部分组成,为二原型木质部.茎具大量薄壁组织,薄壁细胞富含淀粉粒,维管束为外韧并生.叶柄中含有5-8束维管束,呈弧形排列.羽片叶角质层厚,有小叶脉产生,气孔主要分布在下表皮.根、茎、叶木质部中的管胞主要是螺纹和孔纹管胞,有少量纤维分化;茎中管胞的侧壁呈现凹凸不平,部分管胞具有分枝或分叉现象.  相似文献   

15.
16.
Smith HM  Hake S 《The Plant cell》2003,15(8):1717-1727
Plant architecture results from the activity of the shoot apical meristem, which initiates leaves, internodes, and axillary meristems. KNOTTED1-like homeobox (KNOX) genes are expressed in specific patterns in the shoot apical meristem and play important roles in plant architecture. KNOX proteins interact with BEL1-like (BELL) homeodomain proteins and together bind a target sequence with high affinity. We have obtained a mutation in one of the Arabidopsis BELL genes, PENNYWISE (PNY), that appears phenotypically similar to the KNOX mutant brevipedicellus (bp). Both bp and pny have randomly shorter internodes and display a slight increase in the number of axillary branches. The double mutant shows a synergistic phenotype of extremely short internodes interspersed with long internodes and increased branching. PNY is expressed in inflorescence and floral meristems and overlaps with BP in a discrete domain of the inflorescence meristem where we propose the internode is patterned. The physical association of the PNY and BP proteins suggests that they participate in a complex that regulates early patterning events in the inflorescence meristem.  相似文献   

17.
McHale NA  Koning RE 《The Plant cell》2004,16(7):1730-1740
Leaf initiation in the peripheral zone of the shoot apical meristem involves a transition to determinate cell fate, but indeterminacy is maintained in the vascular cambium, a tissue critical to the continuous growth of vascular tissue in leaves and stems. We show that the orientation of cambial growth is regulated by microRNA (miRNA)-directed cleavage of mRNA from the Nicotiana sylvestris ortholog of PHAVOLUTA (NsPHAV). Loss of miRNA regulation in semidominant phv1 mutants misdirects lateral growth of leaf midveins and stem vasculature away from the shoot, disrupting vascular connections in stem nodes. The phv1 mutation also expands the central zone in vegetative and inflorescence meristems, implicating miRNA and NsPHAV in regulation of meristem structure. In flowers, phv1 causes reiteration of carpel initiation, a phenocopy for loss of CARPEL FACTORY/DICER LIKE1, indicating that miRNA is critical to the termination of indeterminacy in floral meristems. Results point to a common role for miRNA in spatial and temporal restriction of HD-ZIPIII mediated indeterminacy in apical and vascular meristems.  相似文献   

18.
ABSTRACT. Plant trypanosomatids cause lethal vascular wilting in palms of the Arecaceae family. Infections, affecting plants in South and Central America, can result in significant economic loss. The study of trypanosomatids that cause these diseases has been complicated due to the inability to culture these organisms for in vitro analyses. To develop a protocol that would facilitate studies of trypanosomatids, continuous in vitro cultures of phloemic trypanosomatids were established from apical stems of diseased coconut trees collected in endemic and non-endemic regions of Brazil (the states of Bahia and Rio de Janeiro, respectively). Although attempts at establishing axenic cultures were unsuccessful, it was found that trypanosomatid co-cultures could be successfully established and maintained. The procedure was to preculture media with 104 Aedes albopictus cells in Grace's medium supplemented with 10% heat-inactivated fetal bovine serum (without antibiotics or fungicides) for 3 d before adding 106 trypanosomatids/ml harvested from either fresh apical stem extracts or with 2 mm3 fragments of coconut apical stems. By day 7 under these conditions the parasites grew exponentially. Using this strategy, two isolates were identified and have been maintained in our laboratory for over 400 passages, demonstrating the efficacy of this culturing procedure. In situ the organisms were observed in vascular bundles and inside sieve elements of the phloem of diseased palms. In vitro parasites retained their mobility. Morphometric analysis revealed differences between Bahia and Rio de Janeiro isolates.  相似文献   

19.
Roles for Class III HD-Zip and KANADI genes in Arabidopsis root development   总被引:1,自引:0,他引:1  
Hawker NP  Bowman JL 《Plant physiology》2004,135(4):2261-2270
Meristems within the plant body differ in their structure and the patterns and identities of organs they produce. Despite these differences, it is becoming apparent that shoot and root apical and vascular meristems share significant gene expression patterns. Class III HD-Zip genes are required for the formation of a functional shoot apical meristem. In addition, Class III HD-Zip and KANADI genes function in patterning lateral organs and vascular bundles produced from the shoot apical and vascular meristems, respectively. We utilize both gain- and loss-of-function mutants and gene expression patterns to analyze the function of Class III HD-Zip and KANADI genes in Arabidopsis roots. Here we show that both Class III HD-Zip and KANADI genes play roles in the ontogeny of lateral roots and suggest that Class III HD-Zip gene activity is required for meristematic activity in the pericycle analogous to its requirement in the shoot apical meristem.  相似文献   

20.
豇豆螺旋茎段维管组织观察及其成因分析   总被引:1,自引:0,他引:1  
豇豆(Vigna unguiculata Linn.)的茎缠绕支持物形成右手螺旋,其茎段经水浸泡去表皮后可见维管纤维沿茎轴方向呈左手螺旋状排列.用徒手切片法观察螺旋型和直线型茎段各节间中部的横切面,发现二者木质部导管分子均由内至外呈对称的扇形排列;螺旋型茎段各节间扇形的角度均显著小于直线型茎段对应节间的扇形角度(p<0.05);除第1节间外,螺旋型茎段各节间扇形纵横比均显著大于直线型茎段对应节间的扇形纵横比(p<0.05).分析表明,茎的两种螺旋之间存在扭力平衡;螺旋型与直线型茎段横切面导管分子扇形排列的差异可能是茎段扭转过程中受挤压所致.此外,茎段扭转并不是细胞横向不对称扩张的结果,而可能是由各侧细胞不均衡的纵向生长所造成.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号