首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Base excision repair of oxidized DNA in human cells is initiated by several DNA glycosylases with overlapping substrate specificity. The human endonuclease VIII homologue NEIL1 removes a broad spectrum of oxidized pyrimidine and purine lesions. In this study of NEIL1 we have identified several key residues, located in three loops lining the DNA binding cavity, important for lesion recognition and DNA glycosylase/AP lyase activity for oxidized bases in double-stranded and single-stranded DNA. Single-turnover kinetics of NEIL1 revealed that removal of 5-hydroxycytosine (5-OHC) and 5-hydroxyuracil (5-OHU) is ~25 and ~10-fold faster in duplex DNA compared to single-stranded DNA, respectively, and also faster than removal of dihydrothymine (DHT) and dihydrouracil (DHU), both in double-stranded and single-stranded DNA. NEIL1 excised 8-oxoguanine (8-oxoG) only from double-stranded DNA and analysis of site-specific mutants revealed that Met81, Arg119 and Phe120 are essential for removal of 8-oxoG. Further, several arginine and histidine residues located in the loop connecting the two β-strands forming the zincless finger motif and projecting into the DNA major groove, were shown to be imperative for lesion processing for both single- and double-stranded substrates. Trapping experiments of active site mutants revealed that the N-terminal Pro2 and Lys54 can alternate to form a Schiff-base complex between the protein and DNA. Hence, both Pro2 and Lys54 are involved in the AP lyase activity. While wildtype NEIL1 activity almost exclusively generated a δ-elimination product when processing single-stranded substrates, substitution of Lys54 changed this in favor of a β-elimination product. These results suggest that Pro2 and Lys54 are both essential for the concerted action of the β,δ-elimination in NEIL1.  相似文献   

2.
Apurinic/apyrimidinic (AP) sites are among the most frequent DNA lesions. The first step in the AP site repair involves the magnesium-dependent enzyme AP endonuclease 1 (APE1) that catalyzes hydrolytic cleavage of the DNA phosphodiester bond at the 5′ side of the AP site, thereby generating a single-strand DNA break flanked by the 3′-OH and 5′-deoxyribose phosphate (dRP) groups. Increased APE1 activity in cancer cells might correlate with tumor chemoresistance to DNA-damaging treatment. It has been previously shown that the multifunctional oncoprotein Y-box-binding protein 1 (YB-1) interacts with APE1 and inhibits APE1-catalyzed hydrolysis of AP sites in single-stranded DNAs. In this work, we demonstrated that YB-1 stabilizes the APE1 complex with double-stranded DNAs containing the AP sites and stimulates cleavage of these AP sites at low magnesium concentrations.  相似文献   

3.
Mokkapati SK  Wiederhold L  Hazra TK  Mitra S 《Biochemistry》2004,43(36):11596-11604
The eukaryotic 8-oxoguanine-DNA glycosylase 1 (OGG1) provides the major activity for repairing mutagenic 7,8-dihydro-8-oxoguanine (8-oxoG) induced in the genome due to oxidative stress. Earlier in vitro studies showed that, after excising the base lesion, the human OGG1 remains bound to the resulting abasic (AP) site in DNA and does not turn over efficiently. The human AP-endonuclease (APE1), which cleaves the phosphodiester bond 5' to the AP site, in the next step of repair, displaces the bound OGG1 and thus increases its turnover. Here we show that NEIL1, a DNA glycosylase/AP lyase specific for many oxidized bases but with weak 8-oxoG excision activity, stimulates turnover of OGG1 in a fashion similar to that of APE1 and carries out betadelta-elimination at the AP site. This novel collaboration of two DNA glycosylases, which do not stably interact with each other, in stimulating 8-oxoguanine repair is possible because of higher AP site affinity and stronger AP lyase activity of NEIL1 relative to OGG1. Comparable levels of NEIL1 and OGG1 in some human cells raise the possibility that NEIL1 serves as a backup enzyme to APE1 in stimulating 8-oxoG repair in vivo.  相似文献   

4.
8-Oxoguanine (8-oxoG) is an unstable mutagenic DNA lesion that is prone to further oxidation. High valent metals such as Cr(V) and Ir(IV) readily oxidize 8-oxoG to form guanidinohydantoin (Gh), its isomer iminoallantoin (Ia), and spiroiminodihydantoin (Sp). When present in DNA, these lesions show enhanced base misincorporation over the parent 8-oxoG lesion leading to G --> T and G --> C transversion mutations and polymerase arrest. These findings suggested that further oxidized lesions of 8-oxoG are more mutagenic and toxic than 8-oxoG itself. Repair of oxidatively damaged bases, including Sp and Gh/Ia, are initiated by the base excision repair (BER) system that involves the DNA glycosylases Fpg, Nei, and Nth in E. coli. Mammalian homologs of two of these BER enzymes, OGG1 and NTH1, have little or no affinity for Gh/Ia and Sp. Herein we report that two recently identified mammalian glycosylases, NEIL1 and NEIL2, showed a high affinity for recognition and cleavage of DNA containing Gh/Ia and Sp lesions. NEIL1 and NEIL2 recognized both of these lesions in single-stranded DNA and catalyzed the removal of the lesions through a beta- and delta-elimination mechanism. NEIL1 and NEIL2 also recognized and excised the Gh/Ia lesion opposite all four natural bases in double-stranded DNA. NEIL1 was able to excise the Sp lesion opposite the four natural bases in double-stranded DNA, however, NEIL2 showed little cleavage activity against the Sp lesion in duplex DNA although DNA trapping studies show recognition and binding of NEIL2 to this lesion. This work suggests that NEIL1 and NEIL2 are essential in the recognition of further oxidized lesions arising from 8-oxoG and implies that these BER glycosylases may play an important role in the repair of DNA damage induced by carcinogenic metals.  相似文献   

5.
Following the formation of oxidatively-induced DNA damage, several DNA glycosylases are required to initiate repair of the base lesions that are formed. Recently, NEIL1 and other DNA glycosylases, including OGG1 and NTH1 were identified as potential targets in combination chemotherapeutic strategies. The potential therapeutic benefit for the inhibition of DNA glycosylases was validated by demonstrating synthetic lethality with drugs that are commonly used to limit DNA replication through dNTP pool depletion via inhibition of thymidylate synthetase and dihydrofolate reductase. Additionally, NEIL1-associated synthetic lethality has been achieved in combination with Fanconi anemia, group G. As a prelude to the development of strategies to exploit the potential benefits of DNA glycosylase inhibition, it was necessary to develop a reliable high-throughput screening protocol for this class of enzymes. Using NEIL1 as the proof-of-principle glycosylase, a fluorescence-based assay was developed that utilizes incision of site-specifically modified oligodeoxynucleotides to detect enzymatic activity. This assay was miniaturized to a 1536-well format and used to screen small molecule libraries for inhibitors of the combined glycosylase/AP lyase activities. Among the top hits of these screens were several purine analogs, whose postulated presence in the active site of NEIL1 was consistent with the paradigm of NEIL1 recognition and excision of damaged purines. Although a subset of these small molecules could inhibit other DNA glycosylases that excise oxidatively-induced DNA adducts, they could not inhibit a pyrimidine dimer-specific glycosylase.  相似文献   

6.
7.
Base excision repair is the major pathway for removal of oxidative DNA base damage. This pathway is initiated by DNA glycosylases, which recognize and excise damaged bases from DNA. In this work, we have purified the glycosylase domain (GD) of human DNA glycosylase NEIL3. The substrate specificity has been characterized and we have elucidated the catalytic mechanisms. GD NEIL3 excised the hydantoin lesions spiroiminodihydantoin (Sp) and guanidinohydantoin (Gh) in single-stranded (ss) and double-stranded (ds) DNA efficiently. NEIL3 also removed 5-hydroxy-2′-deoxycytidine (5OHC) and 5-hydroxy-2′-deoxyuridine (5OHU) in ssDNA, but less efficiently than hydantoins. Unlike NEIL1 and NEIL2, which possess a β,δ-elimination activity, NEIL3 mainly incised damaged DNA by β-elimination. Further, the base excision and strand incision activities of NEIL3 exhibited a non-concerted action, indicating that NEIL3 mainly operate as a monofunctional DNA glycosylase. The site-specific NEIL3 mutant V2P, however, showed a concerted action, suggesting that the N-terminal amino group in Val2 is critical for the monofunctional modus. Finally, we demonstrated that residue Lys81 is essential for catalysis.  相似文献   

8.
9.
The recently characterized enzyme NEIL2 (Nei-like-2), one of the four oxidized base-specific DNA glycosylases (OGG1, NTH1, NEIL1, and NEIL2) in mammalian cells, has poor base excision activity from duplex DNA. To test the possibility that one or more proteins modulate its activity in vivo, we performed mass spectrometric analysis of the NEIL2 immunocomplex and identified Y box-binding (YB-1) protein as a stably interacting partner of NEIL2. We show here that YB-1 not only interacts physically with NEIL2, but it also cooperates functionally by stimulating its base excision activity by 7-fold. Moreover, YB-1 interacts with the other NEIL2-associated BER proteins, namely, DNA ligase III alpha and DNA polymerase beta and thus could form a large multiprotein complex. YB-1, normally present in the cytoplasm, translocates to the nucleus during UVA-induced oxidative stress, concomitant with its increased association with and activation of NEIL2. NEIL2-initiated base excision activity is significantly reduced in YB-1-depleted cells. YB-1 thus appears to have a novel regulatory role in NEIL2-mediated repair under oxidative stress.  相似文献   

10.
11.
12.
13.
Lao Y  Gomes XV  Ren Y  Taylor JS  Wold MS 《Biochemistry》2000,39(5):850-859
Human replication protein A (RPA) is a heterotrimeric single-stranded DNA-binding protein (subunits of 70, 32, and 14 kDa) that is required for cellular DNA metabolism. RPA has been reported to interact specifically with damaged double-stranded DNA and to participate in multiple steps of nucleotide excision repair (NER) including the damage recognition step. We have examined the mechanism of RPA binding to both single-stranded and double-stranded DNA (ssDNA and dsDNA, respectively) containing damage. We show that the affinity of RPA for damaged dsDNA correlated with disruption of the double helix by the damaged bases and required RPAs ssDNA-binding activity. We conclude that RPA is recognizing single-stranded character caused by the damaged nucleotides. We also show that RPA binds specifically to damaged ssDNA. The specificity of binding varies with the type of damage with RPA having up to a 60-fold preference for a pyrimidine(6-4)pyrimidone photoproduct. We show that this specific binding was absolutely dependent on the zinc-finger domain in the C-terminus of the 70-kDa subunit. The affinity of RPA for damaged ssDNA was 5 orders of magnitude higher than that of the damage recognition protein XPA (xeroderma pigmentosum group A protein). These findings suggest that RPA probably binds to both damaged and undamaged strands in the NER excision complex. RPA binding may be important for efficient excision of damaged DNA in NER.  相似文献   

14.
Dizdaroglu M 《Mutation research》2003,531(1-2):109-126
Reactive oxygen-derived species such as free radicals are formed in living cells by normal metabolism and exogenous sources, and cause a variety of types of DNA damage such as base and sugar damage, strand breaks and DNA-protein cross-links. Living organisms possess repair systems that repair DNA damage. Oxidative DNA damage caused by free radicals and other oxidizing agents is mainly repaired by base-excision repair (BER), which involves DNA glycosylases in the first step of the repair process. These enzymes remove modified bases from DNA by hydrolyzing the glycosidic bond between the modified base and the sugar moiety, generating an apurinic/apyrimidinic (AP) site. Some also possess AP lyase activity that subsequently cleaves DNA at AP sites. Many DNA glycosylases have been discovered and isolated, and their reaction mechanisms and substrate specificities have been elucidated. Most of the known products of oxidative damage to DNA are substrates of DNA glycosylases with broad or narrow substrate specificities. Some possess cross-activity and remove both pyrimidine- and purine-derived lesions. Overlapping activities between enzymes also exist. Studies of substrate specificities have been performed using either oligodeoxynucleotides with a single modified base embedded at a specific position or damaged DNA substrates containing a multiplicity of pyrimidine- and purine-derived lesions. This paper reviews the substrate specificities and excision kinetics of DNA glycosylases that have been investigated with the use of gas chromatography/mass spectrometry and DNA substrates with multiple lesions.  相似文献   

15.
Base excision DNA repair is necessary for removal of damaged nucleobases from the genome and their replacement with normal nucleobases. Base excision repair is initiated by DNA glycosylases, the enzymes that cleave the N-glycosidic bonds of damaged deoxynucleotides. Until recently, only eight DNA glycosylases with different substrate specificity were known in human cells. In 2002, three new human DNA glycosylases (NEIL1, NEIL2, and NEIL3) were discovered, all homologous to endonuclease VIII, a bacterial protein, which also participates in DNA repair. The role of these enzymes remains mostly unknown. In this review we discuss recent data on the substrate specificity of the NEIL enzymes, their catalytic mechanism, structure, interactions with other components of DNA repair system, and possible biological role in preventing diseases associated with DNA damage.  相似文献   

16.

Background

DNA glycosylases remove the modified, damaged or mismatched bases from the DNA by hydrolyzing the N-glycosidic bonds. Some enzymes can further catalyze the incision of a resulting abasic (apurinic/apyrimidinic, AP) site through β- or β,δ-elimination mechanisms. In most cases, the incision reaction of the AP-site is catalyzed by special enzymes called AP-endonucleases.

Methods

Here, we report the kinetic analysis of the mechanisms of modified DNA transfer from some DNA glycosylases to the AP endonuclease, APE1. The modified DNA contained the tetrahydrofurane residue (F), the analogue of the AP-site. DNA glycosylases AAG, OGG1, NEIL1, MBD4cat and UNG from different structural superfamilies were used.

Results

We found that all DNA glycosylases may utilise direct protein–protein interactions in the transient ternary complex for the transfer of the AP-containing DNA strand to APE1.

Conclusions

We hypothesize a fast “flip-flop” exchange mechanism of damaged and undamaged DNA strands within this complex for monofunctional DNA glycosylases like MBD4cat, AAG and UNG. Bifunctional DNA glycosylase NEIL1 creates tightly specific complex with DNA containing F-site thereby efficiently competing with APE1. Whereas APE1 fast displaces other bifunctional DNA glycosylase OGG1 on F-site thereby induces its shifts to undamaged DNA regions.

General significance

Kinetic analysis of the transfer of DNA between human DNA glycosylases and APE1 allows us to elucidate the critical step in the base excision repair pathway.  相似文献   

17.
18.
The human DNA glycosylase NEIL1, activated during the S-phase, has been shown to excise oxidized base lesions in single-strand DNA substrates. Furthermore, our previous work demonstrating functional interaction of NEIL1 with PCNA and flap endonuclease 1 (FEN1) suggested its involvement in replication-associated repair. Here we show interaction of NEIL1 with replication protein A (RPA), the heterotrimeric single-strand DNA binding protein that is essential for replication and other DNA transactions. The NEIL1 immunocomplex isolated from human cells contains RPA, and its abundance in the complex increases after exposure to oxidative stress. NEIL1 directly interacts with the large subunit of RPA (Kd ~20 nM) via the common interacting interface (residues 312–349) in NEIL1's disordered C-terminal region. RPA inhibits the base excision activity of both wild-type NEIL1 (389 residues) and its C-terminal deletion CΔ78 mutant (lacking the interaction domain) for repairing 5-hydroxyuracil (5-OHU) in a primer-template structure mimicking the DNA replication fork. This inhibition is reduced when the damage is located near the primer-template junction. Contrarily, RPA moderately stimulates wild-type NEIL1 but not the CΔ78 mutant when 5-OHU is located within the duplex region. While NEIL1 is inhibited by both RPA and Escherichia coli single-strand DNA binding protein, only inhibition by RPA is relieved by PCNA. These results showing modulation of NEIL1's activity on single-stranded DNA substrate by RPA and PCNA support NEIL1's involvement in repairing the replicating genome.  相似文献   

19.
Endonuclease VIII-like 3 (Neil3) is one of the five DNA glycosylases found in mammals that recognize and remove oxidized bases, and initiate the base excision repair (BER) pathway. Previous attempts to express and purify the mouse and human orthologs of Neil3 in their active form have not been successful. Here we report the construction of bicistronic expression vectors for expressing in Escherichia coli the full-length mouse Neil3 (MmuNeil3), its glycosylase domain (MmuNeil3Δ324), as well as the glycosylase domain of human Neil3 (NEIL3Δ324). The purified Neil3 proteins are all active, and NEIL3Δ324 exhibits similar glycosylase/lyase activity as MmuNeil3Δ324 on both single-stranded and double-stranded substrates containing thymine glycol (Tg), spiroiminodihydantoin (Sp) or an abasic site (AP). We show that N-terminal initiator methionine processing is critical for the activity of both mouse and human Neil3 proteins. Co-expressing an E. coli methionine aminopeptidase (EcoMap) Y168A variant with MmuNeil3, MmuNeil3Δ324 and NEIL3Δ324 improves the N-terminal methionine processing and increases the percentage of active Neil3 proteins in the preparation. The purified Neil3 proteins are suitable for biochemical, structural and functional studies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号