首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elastin-like polypeptides (ELP) are artificial, genetically encodable biopolymers, belonging to elastomeric proteins, which are widespread in a wide range of living organisms. They are composed of a repeating pentapeptide sequence Val–Pro–Gly–Xaa–Gly, where the guest residue (Xaa) can be any naturally occurring amino acid except proline. These polymers undergo reversible phase transition that can be triggered by various environmental stimuli, such as temperature, pH or ionic strength. This behavior depends greatly on the molecular weight, concentration of ELP in the solution and composition of the amino acids constituting ELPs. At a temperature below the inverse transition temperature (Tt), ELPs are soluble, but insoluble when the temperature exceeds Tt. Furthermore, this feature is retained even when ELP is fused to the protein of interest. These unique properties make ELP very useful for a wide variety of biomedical applications (e.g. protein purification, drug delivery etc.) and it can be expected that smart biopolymers will play a significant role in the development of most new materials and technologies. Here we present the structure and properties of thermally responsive elastin-like polypeptides with a particular emphasis on biomedical and biotechnological application.  相似文献   

2.
While elastin‐like polypeptides and peptides (ELPs) have been used for various stimulus‐responsive applications, details of their switching remain unclear. We therefore constructed a novel series of filamentous phage particles displaying a high surface density of short ELPs. The surface display of ELPs did not disrupt either particle shape or dimensions, and the resulting ELP‐phage particles were colloidally stable over several weeks. However, in spite of a saturating surface density, macroscopic aggregation of ELP‐phages cannot be triggered in water. To investigate the underlying mechanisms we examined conformational changes in the secondary structure of the phage proteins by circular dichroism and tryptophan fluorescence, which indicate partial protein unfolding in ELP‐phage particles. To gain further insight into the ELP itself, analogous “free” ELP peptides were synthesized and characterized. Circular dichroism of these peptides shows the onset of β‐type conformations with increasing temperature, consistent with the accepted view of the microscopic transition that underlies the inverse phase behavior of ELPs. Increased guest residue hydrophobicity was found to depress the microscopic transition temperature of the peptides, also consistent with a previously proposed intramolecular hydrogen‐bonding mechanism. Importantly, our results indicate that although the nanoscale presentation state can suppress macroscopic aggregation of ELPs, microscopic transitions of the ELP can still occur. Given the growing use of ELPs within supra‐molecular scaffolds, such effects are important design considerations for future applications. Biotechnol. Bioeng. 2013; 110: 1822–1830. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
Elastin-like polypeptides (ELPs) have a distinctive thermal property, transition temperature (Tt), which leads to phase transition. This thermal property depends on the molecular weight (MW) of ELP, ELP concentration, composition of the amino acids constituting ELPs, and ionic strength of the aqueous solution. In order to investigate the effects of ELP length, ionic strength and existence of fusion protein, ELP genes of three different sizes were cloned using the recursive directional ligation (RDL) method and expressed in Escherichia coli. Following purification, thermal behaviors of ELPs were monitored using a spectrophotometer with temperature scanning. The results of our study indicated that Tt shifted to low in accordance with ELP length or increased ionic strength. Additionally, it was observed that Tt was affected by the physical properties of the protein fused with ELPs.  相似文献   

4.
Elastin-like polypeptides (ELPs) undergo a reversible, inverse phase transition. Below their transition temperature (Tt), ELPs are soluble in water, but when the temperature is raised above Tt, phase transition occurs, leading to aggregation of the polypeptide. We demonstrate a method for purification of soluble fusion proteins incorporating an ELP tag. Advantages of this method, termed "inverse transition cycling," include technical simplicity, low cost, ease of scale-up, and capacity for multiplexing. More broadly, the ability to environmentally modulate the physicochemical properties of recombinant proteins by fusion with ELPs will allow diverse applications in bioseparation, immunoassays, biocatalysis, and drug delivery.  相似文献   

5.
Elastin-like polypeptides (ELPs) are artificial polypeptides with unique properties that make them attractive as a biomaterial for tissue-engineered cartilage repair. ELPs are composed of a pentapeptide repeat, Val-Pro-Gly-Xaa-Gly (Xaa is any amino acid except Pro), that undergo an inverse temperature phase transition. They are soluble in aqueous solution below their transition temperature (T(t)) but aggregate when the solution temperature is raised above their T(t). This study investigates the rheological behavior of an un-cross-linked ELP, below and above its T(t), and also examines the ability of ELP to promote chondrogenesis in vitro. A thermally responsive ELP with a T(t) of 35 degrees C was synthesized using recombinant DNA techniques. The complex shear modulus of the ELP increased by 3 orders of magnitude as it underwent its inverse temperature phase transition, forming a coacervate, or gel-like, ELP phase. Values for the complex shear moduli of the un-cross-linked ELP coacervate are comparable to those reported previously for collagen, hyaluronan, and cross-linked synthetic hydrogels. Cell culture studies show that chondrocytes cultured in ELP coacervate maintain a rounded morphology and their chondrocytic phenotype, characterized by the synthesis of a significant amount of extracellular matrix composed of sulfated glycosaminoglycans and collagen. These results suggest that ELPs demonstrate great potential for use as in situ forming scaffolds for cartilaginous tissue repair.  相似文献   

6.
类弹性蛋白多肽及其在生物医学材料的应用   总被引:1,自引:0,他引:1  
类弹性蛋白多肽是一种人造基因工程蛋白质聚合物,其结构主要由五肽重复串连序列单元 (GVGXP) 的这一肽段单元重复组成。由于具有可逆相变特征,并可进行高通量生产,加之良好的生物相容性及生物可降解性,使其在新型生物医学材料方面展示了广阔的应用前景。概括了类弹性蛋白多肽的相变机理、合成方法及在生物医学材料上的应用,重点阐述了类弹性蛋白多肽在组织工程、靶向肿瘤、构造药物载体微粒的应用。  相似文献   

7.
Elastin-like polypeptides (ELPs) undergo a reversible, soluble-to-insoluble phase transition in aqueous solution upon heating through a characteristic transition temperature (T(t)). Incorporating a terminal ELP expression tag into the gene of a protein of interest allows ELP fusion proteins to be purified from cell lysate by cycles of environmentally triggered aggregation, separation from solution by centrifugation, and resolubilization in buffer. In this study, we examine the effect of ELP length on the expression and purification of a thioredoxin-ELP fusion protein and show that reducing the size of the ELP tag from 36 to 9 kDa increases the expression yield of thioredoxin by 4-fold, to a level comparable to that of free thioredoxin expressed without an ELP tag, while still allowing efficient purification. However, truncation of the ELP tag also results in a more complex transition behavior than is observed with larger tags. For both the 36 kDa and the 9 kDa ELP tag fused to thioredoxin, dynamic light scattering showed that large aggregates with hydrodynamic radii of approximately 2 microm form as the temperature is raised to above the T(t). These aggregates persist at all temperatures above the T(t) for the thioredoxin fusion with the 36 kDa ELP tag. With the 9 kDa tag, however, smaller particles with hydrodynamic radii of approximately 12 nm begin to form at the expense of the larger, micron-size aggregates as the temperature is further raised above the T(t). Because only large aggregates can be effectively retrieved by centrifugation, efficient purification of fusion proteins with short ELP tags requires selection of solution conditions that favor the formation of the micron-size aggregates. Despite this additional complexity, our results show that the ELP tag can be successfully truncated to enhance the yield of a target protein without compromising its purification.  相似文献   

8.
At a specific temperature, elastin-like polypeptides (ELPs) undergo a sharp solubility transition that can be exploited in a variety of applications in biotechnology and medicine. The temperature of the transition varies with ELP sequence, molecular weight, and concentration. We present a single equation of three parameters that quantitatively predicts the transition temperature as a function of ELP length and concentration for an ELP of a fixed composition. This model should be useful both for the design of new ELP sequences that exhibit a desired transition temperature and for the selection of variables to trigger the phase transition of an ELP for a given application.  相似文献   

9.
Elastin-like polypeptides (ELPs) undergo a reversible inverse phase transition upon a change in temperature. This thermally triggered phase transition allows for a simple and rapid means of purifying a fusion protein. Recovery of ELPs-tagged fusion protein was easily achieved by aggregation, triggered either by raising temperature or by adding salt. In this study, levansucrase has been used as a model enzyme in the development of a simple one-step purification method using ELPs. The levansucrase gene cloned from Pseudomonas aurantiaca S-4380 was tagged with various sizes of ELPs to functionally express and optimize the purification of levansucrase. One of two ELPs, ELP[V-20] or ELP[V-40], was fused at the C-terminus of the levansucrase gene. A levansucrase-ELP fusion protein was expressed in Escherichia coli DH5alpha at 37 degrees C for 18 h. The molecular masses of levansucrase-ELP[V-20] and levansucrase-ELP[V-40] were determined as 56 kDa and 65 kDa, respectively. The phase transition of levansucrase-ELP[V-20] occurred at 20 degrees C in 50 mM Tris-Cl (pH 8) buffer with 3 M NaCl added, whereas the phase transition temperature (Tt) of levansucrase-ELP[V-40] was 17 degrees C with 2 M NaCl. Levansucrase was successfully purified using the phase transition characteristics of ELPs, with a recovery yield of higher than 80%, as verified by SDS-PAGE. The specific activity was measured spectrophotometrically to be 173 U/mg and 171 U/mg for levansucrase-ELP[V-20] and levansucrase-ELP[V-40], respectively, implying that the ELP-tagging system provides an efficient one-step separation method for protein purification.  相似文献   

10.
Like natural tropoelastin, polypeptides based on an elastin-like VPGXG repeat have a characteristic inverse temperature response, which leads to coacervate formation above a certain transition temperature and which could be useful for a variety of applications. The key advantage of elastin-like polypeptides (ELPs) over (tropo)elastin is a full control over this temperature response by adjustment of either the amino acid composition or the chain length, according to insights provided by extensive research. Future application of ELPs will require efficient ELP production systems, and in a previous article, we described the successful use of Pichia pastoris for secreted production of an ELP, with an overall yield of ≈ 200 mg L(-1). In this study, we investigated the influence of changed amino acid composition and chain length on the yield of secreted ELP. We have found that both parameters have a distinct impact on the overall yield, with higher yield for shorter and more hydrophilic ELPs. Because yield and transition temperature (Tt) thus appear to be positively correlated, we hypothesize that good solubility of ELP below the Tt promotes the secreted production and coacervate formation above Tt decreases it.  相似文献   

11.
Elastin‐Like Polypeptides (ELPs) reversibly phase separate in response to changes in temperature, pressure, concentration, pH, and ionic species. While powerful triggers, biological microenvironments present a multitude of more specific biological cues, such as antibodies, cytokines, and cell‐surface receptors. To develop better biosensors and bioresponsive drug carriers, rational strategies are required to sense and respond to these target proteins. We recently reported that noncovalent association of two ELP fusion proteins to a “chemical inducer of dimerization” small molecule (1.5 kDa) induces phase separation at physiological temperatures. Having detected a small molecule, here we present the first evidence that ELP multimerization can also detect a much larger (60 kDa) protein target. To demonstrate this strategy, ELPs were biotinylated at their amino terminus and mixed with tetrameric streptavidin. At a stoichiometric ratio of [4:1], two to three biotin‐ELPs associate with streptavidin into multimeric complexes with an apparent Kd of 5 nM. The increased ELP density around a streptavidin core strongly promotes isothermal phase separation, which was tuned to occur at physiological temperature. This phase separation reverses upon saturation with excess streptavidin, which only favors [1:1] complexes. Together, these findings suggest that ELP association with multimeric biomolecules is a viable strategy to deliberately engineer ELPs that respond to multimeric protein substrates.  相似文献   

12.
Elastin-like polypeptides are repetitive biopolymers that exhibit a lower critical solution temperature phase transition behavior, existing as soluble unimers below a characteristic transition temperature and aggregating into micron-scale coacervates above their transition temperature. The design of elastin-like polypeptides at the genetic level permits precise control of their sequence and length, which dictates their thermal properties. Elastin-like polypeptides are used in a variety of applications including biosensing, tissue engineering, and drug delivery, where the transition temperature and biopolymer architecture of the ELP can be tuned for the specific application of interest. Furthermore, the lower critical solution temperature phase transition behavior of elastin-like polypeptides allows their purification by their thermal response, such that their selective coacervation and resolubilization allows the removal of both soluble and insoluble contaminants following expression in Escherichia coli. This approach can be used for the purification of elastin-like polypeptides alone or as a purification tool for peptide or protein fusions where recombinant peptides or proteins genetically appended to elastin-like polypeptide tags can be purified without chromatography. This protocol describes the purification of elastin-like polypeptides and their peptide or protein fusions and discusses basic characterization techniques to assess the thermal behavior of pure elastin-like polypeptide products.  相似文献   

13.
This paper reports an improvement in the purification of thioredoxin (Trx) expressed from E. coli by inverse transition cycling (ITC) using cationic elastin-like polypeptides (ELPs). Two ELP libraries having 2% and 5% lysine residues and molecular weights ranging from 4 to 61.1 kDa showed greater salt sensitivity in their inverse transition behavior than purely aliphatic ELPs. Expression yield of Trx-ELP fusions was an unpredictable function of guest residue composition, but reducing the molecular weight of the ELP tag generally increased Trx yield. A cationic 4.3 kDa ELP is the shortest ELP used to purify any protein by ITC to date. A 15.9 kDa ELP with a guest residue composition of K:V:F of 1:7:1 was found to be the optimal cationic tag to purify Trx, as it provided 50% greater Trx yield and only required one-fifth the added NaCl for purification of Trx as compared to previously used aliphatic ELP tags.  相似文献   

14.
Elastin-like polypeptides are thermally responsive polymers that exhibit phase separation above a transition temperature. The effect of molecular architecture on the temperature responsive behavior of elastin-like polypeptide solutions was investigated by characterization of solutions of three-armed star polypeptides, linear polypeptides, and their mixtures. These biosynthesized polypeptides have precise lengths and amino acid sequences. Transition temperatures were measured as a function of molecular weight and solution concentration and compared to their linear counterparts. Like their linear counterparts, the transition temperature is linearly related to log concentration. A mathematical relationship was used to fit the transition temperature data of different polypeptide lengths to a volume-based concentration using the polymer coil volume. The results of this model suggest that the linear ELP is in a random coil conformation at the transition temperature while the three-armed ELP is in a compact extended coil conformation, consistent with different pathways for aggregation. Solutions containing both trimer and linear constructs have two transition temperatures, further supporting differing aggregation behaviors.  相似文献   

15.
Elastin-like polypeptides (ELPs) are peptide-based biomaterials with residue sequence (VPGXG)n where X is any residue except proline. ELPs are a useful modality for delivering biologically active proteins (growth factors, protease inhibitors, anti-inflammatory peptides, etc.) as fusion proteins (ELP-FP). ELP-FPs are particularly cost-effective because they can be rapidly purified using Inverse Temperature Cycling (ITC) via the reversible formation and precipitation of entropically driven aggregates above a transition temperature (Tt). When ELP fusion proteins (ELP-FPs) contain significant charge density at physiological pH, electrostatic repulsion between them severely inhibits aggregate formation. The literature does not currently describe methods for purifying ELP-FPs containing charged proteins on either side of the ELP sequence as fusion partners without organic solvents. Here, the isoelectric point (pI) of ELP-FPs is discussed as a means of neutralizing surface charges on ELP-FPs and increasing ITC yield to dramatically high levels. We use pI-based phase separation (pI-BPS) to purify ELP-FPs containing cationic and anionic fusion proteins. We report a dramatic increase in protein yield when using pI-BPS for purification of ELP-FPs. Proteins purified by this method also retain the functional activity of the protein present in the ELP-FP. Techniques developed here enable significant diversification of possible fusion proteins delivered by ELPs as ELP-FPs by allowing them to be produced and purified at higher quantities and yields.  相似文献   

16.
Thermally responsive elastin like polypeptides (ELPs) can be used to purify proteins from Escherichia coli culture when proteins are expressed as a fusion with an ELP. Nonchromatographic purification of ELP fusion proteins, termed inverse transition cycling (ITC), exploits the reversible soluble-insoluble phase transition behavior imparted by the ELP tag. Here, we quantitatively compare the expression and purification of ELP and oligohistidine fusions of chloramphenicol acetyltransferase (CAT), blue fluorescent protein (BFP), thioredoxin (Trx), and calmodulin (CalM) from both a 4-h culture with chemical induction of the plasmid-borne fusion protein gene and a 24-h culture without chemical induction. The total protein content and functional activity were quantified at each ITC purification step. For CAT, BFP, and Trx, the 24-h noninduction culture of ELP fusion proteins results in a sevenfold increase in the yield of each fusion protein compared to that obtained by the 4-h-induced culture, and the calculated target protein yield is similar to that of their equivalent oligohistidine fusion. For these proteins, ITC purification of fusion proteins also results in approximately 75% recovery of active fusion protein, similar to affinity chromatography. Compared to chromatographic purification, however, ITC is inexpensive, requires no specialized equipment or reagents, and because ITC is a batch purification process, it is easily scaled up to accommodate larger culture volumes or scaled down and multiplexed for high-throughput, microscale purification; thus, potentially impacting both high-throughput protein expression and purification for proteomics and large scale, cost-effective industrial bioprocessing of pharmaceutically relevant proteins.  相似文献   

17.
Modern treatments of bone injuries and diseases are becoming increasingly dependent on the usage of growth factors to stimulate bone growth. Bone morphogenetic protein‐2 (BMP‐2), a potent osteogenic inductive protein, exhibits promising results in treatment models, but recently has had its practical efficacy questioned due to the lack of local retention, ectopic bone formation, and potentially lethal inflammation. Where a new delivery technique of the BMP‐2 is necessary, here we demonstrate the viability of an elastin‐like peptide (ELP) fusion protein containing BMP‐2 for delivery of the BMP‐2. This fusion protein retains the performance characteristics of both the BMP‐2 and ELP. The fusion protein was found to induce osteogenic differentiation of mesenchymal stem cells as evidenced by the production of alkaline phosphatase and extracellular calcium deposits in response to treatment by the fusion protein. Retention of the ELPs inverse phase transition property has allowed for expression of the fusion protein within a bacterial host (such as Escherichia coli) and easy and rapid purification using inverse transition cycling. The fusion protein formed self‐aggregating nanoparticles at human‐body temperature. The data collected suggests the viability of these fusion protein nanoparticles as a dosage‐efficient and location‐precise noncytotoxic delivery vehicle for BMP‐2 in bone treatment. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1029–1037, 2016  相似文献   

18.
Elastin-like polypeptides (ELPs) are recombinant peptide-based biopolymers that contain repetitive sequences enriched in glycine, valine, proline, and alanine. Because of the unusually large fraction of these amino acids in ELPs as compared to other cellular proteins, we hypothesized that intracellular pools of these amino acids can be selectively depleted and limit protein yields during expression. In this study, we examined how culture conditions and individual medium components affect protein yields by monitoring cell growth and protein expression kinetics of E. coli expressing an ELP tagged with a green fluorescent protein (GFP). By determining the underlying principles of superior fusion protein yields generated by the hyperexpression protocol, we further improved protein yields through the addition of glycerol and certain amino acids such as proline and alanine and found that amino acid concentrations and the type of basal medium used strongly influenced this beneficial effect. Surprisingly, amino acids other than those that are abundant in ELPs, for example, asparagine, aspartic acid, glutamine, and glutamic acid, also enhanced protein yields even in a nutrient-rich medium. Compared to commonly used Luria-Bertani medium, the protein yield was improved by 36-fold to the remarkable level of 1.6 g/L in shaker flask cultures with a modified medium and optimized culture conditions, which also led to a 8-fold reduction in the cost of the fusion protein. To our knowledge, this is the highest yield of an ELP-fusion protein purified from E. coli cultured in shaker flasks. This study also suggests a useful strategy to improve the yields of other ELP fusion proteins and repetitive polypeptides.  相似文献   

19.
类弹性蛋白(Elastin-like polypeptides,ELPs)是属于弹性蛋白中的一种且具有温控性的生物大分子,本文研究拥挤试剂对不同拓扑结构ELPs相变温度的影响,利用温控-紫外分光光度计研究其相变特性,结果发现,随着PEG2000浓度的增加,T-E-F的相变温度下降11.9~17.1℃;在固定Tadpole-like-E浓度下,随着PEG2000浓度的增加,Tadpole-like-E的相变温度降低11.5~16℃,其中,25 μmol/L的Tadpole-like-E其相变速度缓慢;ELPs浓度越大,其相变温度降低愈大,且PEG2000影响ELPs相变温度的趋势与ELPs的拓扑结构关系不大。另外,在简单的PBS缓冲溶液中加入PEG2000,可以使E-C在浓度<0.5 mol/L的Na2CO3中发生相变,且随着PEG2000浓度的增加,E-C相变温度逐渐降低。本研究为今后ELPs在复杂体系的应用提供前期的基础研究。  相似文献   

20.
Peptide amphiphiles (PAs) self-assemble nanostructures with potential applications in drug delivery and tissue engineering. Some PAs share environmentally responsive behavior with their peptide components. Here we report a new type of PAs biologically inspired from human tropoelastin. Above a lower critical solution temperature (LCST), elastin-like polypeptides (ELPs) undergo a reversible inverse phase transition. Similar to other PAs, elastin-like PAs (ELPAs) assemble micelles with fiber-like nanostructures. Similar to ELPs, ELPAs have inverse phase transition behavior. Here we demonstrate control over the ELPAs fiber length and cellular uptake. In addition, we observed that both peptide assembly and nanofiber phase separation are accompanied by a distinctive secondary structure attributed primarily to a type-1 β turn. We also demonstrate increased solubility of hydrophobic paclitaxel (PAX) in the presence of ELPAs. Due to their biodegradability, biocompatibility, and environmental responsiveness, elastin-inspired biopolymers are an emerging platform for drug and cell delivery; furthermore, the discovery of ELPAs may provide a new and useful approach to engineer these materials into stimuli-responsive gels and drug carriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号