首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spectral measures of causality are used to explore the role of different rhythms in the causal connectivity between brain regions. We study several spectral measures related to Granger causality, comprising the bivariate and conditional Geweke measures, the directed transfer function, and the partial directed coherence. We derive the formulation of dependence and causality in the spectral domain from the more general formulation in the information-theory framework. We argue that the transfer entropy, the most general measure derived from the concept of Granger causality, lacks a spectral representation in terms of only the processes associated with the recorded signals. For all the spectral measures we show how they are related to mutual information rates when explicitly considering the parametric autoregressive representation of the processes. In this way we express the conditional Geweke spectral measure in terms of a multiple coherence involving innovation variables inherent to the autoregressive representation. We also link partial directed coherence with Sims' criterion of causality. Given our results, we discuss the causal interpretation of the spectral measures related to Granger causality and stress the necessity to explicitly consider their specific formulation based on modeling the signals as linear Gaussian stationary autoregressive processes.  相似文献   

2.
Cadotte AJ  DeMarse TB  He P  Ding M 《PloS one》2008,3(10):e3355
A major goal of neuroscience is to understand the relationship between neural structures and their function. Recording of neural activity with arrays of electrodes is a primary tool employed toward this goal. However, the relationships among the neural activity recorded by these arrays are often highly complex making it problematic to accurately quantify a network's structural information and then relate that structure to its function. Current statistical methods including cross correlation and coherence have achieved only modest success in characterizing the structural connectivity. Over the last decade an alternative technique known as Granger causality is emerging within neuroscience. This technique, borrowed from the field of economics, provides a strong mathematical foundation based on linear auto-regression to detect and quantify "causal" relationships among different time series. This paper presents a combination of three Granger based analytical methods that can quickly provide a relatively complete representation of the causal structure within a neural network. These are a simple pairwise Granger causality metric, a conditional metric, and a little known computationally inexpensive subtractive conditional method. Each causal metric is first described and evaluated in a series of biologically plausible neural simulations. We then demonstrate how Granger causality can detect and quantify changes in the strength of those relationships during plasticity using 60 channel spike train data from an in vitro cortical network measured on a microelectrode array. We show that these metrics can not only detect the presence of causal relationships, they also provide crucial information about the strength and direction of that relationship, particularly when that relationship maybe changing during plasticity. Although we focus on the analysis of multichannel spike train data the metrics we describe are applicable to any stationary time series in which causal relationships among multiple measures is desired. These techniques can be especially useful when the interactions among those measures are highly complex, difficult to untangle, and maybe changing over time.  相似文献   

3.
4.
Agroecosystems contain complex networks of interacting organisms and these interaction webs are structured by the relative timing of key biological and ecological events. Recent intensification of land management and global changes in climate threaten to desynchronize the temporal structure of interaction webs and disrupt the provisioning of ecosystem services, such as biological control by natural enemies. It is therefore critical to recognize the central role of temporal dynamics in driving predator–prey interactions in agroecosystems. Specifically, ecological dynamics in crop fields routinely behave as periodic oscillations, or cycles. Familiar examples include phenological cycles, diel activity rhythms, and crop-management cycles. The relative timing and the degree of overlap among ecological cycles determine the nature and magnitude of the ecological interactions among organisms, and ultimately determine whether ecosystem services, such as biological control, can be provided. Additionally, the ecological dynamics in many cropping systems are characterized by a pattern of frequent disturbances due to management actions such as harvest, sowing and pesticide applications. These disturbance cycles cause agroecosystems to be dominated by dispersal and repopulation dynamics. However, they also serve as selective filters that regulate which animals can persist in agroecosystems over larger temporal scales. Here, we review key concepts and examples from the literature on temporal dynamics in ecological systems, and provide a framework to guide biological control strategies for sustainable pest management in a changing world.  相似文献   

5.
Switches (bistability) and oscillations (limit cycle) are omnipresent in biological networks. Synthetic genetic networks producing bistability and oscillations have been designed and constructed experimentally. However, in real biological systems, regulatory circuits are usually interconnected and the dynamics of those complex networks is often richer than the dynamics of simple modules. Here we couple the genetic Toggle switch and the Repressilator, two prototypic systems exhibiting bistability and oscillations, respectively. We study two types of coupling. In the first type, the bistable switch is under the control of the oscillator. Numerical simulation of this system allows us to determine the conditions under which a periodic switch between the two stable steady states of the Toggle switch occurs. In addition we show how birhythmicity characterized by the coexistence of two stable small-amplitude limit cycles, can easily be obtained in the system. In the second type of coupling, the oscillator is placed under the control of the Toggleswitch. Numerical simulation of this system shows that this construction could for example be exploited to generate a permanent transition from a stable steady state to self-sustained oscillations (and vice versa) after a transient external perturbation. Those results thus describe qualitative dynamical behaviors that can be generated through the coupling of two simple network modules. These results differ from the dynamical properties resulting from interlocked feedback loops systems in which a given variable is involved at the same time in both positive and negative feedbacks. Finally the models described here may be of interest in synthetic biology, as they give hints on how the coupling should be designed to get the required properties.  相似文献   

6.
Causal networks in simulated neural systems   总被引:1,自引:1,他引:0  
Neurons engage in causal interactions with one another and with the surrounding body and environment. Neural systems can therefore be analyzed in terms of causal networks, without assumptions about information processing, neural coding, and the like. Here, we review a series of studies analyzing causal networks in simulated neural systems using a combination of Granger causality analysis and graph theory. Analysis of a simple target-fixation model shows that causal networks provide intuitive representations of neural dynamics during behavior which can be validated by lesion experiments. Extension of the approach to a neurorobotic model of the hippocampus and surrounding areas identifies shifting causal pathways during learning of a spatial navigation task. Analysis of causal interactions at the population level in the model shows that behavioral learning is accompanied by selection of specific causal pathways—“causal cores”—from among large and variable repertoires of neuronal interactions. Finally, we argue that a causal network perspective may be useful for characterizing the complex neural dynamics underlying consciousness.
Anil K. SethEmail:
  相似文献   

7.
Chicharro D  Ledberg A 《PloS one》2012,7(3):e32466
Biological systems often consist of multiple interacting subsystems, the brain being a prominent example. To understand the functions of such systems it is important to analyze if and how the subsystems interact and to describe the effect of these interactions. In this work we investigate the extent to which the cause-and-effect framework is applicable to such interacting subsystems. We base our work on a standard notion of causal effects and define a new concept called natural causal effect. This new concept takes into account that when studying interactions in biological systems, one is often not interested in the effect of perturbations that alter the dynamics. The interest is instead in how the causal connections participate in the generation of the observed natural dynamics. We identify the constraints on the structure of the causal connections that determine the existence of natural causal effects. In particular, we show that the influence of the causal connections on the natural dynamics of the system often cannot be analyzed in terms of the causal effect of one subsystem on another. Only when the causing subsystem is autonomous with respect to the rest can this interpretation be made. We note that subsystems in the brain are often bidirectionally connected, which means that interactions rarely should be quantified in terms of cause-and-effect. We furthermore introduce a framework for how natural causal effects can be characterized when they exist. Our work also has important consequences for the interpretation of other approaches commonly applied to study causality in the brain. Specifically, we discuss how the notion of natural causal effects can be combined with Granger causality and Dynamic Causal Modeling (DCM). Our results are generic and the concept of natural causal effects is relevant in all areas where the effects of interactions between subsystems are of interest.  相似文献   

8.
9.
Theoretical and empirical studies have shown that enemy–victim interactions in spatially homogenous environments can exhibit diverging oscillations which result in the extinction of one or both species. For enemy–victim models with overlapping generations, we investigate the dynamical implications of spatial heterogeneity created by enemy-free sinks or victimless sinks. An enemy-free sink is a behavioral, physiological or ecological state that reduces or eliminates the victim's vulnerability to the enemy but cannot sustain the victim population. For victims that move in an ideal-free manner, we prove that the inclusion of an enemy-free sink shifts the population dynamics from diverging oscillations to stable oscillations. During these stable oscillations, the victim disperses in an oscillatory manner between the enemy-free sink and the enemy-occupied patch. Enemy-free sinks with lower mortality rates exhibit oscillations with smaller amplitudes and longer periods. A victimless sink, on the other hand, is a behavioral, physiological or ecological state in which the enemy has limited (or no) access to its victims. For enemies that move in an ideal-free manner, we prove that victimless sinks also stabilize diverging oscillations. Simulations suggest that suboptimal behavior due to information gathering or learning limitations amplify oscillations for systems with enemy-free sinks and dampen oscillations for systems with victimless sinks. These results illustrate that the coupling of a sink created by unstable enemy–victim interactions and a sink created by unsuitable environmental conditions can result in population persistence at the landscape level.  相似文献   

10.
11.
In this theoretical paper we propose a quantitative minimal model for circadian gene expression based on two negative feedback loops. We perform numerical simulations to analyse its dynamics and parameter sensitivities in free-running conditions, and verify the entrainability by a single periodic driver. We furthermore apply two simultaneously acting external drivers, leading to aperiodic oscillations in the case of a single-loop system. These can be turned into regular periodic oscillations by introduction of a second loop. Our studies confirm the increasing evidence that multiple feedback loops increase the robustness of regulatory systems, and stress the particular situation of systems that are close to transition from free-running oscillation to steady-state behaviour. We discuss possible molecular realisations of the featured feedback loops and suggest the application of complex patterns of external stimulation as a generally useful approach to assess the functionality of models of circadian systems.  相似文献   

12.
Interspecific synchrony, that is, synchrony in population dynamics among sympatric populations of different species can arise via several possible mechanisms, including common environmental effects, direct interactions between species, and shared trophic interactions, so that distinguishing the relative importance of these causes can be challenging. In this study, to overcome this difficulty, we combine traditional correlation analysis with a novel framework of nonlinear time series analysis, empirical dynamic modeling (EDM). The EDM is an analytical framework to identify causal relationships and measure changing interaction strength from time series. We apply this approach to time series of sympatric foliage-feeding forest Lepidoptera species in the Slovak Republic and yearly mean temperature, precipitation and North Atlantic Oscillation Index. These Lepidoptera species include both free-feeding and leaf-roller larval life histories: the former are hypothesized to be more strongly affected by similar exogenous environments, while the latter are isolated from such pressures. Correlation analysis showed that interspecific synchrony is generally strongest between species within same feeding guild. In addition, the convergent cross mapping analysis detected causal effects of meteorological factors on most of the free-feeding species while such effects were not observed in the leaf-rolling species. However, there were fewer causal relationships among species. The multivariate S-map analysis showed that meteorological factors tend to affect similar free-feeding species that are synchronous with each other. These results indicate that shared meteorological factors are key drivers of interspecific synchrony among members of the free-feeding guild, but do not play the same role in synchronizing species within the leaf-roller guild.  相似文献   

13.
The human brain has been documented to be spatially organized in a finite set of specific coherent patterns, namely resting state networks (RSNs). The interactions among RSNs, being potentially dynamic and directional, may not be adequately captured by simple correlation or anticorrelation. In order to evaluate the possible effective connectivity within those RSNs, we applied a conditional Granger causality analysis (CGCA) to the RSNs retrieved by independent component analysis (ICA) from resting state functional magnetic resonance imaging (fMRI) data. Our analysis provided evidence for specific causal influences among the detected RSNs: default-mode, dorsal attention, core, central-executive, self-referential, somatosensory, visual, and auditory networks. In particular, we identified that self-referential and default-mode networks (DMNs) play distinct and crucial roles in the human brain functional architecture. Specifically, the former RSN exerted the strongest causal influence over the other RSNs, revealing a top-down modulation of self-referential mental activity (SRN) over sensory and cognitive processing. In quite contrast, the latter RSN was profoundly affected by the other RSNs, which may underlie an integration of information from primary function and higher level cognition networks, consistent with previous task-related studies. Overall, our results revealed the causal influences among these RSNs at different processing levels, and supplied information for a deeper understanding of the brain network dynamics.  相似文献   

14.
Estimating the causal interaction between neurons is very important for better understanding the functional connectivity in neuronal networks. We propose a method called normalized permutation transfer entropy (NPTE) to evaluate the temporal causal interaction between spike trains, which quantifies the fraction of ordinal information in a neuron that has presented in another one. The performance of this method is evaluated with the spike trains generated by an Izhikevich’s neuronal model. Results show that the NPTE method can effectively estimate the causal interaction between two neurons without influence of data length. Considering both the precision of time delay estimated and the robustness of information flow estimated against neuronal firing rate, the NPTE method is superior to other information theoretic method including normalized transfer entropy, symbolic transfer entropy and permutation conditional mutual information. To test the performance of NPTE on analyzing simulated biophysically realistic synapses, an Izhikevich’s cortical network that based on the neuronal model is employed. It is found that the NPTE method is able to characterize mutual interactions and identify spurious causality in a network of three neurons exactly. We conclude that the proposed method can obtain more reliable comparison of interactions between different pairs of neurons and is a promising tool to uncover more details on the neural coding.  相似文献   

15.
16.
The application of data-driven time series analysis techniques such as Granger causality, partial directed coherence and phase dynamics modeling to estimate effective connectivity in brain networks has recently gained significant prominence in the neuroscience community. While these techniques have been useful in determining causal interactions among different regions of brain networks, a thorough analysis of the comparative accuracy and robustness of these methods in identifying patterns of effective connectivity among brain networks is still lacking. In this paper, we systematically address this issue within the context of simple networks of coupled spiking neurons. Specifically, we develop a method to assess the ability of various effective connectivity measures to accurately determine the true effective connectivity of a given neuronal network. Our method is based on decision tree classifiers which are trained using several time series features that can be observed solely from experimentally recorded data. We show that the classifiers constructed in this work provide a general framework for determining whether a particular effective connectivity measure is likely to produce incorrect results when applied to a dataset.  相似文献   

17.
Periodic predator – prey dynamics in constant environments are usually taken as indicative of deterministic limit cycles. It is known, however, that demographic stochasticity in finite populations can also give rise to regular population cycles, even when the corresponding deterministic models predict a stable equilibrium. Specifically, such quasi-cycles are expected in stochastic versions of deterministic models exhibiting equilibrium dynamics with weakly damped oscillations. The existence of quasi-cycles substantially expands the scope for natural patterns of periodic population oscillations caused by ecological interactions, thereby complicating the conclusive interpretation of such patterns. Here we show how to distinguish between quasi-cycles and noisy limit cycles based on observing changing population sizes in predator – prey populations. We start by confirming that both types of cycle can occur in the individual-based version of a widely used class of deterministic predator – prey model. We then show that it is feasible and straightforward to accurately distinguish between the two types of cycle through the combined analysis of autocorrelations and marginal distributions of population sizes. Finally, by confronting these results with real ecological time series, we demonstrate that by using our methods even short and imperfect time series allow quasi-cycles and limit cycles to be distinguished reliably.  相似文献   

18.
We introduce simple models of genetic regulatory networks and we proceed to the mathematical analysis of their dynamics. The models are discrete time dynamical systems generated by piecewise affine contracting mappings whose variables represent gene expression levels. These models reduce to boolean networks in one limiting case of a parameter, and their asymptotic dynamics approaches that of a differential equation in another limiting case of this parameter. For intermediate values, the model present an original phenomenology which is argued to be due to delay effects. This phenomenology is not limited to piecewise affine model but extends to smooth nonlinear discrete time models of regulatory networks. In a first step, our analysis concerns general properties of networks on arbitrary graphs (characterisation of the attractor, symbolic dynamics, Lyapunov stability, structural stability, symmetries, etc). In a second step, focus is made on simple circuits for which the attractor and its changes with parameters are described. In the negative circuit of 2 genes, a thorough study is presented which concern stable (quasi-)periodic oscillations governed by rotations on the unit circle – with a rotation number depending continuously and monotonically on threshold parameters. These regular oscillations exist in negative circuits with arbitrary number of genes where they are most likely to be observed in genetic systems with non-negligible delay effects.  相似文献   

19.
Biodiversity is diminishing at alarming rates due to multiple anthropogenic drivers. To mitigate these drivers, their impacts must be quantified accurately and comparably across drivers. To enable that, we present a generally applicable framework introducing fundamental principles of ecological impact quantification, including the quantification of interactions between multiple drivers. The framework contrasts biodiversity variables in impacted against those in unimpacted or other reference situations while accounting for their temporal dynamics through modelling. Properly accounting for temporal dynamics reduces biases in impact quantification and comparison. The framework addresses key questions around ecological impacts in global change science, namely, how to compare impacts under temporal dynamics across stressors, how to account for stressor interactions in such comparisons, and how to compare the success of management actions over time.  相似文献   

20.
Granger causality (GC) has been widely applied in economics and neuroscience to reveal causality influence of time series. In our previous paper (Hu et al., in IEEE Trans on Neural Netw, 22(6), pp. 829–844, 2011), we proposed new causalities in time and frequency domains and particularly focused on new causality in frequency domain by pointing out the shortcomings/limitations of GC or Granger-alike causality metrics and the advantages of new causality. In this paper we continue our previous discussions and focus on new causality and GC or Granger-alike causality metrics in time domain. Although one strong motivation was introduced in our previous paper (Hu et al., in IEEE Trans on Neural Netw, 22(6), pp. 829–844, 2011) we here present additional motivation for the proposed new causality metric and restate the previous motivation for completeness. We point out one property of conditional GC in time domain and the shortcomings/limitations of conditional GC which cannot reveal the real strength of the directional causality among three time series. We also show the shortcomings/limitations of directed causality (DC) or normalize DC for multivariate time series and demonstrate it cannot reveal real causality at all. By calculating GC and new causality values for an example we demonstrate the influence of one of the time series on the other is linearly increased as the coupling strength is linearly increased. This fact further supports reasonability of new causality metric. We point out that larger instantaneous correlation does not necessarily mean larger true causality (e.g., GC and new causality), or vice versa. Finally we conduct analysis of statistical test for significance and asymptotic distribution property of new causality metric by illustrative examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号