首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have pharmacologically characterized voltage sensitive calcium channels (VSCCs) in GH3 cells, an anterior pituitary clonal cell line known to secrete prolactin and growth hormone. Raising the medium K+ concentration from 5 to 50 mM caused an immediate increase in net 45Ca2+ uptake which remained apparent over a 15 minute time course. 45Ca2+ uptake was maximally stimulated nearly 10-fold over basal levels. This K+-induced stimulation of Ca2+ uptake was not prevented by 10-5M tetrodotoxin or by replacing sodium with choline in the assay medium. Ca2+ uptake was, however, inhibited by several VSCC antagonists: nitrendipine, D-600, diltiazem and Cd2+. Further, the novel dihydropyridine VSCC agonists, BAY K8644 and CGP 28392, enhanced 50 mM K+-stimulated 45Ca2+ uptake and these effects were blocked by nitrendipine.  相似文献   

2.
Abstract: Methyl 1,4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoromethylphenyl)-pyridine-5-carboxylate (BAY K 8644), an analog of dihydropyridine calcium channel antagonists, stimulated 45Ca uptake into PC12 pheochromocytoma cells. Half-maximal stimulation occurred at 80 n M BAY K 8644. Enhancement of uptake was inhibited by cationic and organic calcium channel blockers, but not by tetrodotoxin, which is consistent with an effect on voltage-dependent calcium channels. Stimulation of 45Ca uptake by BAY K 8644 occurred only at elevated concentrations of extracellular K+, suggesting that BAY K 8644 may interact with calcium channels in the open (activated) state.  相似文献   

3.
K+-stimulated 45Ca2+ uptake into rat brain and guinea pig cerebral cortex synaptosomes was measured at 10 s and 90 s at K+ concentrations of 5-75 mM. Net increases in 45Ca2+ uptake were observed in rat and guinea pig brain synaptosomes. 45Ca2+ uptake under resting or depolarizing conditions was not increased by the 1,4-dihydropyridine BAY K 8644, which has been shown to activate Ca2+ channels in smooth and cardiac muscle. High-affinity [3H]nitrendipine binding in guinea pig synaptosomes (KD = 1.2 X 10(-10) M, Bmax = 0.56 pmol mg-1 protein) was competitively displaced with high affinity (IC50 2.3 X 10(-9) M) by BAY K 8644. Thus high-affinity Ca2+ channel antagonist and activator binding sites exist in synaptosome preparations, but their relationship to functional Ca2+ channels is not clear.  相似文献   

4.
Calcium and BAY K 8644 acutely stimulate calcitonin secretion by influx of extracellular calcium (Ca) through voltage-dependent calcium channels, leading to an increase in cytosolic free Ca. Repetitive exposure to BAY K 8644 (10(-6) M) resulted in an increase in calcitonin (CT) secretion in the rat C-cell line (rMTC 6-23) lasting 9 hours, in comparison to that of 3 mM Ca2+ which lasted 6 hours. Equimolar concentration of nifedipine did not inhibit the stimulatory effect of BAY K 8644 as compared to the nifedipine only group. The decrease in stimulated CT secretion during long-term exposure to BAY K 8644 is due to desensitization of cells which may be attributed to down-regulation of dihydropyridine receptors. After 12 h exposures to 3 mM Ca2+ alone, BAY K 8644 (10(-6) M) alone or in combination with nifedipine (10(-6) M), CT content decreased below the control level, indicating a decrease in synthesis. Overall cellular protein content was not affected by the test agents. Repetitive exposure of C-cells to BAY K 8644 revealed a desensitization of the stimulatory effect on CT secretion and a decrease in CT cell content.  相似文献   

5.
Dihydropyridine sensitive calcium channels in a smooth muscle cell line   总被引:1,自引:0,他引:1  
The pharmacological properties of voltage sensitive calcium channels (VSCC) were examined in a rat aortic smooth muscle cell line (A10). The inorganic VSCC blockers Co2+ and Cd2+ blocked 45Ca2+ uptake into these cells in both 5 mM K+ and 50 mM K+ (depolarizing) conditions. The organic VSCC antagonists nitrendipine, nimodipine, D-600 and diltiazem also blocked 45Ca2+ uptake at low concentrations. The relative potencies of blockade were similar to those found in intact vascular smooth muscle. The VSCC "agonist" BAY K8644 enhanced 45Ca2+ uptake and this effect could be reversed by nitrendipine. These results indicate that A10 cells possess VSCC and that these VSCC behave similarly to those in authentic smooth muscle.  相似文献   

6.
Depolarization of differentiated neuroblastoma X glioma (NG108-15) cells with KCl (50 mM) or veratridine (50 microM) stimulated Ca2+ accumulation, was detected by quin 2 fluorescence. Intracellular Ca2+ concentrations ([Ca2+]i) were elevated about threefold from 159 +/- 7 to 595 +/- 52 nM (n = 12). Ca2+ entry evoked by high extracellular K+ concentration ([K+]o) was voltage-dependent and enhanced by the dihydropyridine agonists, BAY K 8644 and CGP 28 392, in a dose-dependent manner. CGP 28 392 was less potent and less efficacious than BAY K 8644. The (+) and (-) stereoisomers of 202-791 showed agonist and antagonist properties, respectively. (+)-202-791 was less potent, but as efficacious as BAY K 8644. In the absence of KCl, BAY K 8644 had no effect on Ca2+ entry. Voltage-sensitive calcium channel (VSCC) activity was blocked by organic Ca2+ channel antagonists (nanomolar range) both before and after KCl treatment and also by divalent metal cations (micromolar range). High [K+]o-induced Ca2+ accumulation was dependent on external Ca2+, but not on external Na+ ions ([Na]o), and was insensitive to both tetrodotoxin (3 microM) and tetraethylammonium (10 microM). In contrast, veratridine-induced Ca2+ accumulation required [Na+]o, and was blocked by tetrodotoxin, but not by nimodipine (1 microM). Veratridine-induced Ca2+ accumulation was slower (approximately 45 s), smaller in magnitude (approximately 30% of [K+]o-induced Ca2+ entry), and also enhanced by BAY K 8644 (approximately 50%). VSCC were identified in neuronal hybrid (NG108-15 and NCB-20) cells, but not in glial (C6BU-1), renal epithelial (MDCK), and human astrocytoma (1321N1) cells. NG108-15 cells differentiated with 1.0 mM dibutyryl cyclic AMP showed greater VSCC activity than undifferentiated cultures. These results suggest that cultured neural cells provide a useful system to study Ca2+ regulation via ion channels.  相似文献   

7.
The effects of the three dihydropyridine calcium channel agonists (+/-)BAY K 8644, (+)202-791 and (+/-)CGP 28392 on 45Ca++ uptake were studied in cultures of rabbit aortic smooth muscle cells. At 10(-7) M each agonist enhanced 45Ca++ uptake in 15-50 mM K+ but had no effect on the basal 45Ca++ uptake at 5 mM K+. At the uptake threshold of 15 mM K+ each agonist potentiated 45Ca++ uptake in a dose-dependent manner with half maximal effects at 2.4 nM for (+/-)BAY K 8644, 22 nM for (+)202-791 and 18 nM for (+/-)CGP 28392. The agonists showed no significant antagonistic activity. Responses were antagonized competitively by nifedipine and non-competitively by (+/-)D-600. The 45Ca++ uptake dose-response curves and the half maximal effects of the three agonists were over the same range of concentrations as their inhibition of [3H]nitrendipine binding to rat ventricular receptor membrane preparations. The data suggest that these cells mimic the calcium uptake by the intact aorta better than commercial vascular smooth muscle lines or cardiac cells.  相似文献   

8.
Depolarization of PC-12 pheochromocytoma cells with K+ produces an immediate increase in catecholamine release. The stimulation of release is blocked by Co2+, removal of extracellular Ca2+ or by dihydropyridine drugs such as nitrendipine. Release is enhanced by other dihydropyridines such as BAY K8644. Release is accompanied by a voltage dependent uptake of 45Ca2+ which is also blocked by Co2+ or nitrendipine and enhanced by BAY K8644. The phorbol ester phorbol 12-myristate-13-acetate (TPA) in the range 10(-9)-10(-6) M produced little effect by itself but augmented the K+ evoked release of catecholamine. An analog of TPA which does not activate protein kinase C was ineffective. In contrast, TPA in the same concentration range blocked influx of 45Ca2+ induced by 70 mM K+ or 70 mM K+/BAY K8644. 45Ca2+ influx produced by A23187 was not blocked by TPA. The results suggest a system by which protein kinase C may regulate the output of transmitters from secretory cells.  相似文献   

9.
Cadmium uptake and toxicity via voltage-sensitive calcium channels   总被引:14,自引:0,他引:14  
The mechanism of cellular uptake of cadmium, a highly toxic metal ion, is not known. We have studied cadmium uptake and toxicity in an established secretory cell line, GH4C1, which has well characterized calcium channels. Nimodipine, an antagonist of voltage-sensitive calcium channels, protected cells against cadmium toxicity by increasing the LD50 for CdCl2 from 15 to 45 microM, whereas the calcium channel agonist BAY K8644 decreased the LD50. Organic calcium channel blockers of three classes protected cells from cadmium toxicity at concentrations previously shown to block high K+-induced 45Ca2+ influx and secretion. Half-maximal protective effects were obtained at 20 nM nifedipine, 4 microM verapamil, and 7 microM diltiazem. Increasing the extracellular calcium concentration from 20 microM to 10 mM also protected cells from cadmium by causing a 5-fold increase in the LD50 for CdCl2. Neither the calcium channel antagonist nimodipine nor the agonist BAY K8644 altered intracellular metallothionein concentrations, while cadmium caused a 9-20-fold increase in metallothionein over 18 h. Cadmium was a potent blocker of depolarization-stimulated 45Ca2+ uptake (IC50 = 4 microM), and the net uptake of cadmium measured with 109Cd2+ was less than 0.3% that of calcium. Although the rate of cadmium uptake was low relative to that of calcium, entry via voltage-sensitive calcium channels appeared to account for a significant portion of cadmium uptake; 109Cd2+ uptake at 30 min was increased 57% by high K+/BAY K8644, which facilitates entry through channels. Furthermore, calcium channel blockade with 100 nM nimodipine decreased total cell 109Cd2+ accumulation after 24 h by 63%. These data indicate that flux of cadmium through dihydropyridine-sensitive, voltage-sensitive calcium channels is a major mechanism for cadmium uptake by GH4C1 cells, and that pharmacologic blockade of calcium channels can afford dramatic protection against cadmium toxicity.  相似文献   

10.
The effect of the calcium channel agonist BAY K 8644 on the ability of KCl and norepinephrine to induce contractions of rabbit aortic rings has been examined in Krebs-Henseleit buffer containing either 4.0 or 6.8 mM potassium. BAY K 8644 (10(-8) to 10(-6) M) alone induced slowly developing aortic contractures which were 10 (at 4.0 mM potassium) or 20 (at 6.8 mM potassium) percent of the maximum obtainable with norepinephrine. These contractions were not observed in every experiment, but were more likely to occur at 6.8 mM (71% at 10(-6) M BAY K 8644) when compared to 4.0 mM (31% at 10(-6) M BAY K 8644) potassium buffer. BAY K 8644, in either potassium buffer, induced a statistically significant shift to the left in the norepinephrine dose-response curve. The norepinephrine dose-response curve was significantly curvilinear in the presence of 3 X 10(-8) M BAY K 8644 (6.8 mM potassium) and 10(-6) M BAY K 8644 (4.0 mM potassium). Similarly, BAY K 8644 induced sinistral shifts in the KCl dose-response curve with a curvilinear function observed at 3 X 10(-7) M BAY K 8644. These data show that BAY K 8644 is capable of inducing aortic contractures at potassium concentrations significantly lower than previously reported. Furthermore, BAY K 8644 facilitates opening of calcium channels by either potassium or norepinephrine. In contrast to others, our data indicates that BAY K 8644 can affect calcium channels activated by norepinephrine. Finally, our data suggest that the alpha and dihydropyridine receptors are capable of interacting and that occupation of one receptor can affect the action of a compound binding to the other receptor.  相似文献   

11.
《The Journal of cell biology》1990,111(6):2543-2552
The mechanisms of Ca2+ entry and their effects on cell function were investigated in cultured chicken osteoclasts and putative osteoclasts produced by fusion of mononuclear cell precursors. Voltage-gated Ca2+ channels (VGCC) were detected by the effects of membrane depolarization with K+, BAY K 8644, and dihydropyridine antagonists. K+ produced dose- dependent increases of cytosolic calcium ([Ca2+]i) in osteoclasts on glass coverslips. Half-maximal effects were achieved at 70 mM K+. The effects of K+ were completely inhibited by dihydropyridine derivative Ca2+ channel blocking agents. BAY K 8644 (5 X 10(-6) M), a VGCC agonist, stimulated Ca2+ entry which was inhibited by nicardipine. VGCCs were inactivated by the attachment of osteoclasts to bone, indicating a rapid phenotypic change in Ca2+ entry mechanisms associated with adhesion of osteoclasts to their resorption substrate. Increasing extracellular Ca2+ ([Ca2+]e) induced Ca2+ release from intracellular stores and Ca2+ influx. The Ca2+ release was blocked by dantrolene (10(-5) M), and the influx by La3+. The effects of [Ca2+]e on [Ca2+]i suggests the presence of a Ca2+ receptor on the osteoclast cell membrane that could be coupled to mechanisms regulating cell function. Expression of the [Ca2+]e effect on [Ca2+]i was similar in the presence or absence of bone matrix substrate. Each of the mechanisms producing increases in [Ca2+]i, (membrane depolarization, BAY K 8644, and [Ca2+]e) reduced expression of the osteoclast-specific adhesion structure, the podosome. The decrease in podosome expression was mirrored by a 50% decrease in bone resorptive activity. Thus, stimulated increases of osteoclast [Ca2+]i lead to cytoskeletal changes affecting cell adhesion and decreasing bone resorptive activity.  相似文献   

12.
The activation of the action potential Na+ ionophore by veratridine and batrachotoxin is time- and concentration-dependent and completely reversible. Batrachotoxin acts more slowly than veratridine. The concentration dependence of activation at equilibrium suggests reversible interaction of each toxin with a single class of independent sites having dissociation constants at physiologic ion concentrations of 80 plus or minus 13 muM for veratridine and 0.4 plus or minus muM for batrachotoxin. The maximum velocity of Na+ uptake at 50 mM Na+ is 128 plus or minus 12 nmol/min/mg in the presence of batrachotoxin compared to 48 plus or minus 4 nmol/min/mg in the presence of veratridine. Treatment of cells with excess veratridine in addition to batrachotoxin inhibits batrachotoxin-dependent 22-Na+ uptake. The concentration dependence of this inhibition suggests that it reflects competitive displacement of batrachotoxin from its binding site by veratridine. The activation by veratridine and batrachotoxin is inhibited in a competitive manner by divalent cations. The inhibition by divalent cations exhibits significant ion specificity with Mn-2+ greater than Co-2+ greater than Ni-2+ greater than Ca-2+ greater than Mg-2+ greater than Sr-2+. The inhibition constants (KI) for Ca-2+ are 0.84 mM for veratridine-dependent 22-Na+ uptake and 1.2 mM for batrachotoxin-dependent 22-Na+ uptake. The activation by veratridine and batrachotoxin is inhibited in a noncompetitive manner by tetrodotoxin. The apparent KD for tetrodotoxin as 11 plus or minus 1 nM in the presence of 150 mM Na+ and approximately 8.5 nM in 50 mM Na+. Divalent cations do not affect the apparent KD for tetrodotoxin. A hypothesis is presented which suggests that batrachotoxin, veratridine, and divalent cations interact with an activation site associated with the action potential Na+ ionophore, whereas tetrodotoxin interacts with a physically and functionally independent site involved in the transport of monovalent cations by the ionophore.  相似文献   

13.
Gastric mucosal calcium channel complex was isolated from the solubilized epithelial cell membranes by affinity chromatography on wheat germ agglutinin. The complex following labeling with [3H]PN200-100 was reconstituted into phospholipid vesicles which exhibited active 45Ca2+ uptake. The channels responded in a dose dependent manner to dihydropyridine calcium antagonist, PN200-110, which at 0.5 microM exerted maximal inhibitory affect of 66% on 45Ca2+ uptake, while a 52% enhancement in 45Ca2+ uptake occurred with a specific calcium channel activator, BAY K8644. On platelet-derived growth factor (PDGF) binding in the presence of ATP, channels showed an increase in protein tyrosine phosphorylation of 55 and 170kDa subunits of calcium channel. Such phosphorylated channels following reconstitution into vesicles displayed a 78% greater 45Ca2+ uptake. The results point towards the importance of PDGF in the regulation of gastric mucosal calcium homeostasis.  相似文献   

14.
A dihydropyridine-sensitive gastric mucosal calcium channels were isolated from the solubilized epithelial cell membranes by affinity chromatography on wheat germ agglutinin. The channels following labeling the calcium antagonist receptor site with [3H]PN200-100 were reconstituted into phospholipid vesicles which exhibited active 45Ca2+ uptake as evidenced by La3+ displacement assays. The uptake of calcium was independent of sodium and potassium gradients indicating the electroneutral nature of the process. The channels responded in a dose dependent manner to dihydropyridine calcium antagonist, PN200-110, which at 0.5 microns exerted maximal inhibitory affect of 66% on 45Ca2+ uptake, while a 52% enhacement in 45Ca2+ uptake occurred with a specific calcium channel activator, BAY K8644. On platelet-derived growth factor (PDGF) binding in the presence of ATP, channel protein showed an increase in tyrosine phosphorylation of 55 and 170 kDa calcium channel proteins. Such phosphorylated channels following reconstitution into vesicles displayed a 78% greater 45Ca2+ uptake. The results demonstrate the importance of PDGF in the regulation of gastric mucosal calcium uptake.  相似文献   

15.
The effect of dihydropyridine calcium agonists and antagonists on 45Ca2+ uptake into primary neuronal cell cultures was investigated. K+ stimulated neuronal 45Ca2+ accumulation in a concentration dependent manner. This effect was further enhanced by the calcium agonists Bay K 8644 and (+)-(S)-202-791 with EC50 values of 21 nM and 67 nM respectively. The calcium antagonists PN 200-110 and (-)-(R)-202-791 inhibited Bay K 8644 (1 microM) stimulated uptake with IC50 values of 20 nM and 130 nM respectively. 45Ca2+ efflux from neuronal cells was measured in the presence and absence of Na+. Efflux occurred at a much greater rate from cells incubated in the presence of Na+, indicating the existence of an active Na+/Ca2+ exchanger in these neurons. The data suggests that voltage sensitive calcium channels of these neurons are sensitive to dihydropyridines and thus that dihydropyridine binding sites have a functional role in these neuronal cultures.  相似文献   

16.
The effect of dihydropyridine agonists and antagonists on neuronal voltage sensitive calcium channels was investigated. The resting intracellular calcium concentration of synaptosomes prepared from whole brain was 110 +/- 9 nM, as assayed by the indicator quin 2. Depolarisation of the synaptosomes with K+ produced an immediate increase in [Ca2+]i. The calcium agonist Bay K 8644 and antagonist nifedipine did not affect [Ca2+]i under resting or depolarising conditions. In addition, K+ stimulated 45Ca2+ uptake into synaptosomes prepared from the hippocampus was insensitive to Bay K 8644 and PY 108-068 in normal or Na+ free conditions. In neuronally derived NG108-15 cells the enantiomers of the dihydropyridine derivative 202-791 showed opposite effects in modulating K+ stimulated 45Ca2+ uptake. (-)-R-202-791 inhibited K+ induced 45Ca2+ uptake with an IC50 of 100 nM and (+)-S-202-791 enhanced K+ stimulated uptake with an EC50 of 80 nM. These results suggest that synaptosomal voltage sensitive calcium channels either are of a different type to those found in peripheral tissues and cells of neural origin or that expression of functional effects of dihydropyridines requires different experimental conditions to those used here.  相似文献   

17.
The permeability of neuronal membranes to Ca2+ is of great importance for neurotransmitter release. The temporal characteristics of Ca2+ fluxes in intact brain neurons have not been completely defined. In the present study 45Ca2+ was used to examine the kinetics of Ca2+ influx and efflux from unstimulated and depolarized rat brain neurons in culture. Under steady-state conditions three cellular exchangeable Ca2+ pools were identified in unstimulated cells: 1) a rapidly exchanging pool (t1/2 = 7 s) which represented about 10% of the total cellular Ca2+ and was unaffected by the presence of Co2+, verapamil, or tetrodotoxin; 2) a slowly exchanging pool (t1/2 = 360 s) which represented 42% of the total cellular Ca2+ and was inhibited by Co2+, but not by verapamil or tetrodotoxin; 3) a very slowly exchanging pool (t1/2 = 96 min) which represented 48% of the total cell Ca2+ was observed only in the prolonged efflux experiments. The rate of exchange of 45Ca2+ in the unstimulated cells was dependent on the extracellular Ca2+ concentration (half-saturation at 70 microM). Depolarization of the neurons with elevated K+ causes a rapid and sustained 45Ca2+ uptake. The cellular Ca2+ content increased from 56 nmol/mg protein in unstimulated cells to 81 nmol/mg protein during 5 min of depolarization. The kinetics of the net 45Ca2+ uptake by the stimulated neurons was consistent with movement of the ion with a first order rate constant of 0.0096 s-1 (t1/2 = 72 s) into a single additional compartment. The other cellular Ca2+ pools were apparently unaffected by stimulation. The stimulated 45Ca2+ uptake was inhibited by Co2+ and by the Ca2+ channel blocker verapamil but not by the Na+ channel blocker tetrodotoxin. Ca2+ uptake into this compartment was dependent on the extracellular Ca2+ concentration (half-saturation at 0.80 mM Ca2+). Predepolarization of the cells with high K+ for 10-60 s prior to the addition of the radioactive calcium did not alter the rate of 45Ca2+ incorporation into the stimulated cells. It is concluded that the rapidly exchanging, the slowly exchanging, and the depolarization-induced Ca2+ pools observed in intact brain neurons are physically as well as kinetically distinct from each other. In addition, the depolarization-induced component observed in stimulated cells represents movement of the Ca2+ ions through a single class of voltage-sensitive Ca2+ channels. These Ca2+ channels are inhibited by Co2+ ions and by verapamil and are not inactivated during depolarization of the brain neurons.  相似文献   

18.
We have studied the interaction between dihydropyridine (DHP) Ca2+ modulators and the phorbol ester phorbol 12-myristate 13-acetate (PMA) on whole cell Ca2+ currents, 45Ca2+ uptake, immediate early gene (IEG) expression, and proliferation in the rat pituitary GH4C1 cell line. When short (3- to 5-msec) depolarizing voltage clamp steps were used to activate L-type Ca2+ channels, the DHP Ca2+ agonist (-)Bay K 8644 markedly enhanced Ca2+ entry by slowing channel closing upon repolarization. In contrast, the Ca2+ agonist induced only small and inconsistent increases in c-fos mRNA and did not measurably increase NGFI-A. Ca2+ channel activation by depolarization with 50 mM KCl in the presence of (-)Bay K 8644 induced large increases in 45Ca2+ uptake, but failed to markedly induce either of the IEGs. The phorbol ester PMA did not alter T- or L-type Ca2+ current or 45Ca2+ uptake by GH4C1 cells, but triggered large increases in both c-fos and NGFI-A mRNA. In combination, PMA and (-)Bay K 8644 acted synergistically to increase mRNAs for both IEGs. The effect of the DHPs was stereospecific; (+)Bay K 8644, a Ca2+ antagonist, inhibited PMA-induced increases in c-fos and NGFI-A mRNAs. Both PMA and (-)Bay K 8644 inhibited the proliferation of GH4C1 cells, measured by cell count or [3H]thymidine incorporation. The inhibition by the Ca2+ agonist was stereoselective and approximately additive to that of PMA. These results indicate that the expression of c-fos IEG and that of NGFI-A IEG are differentially regulated by separate second messenger pathways in GH4C1 cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The voltage-sensitive calcium channel in cultured chick neural retina cells was characterized by the actions of the enantiomers of Bay K 8644 and 202-791 and other 1,4-dihydropyridines. These cells showed time- and voltage-dependent Ca2+ uptake that was stimulated by K+ depolarization and blocked by the inorganic calcium channel blockers Cd2+ and Co2+. A small fraction only (15% maximum) of the uptake was inactivated by predepolarization of the cells with 80 mM K+. Ca2+ uptake was sensitive to the 1,4-dihydropyridine calcium channel antagonists and activators. (S)-Bay K 8644 and (S)-202-791 stimulated the Ca2+ uptake, and (R)-Bay K 8644 and (R)-202-791 as well as nitrendipine and PN 200-110 inhibited Ca2+ uptake stimulated by K+ depolarization or channel activators. The K+ depolarization-stimulated uptake was inhibited by 90%, but the activator-stimulated uptake was completely blocked by the 1,4-dihydropyridine antagonists. The potencies of these agents as inhibitors of Ca2+ uptake were significantly lower than the binding affinities in membrane preparations from the same cells or their binding and pharmacologic affinities in vascular smooth muscle. K+ depolarization or (S)-Bay K 8644 induced 45Ca2+ uptake was not observed in a glial cell culture. [3H]Nitrendipine and [3H]PN 200-110 bound to membrane preparations of the cells consistent with the presence of a single type of high affinity binding site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The potent marine toxin, maitotoxin, induced the release of gamma-[3H]aminobutyric acid (GABA) from reaggregate cultures of striatal neurons in a dose-dependent manner. Maitotoxin-induced release occurred following a lag period of several minutes and was persistent. Release induced by 70 mM K+ on the other hand was immediate and transient in nature. Co2+ (3 mM) and Cd2+ (1 mM) inhibited maitotoxin-induced release of GABA as did removal of extracellular Ca2+. However, the organic calcium antagonists nisoldipine, nitrendipine, and D-600 at concentrations of 10(-6) M did not block maitotoxin-induced or 70 mM K+-induced release. High concentrations of D-600 (10(-4) M) partially blocked both maitotoxin- and 70 mM K+-induced release. The dihydropyridine calcium agonist BAY K8644 (10(-6) M) did not enhance maitotoxin-induced or 70 mM K+-induced release. Replacement of Na+ in the incubation medium with choline led to an increased basal output of GABA and an apparent inhibition of the effect of maitotoxin. These data are discussed with reference to the hypothesis that maitotoxin can directly activate voltage-sensitive calcium channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号