首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary In order to study the effects of strainploidy on the transmission and recombination of the mitochondrial genes C, E and O conferring the resistance to chloramphenicol, erythromycin and oligomycin, respectively, haploids were crossed to diploids and the results of genetic analysis were compared with those from haploidxhaploid crosses. All haploidx diploid crosses showed an increased transmission of diploid derived alleles, relative to haploid derived ones, but the pattern of increase differed between homosexual and heterosexual crosses. In haploid x diploid homosexual crosses, the increase was of roughly equal magnitude at the C, E and O loci: there was a polar co-transmission of the diploid derived alleles. In + haploid x diploid heterosexual crosses, on the contrary, a differential increase was observed at the different loci, the magnitude being the smallest at the C locus and the largest at the O locus. As a result, there was a preferential transmission in favor of the haploid derived C alleles and of the diploid derived O alleles. A near equal transmission from both parents was observed for the E alleles. A decrease and an increase in the recombination frequency were noticed in the above haploidxdiploid homosexual and heterosexual crosses, respectively.The above phenomena were ascribed to different dosages of mitochondrial genomes from parents. Experimental data were well accorded with the theoretical expectations which were obtained on the assumptions that diploids contain twice as many mitochondrial genomes as haploids, and that random pairing and recombination would occur among mitochondrial genomes from parents. The elevation of strain-ploidy did not affect the recombination polarity which is under the control of the gene.It was theoretically predicted that a preferential transmission in favor of diploid derived alleles at all the C, E and O loci would be seen in haploid x + diploid heterosexual crosses as well as in +; haploid x +; diploid homosexual crosses, but that the magnitude of the polar transmission would vary depending upon the loci in the former crosses, while it would be the same at all the loci in the latter ones. The recombination frequency was predicted to decrease in both of these crosses.  相似文献   

2.
Summary Crosses were made using strains of S. cerevisiae which carried mitochondrial markers conferring resistance to erythromycin and chloramphenicol. The effect of auxotrophic starvation of one parent prior to mating on the transmission of its mitochondrial markers was studied in different crosses relative to the presence of the cdc8 nuclear mutation (a temperature-sensitive DNA replication).In crosses between two cdc8 mutant strains, auxotrophic starvation of one of the haploid parental strains prior to mating caused a marked decrease of its mitochondrial marker transmission to the diploid progeny of the cross. The transmission decreased as a function of the time of starvation. This effect was not observed in the cross between two wild type strains and in crosses of starved cdc8 phenotypic revertants with cdc8 mutant strains. Only a small, if any, effect of starvation on mitochonrial marker transmission was observed when starved cdc8 mutant strains were crossed either with their phenotypic revettants or with the wild-type strains.In one of the haploid parental strains the starvation increased the frequency of petites as a function of starvation time, while in the other this effect was not observed.In the progeny of cdc8xcdc8 crosses (both in starvation experiments and in control crosses) an increased frequency of diploid petite cells accompanied by a decreased frequency of recombination between mitochondrial markers was noticed.The influence of the cdc8 mutation on the transmission of mitochondrial markers is discussed in terms of high frequency of molecule formation in cdc8 strains.  相似文献   

3.
Summary The -factor stability is shown to be affected by four conditional mutations, tsm-8 (mitochondrial), tsp-20, tsp-25 and tsp-30 (nuclear). Growth of mutant cells at high temperature (35°C) results in the rapid production of cells and concomittantly in the decrease of the ability to transmit mitochondrial genetic information to the + progeny of crosses. Kinetics of cell formation during growth at 35°C have been compared with variations in transmission and recombination of mitochondrial markers in crosses. In all cases the transmission of mitochondrial markers of the ts-parent decreases as the number of cell generations increases. The frequencies of recombinants between mitochondrial markers either increase or decrease depending on the markers considered and the alleles of the -locus involved in the crosses.The results of all crosses performed have been compared with the predictions of the model for recombination and segregation of mitochondrial genes proposed by Dujon et al. (1974). This comparison indicates that the main result of high temperature treatment is a diminution of the input of mitochondrial information from the ts-parent into zygotes. Consequences of the induced variations of input follow the predictions of the model. The correlation found in ts-strains between the reduction of input in crosses and the formation of cells is discussed in terms of molecular events occurring in mitDNA molecules during high temperature induction of + to mutation.This paper is dedicated to Professor Dr. A. Butenandt on the occasion of his 75th birthday  相似文献   

4.
In Saccharomyces cerevisiae, previous studies on the inheritance of mitochondrial genes controlling antibiotic resistance have shown that some crosses produce a substantial number of uniparental zygotes, which transmit to their diploid progeny mitochondrial alleles from only one parent. In this paper, we show that uniparental zygotes are formed especially when one parent (majority parent) contributes substantially more mitochondrial DNA molecules to the zygote than does the other (minority) parent. Cellular contents of mitochondrial DNA (mtDNA) are increased in these experiments by treatment with cycloheximide, alpha-factor, or the uvsp5 nuclear mutation. In such a biased cross, some zygotes are uniparental for mitochondrial alleles from the majority parent, and the frequency of such zygotes increases with increasing bias. In two- and three-factor crosses the cap1, ery1, and oli1 loci behave coordinately, rather than independently; minority markers tend to be transmitted or lost as a unit, suggesting that the uniparental mechanism acts on entire mtDNA molecules rather than on individual loci. This rules out the possibility that uniparental inheritance can be explained by the conversion of minority markers to the majority alleles during recombination. Exceptions to the coordinate behavior of different loci can be explained by marker rescue via recombination. Uniparental inheritance is largely independent of the position of buds on the zygote. We conclude that it is due to the failure of minority markers to replicate in some zygotes, possibly involving the rapid enzymatic destruction of such markers. We have considered two general classes of mechanisms: (1) random selection of molecules for replication, as for example by competition for replicating sites on a membrane; and (2) differential marking of mtDNA molecules in the two parents, possibly by modification enzymes, followed by a mechanism that "counts" molecules and replicates only the majority type. These classes of models are distinguished genetically by the fact that the first predicts that the output frequency of a given allele among the progeny of a large number of zygotes will approximately equal the average input frequency of that allele, while the second class predicts that any input bias will be amplified in the output. The data suggest that bias amplification does occur. We hypothesize that maternal inheritance of mitochondrial or chloroplast genes in many organisms may depend upon a biased input of organelle DNA molecules, which usually favors the maternal parent, followed by failure of the minority (paternal) molecules to replicate in many or all zygotes.  相似文献   

5.
The mitochondrial genome of Chlamydomonas reinhardtii is a 15.8 kb linear DNA molecule present in multiple copies. In crosses, the meiotic products only inherit the mitochondrial genome of the mating type minus (paternal) parent. In contrast mitotic zygotes transmit maternal and paternal mitochondrial DNA copies to their diploid progeny and recombinational events between molecules of both origins frequently occur. Six mitochondrial mutants unable to grow in the dark (dk? mutants) were crossed in various combinations and the percentages of wild-type dk+ recombinants were determined in mitotic zygotes when all progeny cells had become homoplasmic for the mitochondrial genome. In crosses between strains mutated in the COB (apocytochrome ) gene and strains mutated in the COX1 (subunit 1 of cytochrome oxidase) gene, the frequency of recombination was 13.7% (± 3.2%). The corresponding physical distance between the mutation sites was 4.3 kb. In crosses between strains carrying mutations separated by about 20 bp, a recombinational frequency of 0.04% (± 0.02%) was found. Two other mutants not yet characterized at the molecular level were also used for recombinational studies. From these data, a linear genetic map of the mitochondrial genome could be drawn. This map is consistent with the positions of the mutation sites on the mitochondrial DNA molecule and thereby validates the method used to generate the map. The frequency of recombination per physical distance unit (3.2% ± 0.7% per kilobase) is compared with those obtained for other organellar genomes in yeasts and Chlamydomonas.  相似文献   

6.
Summary Mitochondrial mutants resistant to erythromycin, neomycin and monomycin were isolated. Mitochondria were transmitted from different natural strains to the cells of the same nuclear genotype. In bifactorial crosses of such isochromosomal and anisomitochondrial yeasts we tested random samples of diploid colonies. The distribution of mitochondrial markers in parent and recombinant classes has been shown to occur unequally. The asymmetry of parent and the polarity of recombinant classes were observed to differ in different mitochondrial mutants.Anisomitochondrial strain crosses proved that mitochondrial origin essentially influenced both the parent and recombinant classes distribution and the susceptibility of the transmission to the effect of mating type locus. One can distinguish between homo- and heterosexual cross combinations in terms of recombination polarity.The new type of mitochondria was found to occur with high frequency of transmission to the zygote progeny of markers resistant to erythromycin but not of markers resistant to neomycin. The problem of sex in mitochondria is discussed.  相似文献   

7.
Summary An enrichment procedure which facilitates the isolation of conditional respiratory-deficient mutants of Saccharomyces cerevisiae is reported. Detailed genetic analysis of one mutant which exhibits a respiratory deficient phenotype at low temperature (18°C) is also presented. The phenotype is due to a single lesion at a new locus, tsr1, located on the mitochondrial DNA. By analysis of locus retention patterns in a set of physically characterized petite strains, the tsr1 mutation has been mapped within the segment 0–5 map units on the physical map of the yeast mitochondrial genome. This segment of the mitochondrial DNA also contains the cap1 and ery1 loci and the cistron for the mitochondrial 21S rRNA. Studies of the frequencies of co-retention of markers in petite populations, and of the frequencies of recombination of markers in non-polar crosses (+ × +), demonstrate linkage of the tsr1 locus to both the cap1 and ery1 loci. The degree of linkage indicates that tsr1 is closer to the ery1 locus. Comparison of pairwise recombination frequencies for these three markers indicate the order cap1-tsr1-ery1. The tsr1 locus lies within the segment of the mitochondrial genome which is influenced by the polarity locus , and analysis of transmission and recombination frequencies and polarities in a polar (+ × -) cross show that the behaviour of the tsr1 locus is similar to that of ery1. However striking features of this cross are that the recombination frequency between tsr1 and ery1 is comparable to that observed in non-polar crosses, and that the polarity for recombination between tsr1 and cap1 or ery1 is extremely low.  相似文献   

8.
J Piskur 《Journal of bacteriology》1997,179(17):5614-5617
A trans-acting element, MGT1 (also called CCE1), has previously been shown to be required in Saccharomyces cerevisiae for the preferential transmission of petite mitochondrial DNA (mtDNA) molecules over wild-type mtDNA molecules. In the present study a possible role of this nuclear gene in the transmission of mtDNA from various respiration-competent mutants was studied. Several of these mutants, lacking one or the other of two biologically active mitochondrial intergenic sequences, were employed in genetic crosses. When these deletion mutants were crossed to the parental wild-type strain in the MGT1/CCE1 background, the progeny contained predominantly wild-type mtDNA molecules. When crosses were performed in the mgt1/cce1 background, the parental molecules interacted in zygotes and underwent homologous recombination but wild-type and intergenic-deletion alleles were transmitted with equal frequencies.  相似文献   

9.
The mitochondrial genome of Chlamydomonas reinhardtii is a 15.8 kb linear DNA molecule present in multiple copies. In crosses, the meiotic products only inherit the mitochondrial genome of the mating type minus (paternal) parent. In contrast mitotic zygotes transmit maternal and paternal mitochondrial DNA copies to their diploid progeny and recombinational events between molecules of both origins frequently occur. Six mitochondrial mutants unable to grow in the dark (dk mutants) were crossed in various combinations and the percentages of wild-type dk+ recombinants were determined in mitotic zygotes when all progeny cells had become homoplasmic for the mitochondrial genome. In crosses between strains mutated in the COB (apocytochrome ) gene and strains mutated in the COX1 (subunit 1 of cytochrome oxidase) gene, the frequency of recombination was 13.7% (± 3.2%). The corresponding physical distance between the mutation sites was 4.3 kb. In crosses between strains carrying mutations separated by about 20 bp, a recombinational frequency of 0.04% (± 0.02%) was found. Two other mutants not yet characterized at the molecular level were also used for recombinational studies. From these data, a linear genetic map of the mitochondrial genome could be drawn. This map is consistent with the positions of the mutation sites on the mitochondrial DNA molecule and thereby validates the method used to generate the map. The frequency of recombination per physical distance unit (3.2% ± 0.7% per kilobase) is compared with those obtained for other organellar genomes in yeasts and Chlamydomonas.  相似文献   

10.
SCP1 and SCP2 (in the SCP2* state) fertility plasmids ofStreptomyces coelicolor A3(2) elicit recombination in SCP1+×SCP1- or SCP2*×SCP2- crosses. The rate is essentially constant (c. 10-4) if referred to the plasmid-less parent, irrespective of extreme variations in the parent balance. In interrupted matings the alleles of the plasmid-less parent gradually increase in frequency in successive samples. The mobilization of the chromosome of the plasmid-less strain appears to be the primary event in merozygote formation.  相似文献   

11.
Summary A series of mutants called ebi, less inducible by ethidium bromide than the parental strain for the + mutation have been isolated after E.M.S. mutagenesis. Some of the ebi mutants also show an important accumulation of cells, in the absence of ethidium bromide. Ebi mutations are nuclearly inherited as shown by meiotic segregation. The effects of these mutants on the transmission and recombination of mitochondrial genes among the diploid progeny of crosses have been studied. Some of the ebi mutants show a non coordinated transmission of the oli1 mitochondrial marker with respect to other mitochondrial markers unexpected for homosexual crosses. This bias which is independent from will be discussed in relation to the segregation and recombination. No significant decrease of the frequency of recombinants has been detected.Abbreviations E.B. Ethidium bromide - E.M.S. Ethyl méthane sulfonate - CS/CR Allelic forms of the rib 1 locus conferring chloramphenicol sensitivity/resistance - ES/ER Allelic forms of the rib 3 locus conferring erythromycine sensitivity/resistance - OR/OR Allelic forms of the oli 1 locus conferring oligomycin sensitivity/resistance - PS/PR Allelic forms of the par 1 locus conferring paromomycine sensitivity/resistance - DS/DR Allelic forms of the diu 1 or diu 2 loci conferring diuron sensitivity/resistance - CS/CR Allelic forms of the mitochondrial locus - + grande or respiratory competent cells - petite or cytoplasmic respiratory deficient cells  相似文献   

12.
Summary Protoplasts of auxotrophic strains of Saccharomyces cerevisiae of opposite and identical mating types carrying different mitochondrial drug-resistance markers, with both homosexual and heterosexual mitochondrial backgrounds, were induced to fuse by polyethylene glycol. After selective regeneration of prototrophic fusion products, the transmission and recombination frequencies of mitochondrial genes in populations of cells were determined and compared with those obtained in mating processes. The frequencies obtained in the fusion experiments proved very similar to those found in the zygote clones. The behavior of mitochondrial genes was apparently affected neither by nuclear mating type background nor by the method of transfer of mitochondrial genomes (i.e., protoplast fusion or mating), making possible mitochondrial genetic studies by protoplast fusion irrespective of the mating type barrier of yeast strains.  相似文献   

13.
We report evidence for random drift of mitochondrial allele frequencies in zygote clones of Saccharomyces cerevisiae and Schizosaccharomyces pombe. Monofactorial and bifactorial crosses were done, using strains resistant or sensitive to erythromycin (alleles ER, ES), oligomycin (OR, OS), or diuron (DR, DS). The frequencies of resistant and sensitive cells (and thus the frequencies of the resistant and sensitive alleles) were determined for each of a number of clones of diploid cells arising from individual zygotes. Allele frequencies were extremely variable among these zygote clones; some clones were "uniparental," with mitochondrial alleles from only one parent present. These observations suggest random drift of the allele frequencies in the population of mitochondrial genes within an individual zygote and its diploid progeny. Drift would cease when all the cells in a clone become homoplasmic, due to segregation of the mitochondrial genomes during vegetative cell divisions. To test this, we delayed cell division (and hence segregation) for varying times by starving zygotes in order to give drift more time to operate. As predicted, delaying cell division resulted in an increase in the variance of allele frequencies among the zygote clones and an increase in the proportion of uniparental zygote clones. The changes in form of the allele frequency distributions resembled those seen during random drift in finite Mendelian populations. In bifactorial crosses, genotypes as well as individual alleles were fixed or lost in some zygote clones. However, the mean recombination frequency for a large number of clones did not increase when cell division was delayed. Several possible molecular mechanisms for intracellular random drift are discussed.  相似文献   

14.
Summary Three extranuclear mitochondrial mutations in Aspergillus nidulans, (oliA1), (camA1) and (cs67), were used as markers in sexual crosses to provide information on the frequencies of transmission and recombination of the mitochondrial genome. Any individual perithecium contained ascospores of only one extranuclear genotype.Using mono-, bi- and trifactorial crosses it was found that all three markers could be recovered from the progeny, although the transmission frequencies were different for each marker. This bias was present irrespective of the nuclear background or the presence of selective agents in the medium on which the cross was established. These findings enable a series of transmission strength to be established, as shown below:- (cs67,{\text{ }}camA1) > ( + ) = (cs67) > (oliA1,cs67) \hfill \\ {\text{ }} > (oliA1) > (oliA1,{\text{ }}camA1) \hfill \\ \end{gathered} $$ " align="middle" border="0"> However, the numbers of recombinants isolated were so variable as to make this form of analysis unsuitable for mapping the mitochondrial genome.  相似文献   

15.
Sears BB  Boynton JE  Gillham NW 《Genetics》1980,96(1):95-114
In Chlamydomonas reinhardtii, gamete differentiation is induced by nitrogen deprivation. While cellular nitrogen content and amount of chloroplast DNA in cells of both mating types are reduced during gametogenesis, the spontaneous transmission of paternal (mt-) chloroplast alleles in crosses is specifically affected by the stringency of the nitrogen starvation regime used for pregrowth and gametogenesis of the mt- parent. In all cases, reciprocal crosses yielded biparental zygospores whose clones contain predominantly cells expressing only the chloroplast alleles from the maternal (mt+) parent. No differences attributable to strain divergence were seen in chloroplast gene inheritance pattern, DNA content, or the relative frequency of transmission of paternal chloroplast alleles to progeny of biparental zygospores.  相似文献   

16.
Mitochondria and chloroplasts of eucaryotic cells contain populations of DNA molecules. In certain cases, e.g., the chloroplasts of Chlamydomonas reinhardtii and the mitochondria of Saccharomyces cerevisiae, organelles contributed by the two parents are known to fuse in the zygote, creating a single population of DNA molecules. In a cross, this population will include molecules of both parental genotypes. There is reason to suspect that organelle DNA molecules in this population are selected randomly for replication and recombination. This would result in random changes in the frequency of a particular allele or genotype within the organelle gene pool of a single zygote and also within its clone of progeny cells. A given gene frequency would increase in some zygote clones and decrease in others, analogous to random drift of gene frequencies in small Mendelian populations. To test this, we have examined the distribution of chloroplast gene frequencies among the zygote clones produced in each of a number of crosses of Chlamydomonas. These distributions are typically U or L shaped as predicted by the random drift hypothesis. They include uniparental zygote clones, in which a chloroplast allele from one parent has been fixed (frequency 100%) and the alternative allele from the other parent has been lost (frequency 0%). Among the remaining (biparental) zygote clones, there is a linear distribution of allele frequencies, showing a great increase in variance over the input frequencies. In these experiments both biparental and uniparental zygotes show a bias favoring chloroplast alleles from the mt+ (maternal) parent, and there is no statistically significant mode at the allele frequency of 0.5 corresponding to the equal input of alleles from the maternal and paternal (mt?) parents. The observed distributions support the hypothesis that both uniparental inheritance and the high variance of allele frequencies among zygote clones are due to random drift of allele frequencies, coupled with a directional force which favors fixation of the maternal allele. In addition, statistical analysis of the data shows a strong but incomplete tendency for linked chloroplast markers to be fixed or lost together in uniparental zygotes. Possible cellular and molecular mechanisms for these observations are discussed.  相似文献   

17.
Summary Conjugational recombination in Escherichia coli was investigated by measuring lacZ + product, -galactosidase, in crosses between lacZ mutants. Enzyme production in both Hfr and F-prime crosses was detected very soon after transfer of the donor lacZ allele. The level of enzyme activity was reduced by no more than two-fold when the recipient carried a recB mutation. With an F-prime donor, recombination appeared to be restricted largely to a short period immediately after transfer, with little evidence of recombination during subsequent exponential growth of the transconjugant cells. These observations are interpreted to suggest that recA dependent recombination is able to initiate with high efficiency at gaps present in the donor DNA before synthesis of a complementary strand is completed, and independently of recB function. A molecular model for conjugational recombination based on this idea is presented in terms of the known activities of recA and recBC products. Some of the predictions of the model are tested by analysing the recombinant genotypes produced in Hfr crosses with multiply marked strains.  相似文献   

18.
Abnormal proliferation of mitochondria generally occurs in muscle of aged individuals and patients with mitochondrial myopathy. An increase in the mitochondrial DNA (mtDNA) copy number has also been observed in aging human tissues. However, the molecular mechanism underlying the increase in mitochondrial mass and mtDNA is still unclear. In a previous study, we demonstrated that sublethal levels of oxidative stress caused an increase in mitochondrial mass in human lung cells. In this communication, we report our recent findings that the mitochondrial mass in human lung fibroblasts (MRC-5) in a later proliferation stage is significantly increased compared to that in the early stages of proliferation. The extent of the increase in mitochondrial mass in the senescent cells was similar to that in cells in the early stages of proliferation that had been treated with low concentrations ( 180 µM) of hydrogen peroxide (H2O2). Moreover, we found that the rate of reactive oxygen species (ROS) production was higher in cells in the later proliferation stage compared to cells in the early proliferation stages. A similar phenomenon was also observed in cells in the early proliferation stages under low levels of oxidative stress. On the other hand, the mRNA levels of many nuclear DNA-encoded proteins involved in mitochondrial biogenesis, particularly nuclear respiratory factor-1, were found to increase in cells in later proliferation stages and in cells in early proliferation stages that had been treated with 180 µM H2O2. Interestingly, the increase in mitochondrial mass in the cells under oxidative stress could be repressed by treatment with cycloheximide orm-chlorocarbonyl cyanide phenylhydrazone but not by chloramphenicol. Furthermore, the mitochondrial mass of mtDNA-less ° cells was also significantly increased by exposure to low concentrations (e.g. 180 µM) of H2O2. These results suggest that the increase in mitochondrial mass in replicative senescent cells may result from an increase in ROS production, and that it is dependent on both de novo synthesis of nuclear DNA-encoded proteins and their import into mitochondria, dictated by the membrane potential of mitochondria.  相似文献   

19.
Summary In order to find new genetic loci and functions on the yeast mitochondrial DNA, especially mutations affecting the mitochondrial protein synthesis apparatus, temperature sensitive mutants have been isolated after MnCl2 mutagenesis and mitochondrial and nuclear mutants classified according to their pattern of recombination with three rho- tester strains.Eighteen cold- and heat-sensitive respiratory deficient mitochondrial mutants have been isolated and localized on the mitochondrial genome by deletion mapping using 113 rho- strains. Eight of them appear to represent new loci, among which some are probably mutations of the tRNA and rRNA genes.  相似文献   

20.
First evidence for the presence of copies of mitochondrial cytochrome b gene of the subspecies group Luscinia calliope anadyrensis–L. c. camtschatkensis in the nuclear genome of nominative L. c. calliope was obtained, which indirectly indicates the nuclear origin of the subspecies-specific mitochondrial haplotypes in Siberian rubythroat. This fact clarifies the appearance of mitochondrial haplotypes of eastern subspecies by exchange between the homologous regions of the nuclear and mitochondrial genomes followed by fixation by the founder effect. This is the first study to propose a mechanism of DNA fragment exchange between the nucleus and mitochondria (intergenomic recombination) and to show the role of nuclear copies of mtDNA as a source of new taxon-specific mitochondrial haplotypes, which implies their involvement in the microevolutionary processes and morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号