首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA organization into chromatin has a major influence on the cellular response to DNA damage. Recent studies in various systems ranging from yeast to human cells stress the importance of chromatin not simply as a barrier to DNA repair processes but also as an active contributor to the DNA damage response. Indeed, modulations of chromatin organization involving various degrees of rearrangements, such as histone modifications and even nucleosome displacement, can promote efficient repair and also participate in checkpoint signaling. Here, we survey recent progress in delineating how chromatin rearrangements provide crosstalk with the DNA damage response. In particular, we highlight new data on histone dynamics at damage sites and discuss their functional importance for the stable propagation of specific chromatin states.  相似文献   

2.
DNA damage during replication requires an integration of checkpoint response with replication itself and distinct repair pathways, such as replication pausing, recombination and translesion synthesis. Here we focus on recent advances in our understanding of how protein posttranslational modifications contribute to the maintenance of fork integrity. In particular, we examine the role of histone modifications and chromatin remodeling complexes in this process.  相似文献   

3.
Genomic DNA is constantly assaulted by both endogenous and exogenous damaging agents. The resulting DNA damage, if left unrepaired, can interfere with DNA replication and be converted into mutations. Genomic DNA is packaged into a highly compact yet dynamic chromatin structure, in order to fit into the limited space available in the nucleus of eukaryotic cells. This hierarchical chromatin organization serves as both the target of DNA damaging agents and the context for DNA repair enzymes. Biochemical studies have suggested that both the formation and repair of DNA damage are significantly modulated by chromatin. Our understanding of the impact of chromatin on damage and repair has been significantly enhanced by recent studies. We focus on the nucleosome, the primary building block of chromatin, and discuss how the intrinsic structural properties of nucleosomes, and their associated epigenetic modifications, affect damage formation and DNA repair, as well as subsequent mutagenesis in cancer.  相似文献   

4.
Bekker-Jensen S  Mailand N 《DNA Repair》2010,9(12):1219-1228
DNA double-strand breaks (DSBs) are among the most cytotoxic types of DNA damage, which if left unrepaired can lead to mutations or gross chromosomal aberrations, and promote the onset of diseases associated with genomic instability such as cancer. One of the most discernible hallmarks of the cellular response to DSBs is the accumulation and local concentration of a plethora of DNA damage signaling and repair proteins in the vicinity of the lesion, initiated by ATM-mediated phosphorylation of H2AX (γ-H2AX) and culminating in the generation of distinct nuclear compartments, so-called Ionizing Radiation-Induced Foci (IRIF). The assembly of proteins at the DSB-flanking chromatin occurs in a highly ordered and strictly hierarchical fashion. To a large extent, this is achieved by regulation of protein-protein interactions triggered by a variety of post-translational modifications including phosphorylation, ubiquitylation, SUMOylation, and acetylation. Over the last decade, insight into the identity of proteins residing in IRIF and the molecular underpinnings of their retention at these structures has been vastly expanded. Despite such advances, however, our understanding of the biological relevance of such DNA repair foci still remains limited. In this review, we focus on recent discoveries on the mechanisms that govern the formation of IRIF, and discuss the implications of such findings in light of our understanding of the physiological importance of these structures.  相似文献   

5.
6.
Modulation of chromatin templates in response to cellular cues, including DNA damage, relies heavily on the post-translation modification of histones. Numerous types of histone modifications including phosphorylation, methylation, acetylation, and ubiquitylation occur on specific histone residues in response to DNA damage. These histone marks regulate both the structure and function of chromatin, allowing for the transition between chromatin states that function in undamaged condition to those that occur in the presence of DNA damage. Histone modifications play well-recognized roles in sensing, processing, and repairing damaged DNA to ensure the integrity of genetic information and cellular homeostasis. This review highlights our current understanding of histone modifications as they relate to DNA damage responses (DDRs) and their involvement in genome maintenance, including the potential targeting of histone modification regulators in cancer, a disease that exhibits both epigenetic dysregulation and intrinsic DNA damage.  相似文献   

7.
Histone modifications in response to DNA damage   总被引:1,自引:0,他引:1  
  相似文献   

8.
9.
Downs JA 《DNA Repair》2008,7(12):1938-2024
The role of chromatin and its modulation during DNA repair has become increasingly understood in recent years. A number of histone modifications that contribute towards the cellular response to DNA damage have been identified, including the acetylation of histone H3 at lysine 56. H3 K56 acetylation occurs normally during S phase, but persists in the presence of DNA damage. In the absence of this modification, cellular survival following DNA damage is impaired. Two recent reports provide additional insights into how H3 K56 acetylation functions in DNA damage responses. In particular, this modification appears to be important for both normal replication-coupled nucleosome assembly as well as nucleosome assembly at sites of DNA damage following repair.  相似文献   

10.
What histone code for DNA repair?   总被引:8,自引:0,他引:8  
  相似文献   

11.
Neuronal DNA repair remains one of the most exciting areas for investigation, particularly as a means to compare the DNA repair response in mitotic (cancer) vs. post-mitotic (neuronal) cells. In addition, the role of DNA repair in neuronal cell survival and response to aging and environmental insults is of particular interest. DNA damage caused by reactive oxygen species (ROS) such as generated by mitochondrial respiration includes altered bases, abasic sites, and single- and double-strand breaks which can be prevented by the DNA base excision repair (BER) pathway. Oxidative stress accumulates in the DNA of the human brain over time especially in the mitochondrial DNA (mtDNA) and is proposed to play a critical role in aging and in the pathogenesis of several neurological disorders including Parkinson's disease, ALS, and Alzheimer's diseases. Because DNA damage accumulates in the mtDNA more than nuclear DNA, there is increased interest in DNA repair pathways and the consequence of DNA damage in the mitochondria of neurons. The type of damage that is most likely to occur in neuronal cells is oxidative DNA damage which is primarily removed by the BER pathway. Following the notion that the bulk of neuronal DNA damage is acquired by oxidative DNA damage and ROS, the BER pathway is a likely area of focus for neuronal studies of DNA repair. BER variations in brain aging and pathology in various brain regions and tissues are presented. Therefore, the BER pathway is discussed in greater detail in this review than other repair pathways. Other repair pathways including direct reversal, nucleotide excision repair (NER), mismatch repair (MMR), homologous recombination and non-homologous end joining are also discussed. Finally, there is a growing interest in the role that DNA repair pathways play in the clinical arena as they relate to the neurotoxicity and neuropathy associated with cancer treatments. Among the numerous side effects of cancer treatments, major clinical effects include neurocognitive dysfunction and peripheral neuropathy. These symptoms occur frequently and have not been effectively studied at the cellular or molecular level. Studies of DNA repair may help our understanding of how those cells that are not dividing could succumb to neurotoxicity with the clinical manifestations discussed in the following article.  相似文献   

12.
Eukaryotic genomes are packaged into chromatin, which is the physiological substrate for all DNA transactions, including DNA damage and repair. Chromatin organization imposes major constraints on DNA damage repair and thus undergoes critical rearrangements during the repair process. These rearrangements have been integrated into the “access–repair–restore” (ARR) model, which provides a molecular framework for chromatin dynamics in response to DNA damage. Here, we take a historical perspective on the elaboration of this model and describe the molecular players involved in damaged chromatin reorganization in human cells. In particular, we present our current knowledge of chromatin assembly coupled to DNA damage repair, focusing on the role of histone variants and their dedicated chaperones. Finally, we discuss the impact of chromatin rearrangements after DNA damage on chromatin function and epigenome maintenance.  相似文献   

13.
Base excision repair (BER) is a major DNA repair pathway employed in mammalian cells that is required to maintain genome stability, thus preventing several human diseases, such as ageing, neurodegenerative diseases and cancer. This is achieved through the repair of damaged DNA bases, sites of base loss and single strand breaks of varying complexity that are continuously induced endogenously or via exogenous mutagens. Whilst the enzymes involved in BER are now well known and characterised, the role of the co-ordination of BER enzymatic activities in the cellular response to DNA damage and the mechanisms regulating this process are only now being revealed. Post-translational modifications of BER proteins, including ubiquitylation and phosphorylation, are increasingly being identified as key processes that regulate BER. In this review we will summarise recent evidence discovering novel mechanisms that are involved in maintaining genome stability by regulation of the key BER proteins in response to DNA damage.  相似文献   

14.
15.
To counteract the adverse effects of various DNA lesions, cells have evolved an array of diverse repair pathways to restore DNA structure and to coordinate repair with cell cycle regulation. Chromatin changes are an integral part of the DNA damage response, particularly with regard to the types of repair that involve assembly of large multiprotein complexes such as those involved in double strand break (DSB) repair and nucleotide excision repair (NER). A number of phosphorylation, acetylation, methylation, ubiquitylation and chromatin remodeling events modulate chromatin structure at the lesion site. These changes demarcate chromatin neighboring the lesion, afford accessibility and binding surfaces to repair factors and provide on-the-spot means to coordinate repair and damage signaling. Thus, the hierarchical assembly of repair factors at a double strand break is mostly due to their regulated interactions with posttranslational modifications of histones. A large number of chromatin remodelers are required at different stages of DSB repair and NER. Remodelers physically interact with proteins involved in repair processes, suggesting that chromatin remodeling is a requisite for repair factors to access the damaged site. Together, recent findings define the roles of histone post-translational modifications and chromatin remodeling in the DNA damage response and underscore possible differences in the requirements for these events in relation to the chromatin context.  相似文献   

16.
17.
A prerequisite for maintaining genome stability in all cell types is the accurate repair and efficient signaling of DNA double strand breaks (DSBs). It is believed that DSBs are initially detected by damage sensors that trigger the activation of transducing kinases. These transducers amplify the damage signal, which is then relayed to effector proteins, which regulate the progression of the cell cycle, DNA repair and apoptosis. Errors in the execution of the repair and/or signaling of DSBs can give rise to multi-systemic disorders characterized by tissue degeneration, infertility, immune system dysfunction, age-related pathologies and cancer. This special Spotlight issue of Cell Cycle highlights recent advances in our understanding of the biology and significance of the DNA damage response. A range of issues are addressed including mechanistic ones: what is the aberrant DNA structure that triggers the activation of the checkpoint - how does chromatin structure influence the recruitment of repair and checkpoint proteins- how does chromosomal instability contribute to the evolution of cancer. In addition, questions related to the physiology of the DNA damage response in normal and abnormal cells is explored: what is the in vivo consequence of altering specific amino acids in a DNA damage sensor- does DNA damage accumulation in stem cells cause aging- how is neurodegeneration linked to deficiencies in specific DNA repair pathways, and finally, what is the biological basis for selection of aberrant DNA damage responses in cancer cells?  相似文献   

18.
19.
20.
Stem cells are a sub population of cell types that form the foundation of our body, and have the potential to replicate, replenish and repair limitlessly to maintain the tissue and organ homeostasis. Increased lifetime and frequent replication set them vulnerable for both exogenous and endogenous agents-induced DNA damage compared to normal cells. To counter these damages and preserve genetic information, stem cells have evolved with various DNA damage response and repair mechanisms. Furthermore, upon experiencing irreparable DNA damage, stem cells mostly prefer early senescence or apoptosis to avoid the accumulation of damages. However, the failure of these mechanisms leads to various diseases, including cancer. Especially, given the importance of stem cells in early development, DNA repair deficiency in stem cells leads to various disabilities like developmental delay, premature aging, sensitivity to DNA damaging agents, degenerative diseases, etc. In this review, we have summarized the recent update about how DNA repair mechanisms are regulated in stem cells and their association with disease progression and pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号