首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Red clover and fish oil (FO) are known to alter ruminal lipid biohydrogenation leading to an increase in the polyunsaturated fatty acid (PUFA) and conjugated linoleic acid (CLA) content of ruminant-derived foods, respectively. The potential to exploit these beneficial effects were examined using eight Hereford × Friesian steers fitted with rumen and duodenal cannulae. Treatments consisted of grass silage or red clover silage fed at 90% of ad libitum intake and FO supplementation at 0, 10, 20 or 30 g/kg diet dry matter (DM). The experiment was conducted with two animals per FO level and treatments formed extra-period Latin squares. Flows of fatty acids at the duodenum were assessed using ytterbium acetate and chromium ethylene diamine tetra-acetic acid as indigestible markers. Intakes of DM were higher (P < 0.001) for red clover silage than grass silage (5.98 v. 5.09 kg/day). There was a linear interaction effect (P = 0.004) to FO with a reduction in DM intake in steers fed red clover silage supplemented with 30 g FO/kg diet DM. Apparent ruminal biohydrogenation of C18:2n-6 and C18:3n-3 were lower (P < 0.001) for red clover silage than grass silage (0.83 and 0.79 v. 0.87 and 0.87, respectively), whilst FO increased the extent of biohydrogenation on both diets. Ruminal biohydrogenation of C20:5n-3 and C22:6n-3 was extensive on both silage diets, averaging 0.94 and 0.97, respectively. Inclusion of FO in the diet enhanced the flow of total CLA leaving the rumen with an average across silages of 0.22, 0.31, 0.41 and 0.44 g/day for 0, 10, 20 or 30 g FO/kg, respectively, with a linear interaction effect between the two silages (P = 0.03). FO also showed a dose-dependent increase in the flow of trans-C18:1 intermediates at the duodenum from 4.6 to 15.0 g/day on grass silage and from 9.4 to 22.5 g/day for red clover silage. Concentrations of trans-C18:1 with double bonds from Δ4-16 in duodenal digesta were all elevated in response to FO in both diets, with trans-11 being the predominant isomer. FO inhibited the complete biohydrogenation of dietary PUFA on both diets, whilst red clover increased the flow of C18:2n-6 and C18:3n-3 compared with grass silage. In conclusion, supplementing red clover silage-based diets with FO represents a novel nutritional strategy for enhancing the concentrations of beneficial fatty acids in ruminant milk and meat.  相似文献   

2.
    
AIMS: To investigate biohydrogenation of linoleic acid by rumen fungi compared with rumen bacteria, and to identify the fungus with the fastest biohydrogenation rate. METHODS AND RESULTS: Biohydrogenation of linoleic acid by mixed rumen fungi and mixed rumen bacteria were compared in vitro. With mixed rumen bacteria, all biohydrogenation reactions were finished within 100 min of incubation and the end product of biohydrogenation was stearic acid. With mixed rumen fungi, biohydrogenation proceeded more slowly over a 24-h period. Conjugated linoleic acid (CLA; cis-9, trans-11 C18 : 2) was an intermediate product, and vaccenic acid (VA; trans-11 C18 : 1) was the end product of biohydrogenation. Fourteen pure fungal isolates were tested for biohydrogenation rate. DNA sequencing showed that the isolate with the fastest rate belonged to the Orpinomyces genus. CONCLUSIONS: It is concluded that rumen fungi have the ability to biohydrogenate linoleic acid, but biohydrogenation is slower in rumen fungi than in rumen bacteria. The end product of fungal biohydrogenation is VA, as for group A rumen bacteria. Orpinomyces is the most active biohydrogenating fungus. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first study to demonstrate that rumen fungi can biohydrogenate fatty acids. Fungi could influence CLA content of ruminant products.  相似文献   

3.
    
The objective of this study was to evaluate the impact of diets enriched with plant oils or seeds, high in polyunsaturated fatty acids (PUFA), on the fatty acid profile of sheep intramuscular and subcutaneous adipose tissue (SAT). Sixty-six lambs were blocked according to initial body weight and randomly assigned to six concentrate-based rations containing 60 g fat/kg dry matter from different sources: (1) Megalac (MG; ruminally protected saturated fat), (2) camelina oil (CO), (3) linseed oil (LO), (4) NaOH-treated camelina seed (CS), (5) NaOH-treated linseed (LS) or (6) CO protected from ruminal saturation by reaction with ethanolamine; camelina oil amides (CA). The animals were offered the experimental diets for 100 days, after which samples of m. longissimus dorsi and SAT were collected and the fatty acid profile determined by GLC. The data were analyzed using ANOVA with 'a priori' contrasts including camelina v. linseed, oil v. NaOH-treated seeds and CS v. CA. Average daily gain and total fatty acids in intramuscular adipose tissue were similar across treatments. The NaOH-treatment of seeds was more effective in enhancing cis-9, trans-11 conjugated linoleic acid (CLA) incorporation than the corresponding oil, but the latter resulted in a higher content of trans-11 18:1 in both muscle neutral and polar lipids (P < 0.01, P < 0.001, respectively). Inclusion of LS resulted in the highest PUFA:saturated fatty acid (SFA) ratio in total intramuscular fat (0.22). The NaOH-treatment of seeds resulted in a higher PUFA/SFA ratio (0.21 v. 0.18, P < 0.001) than oils and on average, linseed resulted in a higher PUFA/SFA ratio than camelina (P < 0.01). Lambs offered LS had the highest concentration of n-3 PUFA in the muscle, while those offered MG had the lowest (P < 0.001). This was reflected in the lowest (P < 0.001) n-6: n-3 PUFA ratio for LS-fed lambs (1.15) than any other treatment, which ranged from 2.14 to 1.72, and the control (5.28). The trends found in intramuscular fat were confirmed by the data for SAT. This study demonstrated the potential advantage from a human nutrition perspective of feeding NaOH-treated seeds rich in PUFA when compared to the corresponding oil. The use of camelina amides achieved a greater degree of protection of dietary PUFA, but decreased the incorporation of biohydrogenation intermediates such as cis-9, trans-11 CLA and trans-11 18:1 compared to NaOH-treated seeds.  相似文献   

4.
Aims: To investigate the ability of selected probiotic bacterial strains to produce conjugated linoleic acid (CLA) and also to estimate the biohydrogenation kinetics of Lactobacillus acidophilus on the production of CLA from free linoleic acid (LA). Methods and Results: Six probiotic bacteria, Lact. paracasei, Lact. rhamnosus GG, Lact. acidophilus ADH, and Bifidobacterium longum B6, Lact. brevis, and Lact. casei, were used to examine their ability to convert LA to CLA. LA tolerance was evaluated by addition of different LA concentrations in MRS broth. Lact. acidophilus showed the major tolerant to LA and the greatest CLA‐producing ability (36–48 μg ml?1 of CLA). The rate‐controlling steps were k2 and k1 for the addition of 1 and 3 mg ml?1 of LA, respectively. The percentage of CLA conversion was higher in MRS broth supplemented with 1 mg ml?1 (65%) than 3 mg ml?1 (26%). Conclusion: The results provide useful information and new approach for understanding the biohydrogenation mechanisms of CLA production. Significance and Impact of the Study: This study would help elucidate the pathway from LA to stearic acid (SA), known as biohydrogenation. In addition, the use of selected probiotic bacteria might lead to a significant improvement in food safety.  相似文献   

5.
    
A database built from 95 experiments with 303 treatments was used to quantify the ruminal biohydrogenation (BH) of fatty acids (FA), efficiency of microbial protein synthesis (EMPS), duodenal flow and intestinal absorption of total FA and of FA with 12 to 18 C units, in response to variations in dietary FA content, source or technological treatment of fat supplement. Flows of FA were expressed relative to dry matter intake (DMI) to compile data from bovine and ovine species. BH tended to increase curvilinearly with FA intake, whereas dietary FA did not affect EMPS. A linear relationship between FA intake and duodenal flow of total FA was obtained, with a coefficient of 0.75 ± 0.06 g duodenal FA/kg DMI for each g FA intake/kg DMI. Between experiments, positive balances of total FA (intake - duodenum) were related to low EMPS. Relationships between duodenal flows of FA with 12 to 18 C units and their respective intakes were linear, with a coefficient that increased with the number of C units. Duodenal flow of bacterial FA was linearly related to FA intake (coefficient 0.33 ± 0.13), whereas contribution of bacterial lipid to duodenal flow decreased as FA intake increased. For each FA with 12 to 16 C units, prediction of FA absorption from its respective duodenal flow was linear. For total FA and FA with 18 C units, apparent absorption levelled off at high duodenal flows. All these relationships were discussed according to current knowledge on microbial metabolism in the rumen and on the intestinal digestibility of FA in the intestine.  相似文献   

6.
7.
    
Dietary and ruminal factors modify the ruminal biohydrogenation (RBH) of polyunsaturated fatty acids (FA), with duodenal FA flows being quantitatively and qualitatively different from FA intake. Using a meta-analysis approach from a database on duodenal flows of FA in ruminants, this study aimed to determine predictive equations for duodenal and absorbed flows of saturated FA, C18:1, C18:2 and C18:3 isomers, odd- and branched-chain FA (OBCFA), C20:5n-3, C22:5n-3 and C22:6n-3 and to quantify the effects of dietary and digestive factors on those equations. The database was divided into four subsets: forage, seed, vegetable oils or animal fats (oil/fat), and fish products (fish) subsets. Models of duodenal and absorbed FA flows were obtained through variance–covariance analysis. Effects of potential interfering factors (conservation mode and botanical families of forages, lipid source, technological processing of lipid supplements, diet composition and animal characteristics) were analysed. We obtained 83 models for duodenal FA flows as a function of FA intake for saturated FA (C14:0, C16:0 and C18:0), C18:1, C18:2 and C18:3 isomers and seven other models for OBCFA. For the seed/oil/fat subset, intakes of total C18:3, C18:2 and starch content increased the duodenal t11-C18:1 flow with 0.08, 0.16 and 0.005 g/kg of dry matter intake (DMI), respectively, whereas intake level [(DMI×100)/BW] decreased it. The c9c12c15-C18:3 RBH was higher for oil/fat than seed (96.7% v. 94.8%) and a protective effect of Leguminosae v. Gramineae against RBH for that FA appeared in the forage subset. The duodenal C17:0 flow increased with starch content and decreased with ruminal pH, respectively, whereas duodenal iso-C16:0 flow decreased with dietary NDF content for the seed/oil/fat subset. The duodenal C20:5n-3, C22:5n-3 and C22:6n-3 flows depended on their respective intake and the inhibitory effect of C22:6n-3 on duodenal C18:0 flow was quantified. Thirteen models of absorbed FA flows were performed depending on their respective duodenal flows. This study determined the effects of different qualitative and quantitative dietary and digestive factors, allowing for improved predictions of duodenal and absorbed FA flows.  相似文献   

8.
We have previously shown that the 9c,11t-conjugated linoleic acid (CLA) concentration was always significantly higher than the 10t,12c-CLA concentration following the administration of these compounds to mice and rats, and considered that structural differences between the conjugated double bonds in these isomers affected absorption in the small intestine. This study investigates the absorption of CLA in the rat intestine by a lipid absorption assay of lymph from the thoracic duct. In Study 1, we used safflower oil and a triacylglycerol form of CLA (CLA-TG), while in Study 2, we used 9c,11t-CLA and 10t,12c-CLA. The cumulative recovery of CLA was lower than that of linoleic acid until two hours after sample administration. There was no difference in the extent of lymphatic recovery of 9c,11t-CLA and 10t,12c-CLA after the administration of CLA-TG, 9c,11t-CLA, and 10t,12c-CLA to the rats, suggesting that geometrical and positional isomerism of the conjugated double bonds did not influence the absorption.  相似文献   

9.
Three groups of six calves each were fed a milk replacer at 0.8 kg and a starter concentrate ad libitum. Calves of the control group received the basal diet supplemented with rapeseed oil at 10 g per kg of feed solids. Calves of treatment groups were fed diets supplemented with a synthetically produced oil containing 62.3% methyl esters of CLA. The CLA-oil was added to milk at expense of rapeseed oil and fed at 5 and 10 g · kg?1 feed solids for 63 days. Calves were slaughtered at 115 days of age. There was no significant effect of CLA on growth, intake of starter, feed conversion, chemical composition of meat and its oxidative stability. Dietary supplementation with CLA at 10 g · kg?1 significantly increased CLA content in m. longissimus dorsi (MLD) from 5.6 to 19.3 mg · 100 g?1, in liver from 13.1 to 68.8 mg · 100 g?1, and in perirenal fat from 0.37 to 3.17 g · 100 g?1. Dietary CLA decreased the ratio of cis-9, trans-11 and trans-10, cis-12 isomers of CLA in tissues, concentration of monounsaturated fatty acids in the MLD and fat, as well as the concentration of fatty acids with 20 and 22 carbon atoms. It can be concluded that in veal calves unprotected CLA apparently escaped ruminal hydrogenation, but was preferentially incorporated into depot fat.  相似文献   

10.
To examine the effects of dietary conjugated linoleic acids (CLA) on lipid metabolism and antioxidant capacity in laying hens, Hy-Line Brown layers (n = 384, 52 weeks old) were randomly allocated to one of four dietary treatments. Each treatment had six replicates of 16 hens each. All birds were assigned to acorn-soybean meal-based diet containing a mixture of CLA at 0%, 1%, 2% or 4% for six weeks. With increasing dietary CLA, egg weight and feed intake decreased, and yolk colour was darkened. Feed efficiency was improved at 1% and 2% dietary CLA. Serum triglyceride concentration was significantly reduced by CLA in a dose dependent manner. A linear decrease in total cholesterol and low-density lipoprotein cholesterol, and an increase in high-density lipoprotein cholesterol levels were observed after CLA supplementation. With increasing dietary CLA, the deposition of two major isomers of CLA (c9, t11; t10, c12) in yolk lipids increased linearly, the proportion of saturated fatty acids increased and monounsaturated fatty acids decreased significantly. The proportion of polyunsaturated fatty acids was highest at 1% CLA. Compared to the control, CLA supplementation significantly increased the activities of superoxide dismutase and glutathione peroxidase, inhibited hydroxyl radicals and superoxide anion production, and decreased the malonaldehyde concentrations in both serum and liver. The results demonstrated that dietary CLA meliorated serum lipid profiles and enhanced the antioxidant capacity of laying hens.  相似文献   

11.
    
Thirty lactating dairy cows were used in a 3 × 3 Latin-square design to investigate the effects of a raw or extruded blend of linseed and wheat bran (70:30) on plasma and milk fatty-acids (FA). Linseed diets, containing 16.6% linseed blend on a dry-matter basis, decreased milk yield and protein percentage. They decreased the proportions of FA with less than 18 carbons in plasma and milk and resulted in cis-9, cis-12, cis-15 18:3 proportions that were more than three and four times higher in plasma and milk, respectively, whereas cis-9, cis-12 18:2 proportions were decreased by 10-15%. The cis-9, trans-11, cis-15 18:3 isomer of conjugated linolenic acid was not detected in the milk of control cows, but was over 0.15% of total FA in the milk fat of linseed-supplemented cows. Similarly, linseed increased plasma and milk proportions of all biohydrogenation (BH) intermediates in plasma and milk, including the main isomer of conjugated linoleic acid cis-9, trans-11 18:2, except trans-4 18:1 and cis-11, trans-15 18:2 in plasma lipids. In milk fat, compared with raw linseed, extruded linseed further reduced 6:0-16:0 even-chain FA, did not significantly affect the proportions of 18:0, cis-9 18:1 and cis-9, cis-12 18:2, tended to increase cis-9, cis-12, cis-15 18:3, and resulted in an additional increase in the proportions of most BH intermediates. It was concluded that linseed addition can improve the proportion of conjugated linoleic and linolenic acids, and that extrusion further increases the proportions of intermediates of ruminal BH in milk fat.  相似文献   

12.
    
Conjugated linoleic acids (CLAs) such as rumenic acid (RA) have the potential to alter blood lipid profiles in animals and in humans. In contrast, physiological effects of conjugated α-linolenic acids (CLnAs), which concomitantly are omega-3 and conjugated fatty acids, are still unknown. The aim of this study was to evaluate the potential of CLnA to interfere in early steps of atherosclerosis by altering lipoprotein profiles and fatty streaks in the aortas. F1B hamsters were fed a control or one of the three hypercholesterolemic (HC) diets: HC-control, HC-RA (18:2 cis-9, trans-11) or HC-CLnA (CLnA: equimolar mixture of 18:3 cis-9, trans-11, cis-15 and cis-9, trans-13, cis-15) diet. In low-cholesterol control-fed hamsters, the proportion of high-density lipoprotein cholesterol (HDL-C) was around 45% while in HC-fed hamsters, HDL-C was around 10% and cholesterol was mostly (80%) carried by triglyceride-rich lipoproteins (TRL). Low-density lipoprotein (LDL) triglycerides (TGs) increased by approximately 60% in hamsters fed either HC-RA or HC-CLnA compared with HC-controls but not compared with the low-cholesterol control diet. HDL cholesterol decreased by 24% and 16% in hamsters fed HC-RA and HC-CLnA, respectively. Small dense LDL-cholesterol increased by approximately 60% in hamsters fed HC-RA and HC-CLnA compared with the HC-control group and by more than a 100% compared with hamsters on the control diet. The relative percentage of liver cholesteryl ester content increased by 88% in hamsters fed HC diets compared with the control diet. Significant differences in fatty streaks were observed between control and HC-diet-fed hamsters. However, no significant difference was observed among the HC-diet-fed hamsters. This study shows that animals fed any one of the HC diets developed an adverse lipoprotein profile compared with a normolipidic diet. Also, HC-RA or HC-CLnA diets altered lipoprotein profile compared with animals fed the HC-control diet but had no beneficial effects on atherosclerosis.  相似文献   

13.
    
From the simultaneous accumulation of hydrogenation intermediates and the disappearance of Isotricha prostoma after algae supplementation, we suggested a role of this ciliate and/or its associated bacteria in rumen biohydrogenation of unsaturated fatty acids. The experiments described here evaluated the role of I. prostoma and/or its associated endogenous and exogenous bacteria in rumen biohydrogenation of C18:2n-6 and its main intermediates CLA c9t11 and C18:1t11. Fractions of I. prostoma and associated bacteria, obtained by sedimentation of rumen fluid sampled from a monofaunated sheep, were used untreated, treated with antibiotics or sonicated to discriminate between the activity of I. prostoma and its associated bacteria, the protozoan or the bacteria, respectively. Incubations were performed in triplicate during 6 h with unesterified C18:2n-6, CLA c9t11 or C18:1t11 (400 μg/ml) and 0.1 g glucose/cellobiose (1/1, w/w). I. prostoma did not hydrogenate C18:2n-6 or its intermediates whereas bacteria associated with I. prostoma converted a limited amount of C18:2n-6 and CLA c9t11 to trans monoenes. C18:1t11 was not hydrogenated by either I. prostoma or its associated bacteria but was isomerized to C18:1c9. A phylogenetic analysis of clones originating from Butyrivibrio-specific PCR product was performed. This indicated that 71% of the clones from the endogenous and exogenous community clustered in close relationship with Lachnospira pectinoschiza. Additionally, the biohydrogenation activity of solid-associated bacteria (SAB) and liquid-associated bacteria (LAB) was examined and compared with the activity of the non-fractioned I. prostoma monofaunated rumen fluid (LAB + SAB). Both SAB and LAB were involved in rumen biohydrogenation of C18:2n-6. SAB fractions performed the full hydrogenation reaction to C18:0 while C18:1 fatty acids, predominantly C18:1t10 and C18:1t11, accumulated in the LAB fractions. SAB and LAB sequence analyses were mainly related to the genera Butyrivibrio and Pseudobutyrivibrio with 12% of the SAB clones closely related to the C18:0 producing B. proteoclasticus branch. In conclusion, this work suggests that I. prostoma and its associated bacteria play no role in C18:2n-6 biohydrogenation, while LAB convert C18:2n-6 to a wide range of C18:1 fatty acids and SAB produce C18:0, the end product of rumen lipid metabolism.  相似文献   

14.
    
Feeding dietary supplements containing trans-10, cis-12-conjugated linoleic acid (t10,c12-CLA) has been shown to induce milk fat depression in cows, ewes and goats. However, the magnitude of the response is apparently less pronounced in lactating goats. The objective of this study was to evaluate the effects of increasing doses of CLA methyl esters (CLA-ME) on milk production, composition and fatty-acid profile of dairy goats. Eight Toggenburg goats were separated in two groups (four primiparous and four multiparous) and received the following dietary treatments in a 4×4 Latin Square design: CLA0: 45 g/day of calcium salts of fatty acids (CSFA); CLA15; 30 g/day of CSFA+15 g/day of CLA-ME; CLA30: 15 g/day of CSFA+30 g/day of CLA-ME; and CLA45: 45 g/day of CLA-ME. The CLA-ME supplement (Luta-CLA 60) contained 29.9% of t10,c12-CLA; therefore, the dietary treatments provided 0, 4.48, 8.97 and 13.45 g/day of t10,c12-CLA, respectively. Feed intake, milk production, concentration and secretion of milk protein and lactose, body condition score and body weight were unaffected by the dietary treatments. Milk fat secretion was reduced by 14.9%, 30.8% and 40.5%, whereas milk fat concentration was decreased by 17.2%, 33.1% and 40.7% in response to CLA15, CLA30 and CLA45, respectively. Secretions of both de novo synthesized and preformed fatty acids were progressively reduced as the CLA dose increased, but the magnitude of the inhibition was greater for the former. There was a linear reduction in most milk fat desaturase indexes (14:1/14:0, 16:1/16:0, 17:1/17:0 and 18:1/18:0). Milk fat t10,c12-CLA concentration and secretion increased with the CLA dose, and its apparent transfer efficiency from diet to milk was 1.18%, 1.17% and 1.21% for CLA15, CLA30 and CLA45 treatments, respectively. The estimated energy balance was linearly improved in goats fed CLA.  相似文献   

15.
Abstract

The main objective of this study was to evaluate the influence of diets enriched in individual conjugated linoleic acid (CLA) isomers, their mixture, and/or selenized yeast (Se-yeast) on the concentration of CLA isomers, long-chain polyunsaturated fatty acids (PUFA) and Se in the heart, muscles and liver of rats. The investigation was performed on 73 female Wistar rats (8 weeks of age, 200 g initial BW). After one week sub-maintenance feeding, rats received diets supplemented with 1% individual CLA isomers or 1 or 2% of a CLA isomers mixture, without or with 1.2 mg Se/kg (as Se-yeast) for 29 days. Feeding diets with 2% CLA isomer mixture reduced feed intake and body weight gain of rats, while addition of trans10,cis12 CLA and Se-yeast resulted in the highest body weight gain. CLA supplementation generally elevated the concentration of CLA isomers in heart and muscles significantly, although cis9,trans11 CLA accumulated preferentially. Regardless of the presence of Se-yeast, the dietary enrichment with CLA isomers caused a reduction in the capacity of Δ9-desaturase. Addition of Se-yeast to diets with individual CLA isomers or a 1% mixture of CLA isomers elevated the accumulation of CLA isomers in the heart and muscles, whereas all treatments with supplemented CLA and Se-yeast increased the accumulation of Se in rats compared with animals fed the diet containing Se only. Furthermore, CLA isomer supplementation decreased the concentration of PUFA and total fatty acids in the heart and muscles compared with control rats. Moreover, addition of CLA isomers interfered in the conversion of linoleic and linolenic acids to higher metabolites due to competition of CLA isomers for the same enzymes (Δ6-, Δ5-, Δ4-desaturases and elongase).  相似文献   

16.
AIMS: To identify a ruminal isolate which transforms oleic, linoleic and linolenic acids to stearic acid and to identify transient intermediates formed during biohydrogenation. METHODS AND RESULTS: The stearic acid-forming bacterium, isolated from the rumen of a grazing cow, was a Gram-negative motile rod which utilized a range of growth substrates including starch and pectin but not cellulose or xylan. From its 16S rRNA gene sequence, the isolate was identified as a strain of Butyrivibrio hungatei. During conversion of linoleic acid, 9,11-conjugated linoleic acid formed as a transient intermediate before trans-vaccenic acid accumulated together with stearic acid. Unlike previously studied ruminal biohydrogenating bacteria, B. hungatei Su6 was able to convert alpha-linolenic acid to stearic acid. Linolenic acid was converted to stearic via conjugated linolenic acid, linoleic acid and trans-vaccenic acid as intermediates. Oleic acid and cis-vaccenic acid were converted to a series of trans monounsaturated isomers as well as stearic acid. An investigation of these isomers indicated that mixed trans positional isomers are intermediate in the biohydrogenation of cis monounsaturated fatty acids to stearic acid. CONCLUSION: This, the first rigorous identification and characterization of a ruminal bacterium which forms stearic acid, shows that B. hungatei plays an important role in unsaturated fatty acid transformations in the rumen. SIGNIFICANCE AND IMPACT OF THE STUDY: Biohydrogenating bacteria which convert C18 unsaturated fatty acids to stearic acid have not been available for study for many years. Access to B. hungatei Su6 now provides a fresh opportunity for understanding biohydrogenation mechanisms and rumen processes which lead to saturated fat in ruminant products.  相似文献   

17.
Although fat content in usual ruminant diets is very low, fat supplements can be given to farm ruminants to modulate rumen activity or the fatty acid (FA) profile of meat and milk. Unsaturated FAs, which are dominant in common fat sources for ruminants, have negative effects on microbial growth, especially protozoa and fibrolytic bacteria. In turn, the rumen microbiota detoxifies unsaturated FAs (UFAs) through a biohydrogenation (BH) process, transforming dietary UFAs with cis geometrical double‐bonds into mainly trans UFAs and, finally, into saturated FAs. Culture studies have provided a large amount of data regarding bacterial species and strains that are affected by UFAs or involved in lipolysis or BH, with a major focus on the Butyrivibrio genus. More recent data using molecular approaches to rumen microbiota extend and challenge these data, but further research will be necessary to improve our understanding of fat and rumen microbiota interactions.  相似文献   

18.
    
Rumen biohydrogenation of dietary α-linolenic acid gives rise in ruminants to accumulation of fatty acid intermediates, some of which may be transferred into milk. Rumelenic acid [cis-9 trans-11 cis-15 C18:3 (RLnA)] has recently been characterized, but other C18:3 minor isomers are still unknown. The objective of this work was to identify a new isomer of octatridecenoic acid present in milk fat from ewes fed different sources of α-linolenic acid. Structural characterization of this fatty acid was achieved by GC-MS. Analysis of dimethyloxazoline and picolinyl ester derivatives allowed for location of the double bond positions. Covalent adduct chemical ionization tandem mass spectrometry confirmed the positional structure 9-11-15, identical to RLnA, and helped to establish double bond geometry (cis-trans-trans). This new C18:3 isomer could be formed by isomerization of cis-15 bond of RLnA and subsequently converted by hydrogenation to trans-11 trans-15 C18:2, an octadecadienoic acid also detected in this study.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号