首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Lu YH  Wei BL  Ko HH  Lin CN 《Phytochemistry》2008,69(1):225-233
Five 2,4,6-prenylated phloroglucinols, garcinielliptones HA (1), HB (2), HC (3), HD (4) and HE (5), were isolated from the heartwood of Garcinia subelliptica Merr. Their structures, including relative configurations, were elucidated by means of spectroscopic data analysis. The ability of phloroglucinols, 1-5 and lignans, tuberculatin (8), justicidin A (9), procumbenoside A (10) and ciliatosides A (11) and B (12), isolated from Justicia ciliata and Justicia procumbens, to induce DNA-cleavage activity was examined using pBR322, a supercoiled, covalently closed circular DNA, and it was analyzed by agarose gel electrophoresis. In the presence of Cu (II), compounds 3, 8, 10 and 11 caused significant breakage of supercoiled plasmid pBR322. The products were relaxed circles with no detectable linear forms. In the Cu(II)-mediated DNA damage of 3 and selective compound 8, Cu(I) was shown not to be an essential intermediate by using the Cu(I)-specific sequestering reagent neocuproine.  相似文献   

2.
Cross-linking of the Ag receptors on the immature B cell lymphoma, WEHI-231, leads to growth arrest and apoptosis. We now show that although commitment to such B cell receptor (BCR)-mediated apoptosis correlates with mitochondrial phospholipase A(2) activation, disruption of mitochondrial function, and ATP depletion, it is executed independently of caspase activation. First, we demonstrate a pivotal role for mitochondrial function in determining B cell fate by showing up-regulation of cytosolic phospholipase A(2) expression, induction of mitochondrial phospholipase A(2) activity, arachidonic acid-mediated collapse of mitochondrial transmembrane inner potential (Delta psi(m)), and depletion of cellular ATP under conditions of apoptotic, but not proliferative, signaling via the BCR. Importantly, disruption of Delta psi(m), ATP depletion, and apoptosis can be prevented by rescue signals via CD40 or by Delta psi(m) stabilizers such as antimycin or oligomycin. Second, we show that commitment and postmitochondrial execution of BCR-mediated apoptosis are not dependent on caspase activation by demonstrating that such apoptotic signaling does not induce release of cytochrome c from the mitochondria or activation of effector caspases, as evidenced by poly(ADP-ribose) polymerase or Bcl-x(L) cleavage. Indeed, apoptotic signaling via the BCR in WEHI-231 B cells does not stimulate the activation of caspase-3 and, consistent with this, BCR-mediated disruption of Delta psi(m) and commitment to apoptosis take place in the presence of caspase inhibitors. In contrast, BCR signaling induces the postmitochondrial activation of cathepsin B, and resultant apoptosis is blocked by the cathepsin B inhibitor, (23,35)trans-epoxysuccinyl-L-leucylamindo-3-methylbutane ethyl ester (EST) suggesting a key role for this executioner protease in Ag receptor-driven apoptosis of WEHI-231 immature B cells.  相似文献   

3.
Polyamine depletion induces apoptosis through mitochondria-mediated pathway   总被引:4,自引:0,他引:4  
Polyamines, namely putrescine, spermidine, and spermine, are essential for cell survival and proliferation. A decrease in intracellular polyamine levels is associated with apoptosis. In this study, we used inhibitors of polyamine biosynthesis to examine the effect of polyamine depletion. A combination of inhibitors of ornithine decarboxylase, S-adenosylmethionine decarboxylase, or spermidine synthase decreased intracellular polyamine levels and induced cell death in a WEHI231 murine B cell line. These cells exhibited apoptotic features including chromatin condensation and oligonucleosomal DNA fragmentation. Addition of exogenous polyamines reversed the observed features of apoptotic cell death. Similar effects were also observed in other cell lines: a human B cell line Ramos and a human T cell line Jurkat. Depletion of polyamines induced activation of caspase-3 and disruption of the mitochondrial membrane potential (Delta psi m). Inhibition of caspase activities by an inhibitor prevented the apoptotic nuclear changes but not Delta psi m disruption induced by polyamine depletion. Overexpression of Bcl-xl, an anti-apoptotic Bcl-2 family protein, completely inhibited Delta psi m disruption, caspase activation, and cell death. These results indicate that the depletion of intracellular polyamines triggers the mitochondria-mediated pathway for apoptosis, resulting in caspase activation and apoptotic cell death.  相似文献   

4.
Doxorubicin, cis-diamminedichloroplatinum (II) and 5-fluorouracil used in chemotherapy induce apoptosis in Hep3B cells in the absence of p53, p73, and functional Fas. Since mediators remain unknown, the requirement of PKC delta (PKCdelta) and c-Abl was investigated. Suppression of c-Abl or PKCdelta expression using SiRNAs impaired PARP cleavage, Gleevec and/or rottlerin inhibited the induction of the subG1 phase and the increase of reactive oxygen species level. Co-precipitations and phosphorylations to mitochondria of c-Abl, PKCdelta and Bcl-X(L/s) were induced. A depolarization of the mitochondrial membrane and activations of caspase-2 and -9 were observed. We propose that, in the absence of p53, p73 and Fas, genotoxic drugs could require both PKCdelta and c-Abl to induce apoptosis through the mitochondrial pathway.  相似文献   

5.
Type I interferon (IFN)-induced antitumor action is due in part to apoptosis, but the molecular mechanisms underlying IFN-induced apoptosis remain largely unresolved. In the present study, we demonstrate that IFN-beta induced apoptosis and the loss of mitochondrial membrane potential (delta psi m) in the murine CH31 B lymphoma cell line, and this was accompanied by the up-regulation of CD95, but not CD95-ligand (CD95-L), tumor necrosis factor (TNF), or TNF-related apoptosis-inducing ligand (TRAIL). Pretreatment with anti-CD95-L mAb partially prevented the IFN-beta-induced loss of delta psi m, suggesting that the interaction of IFN-beta-up-regulated CD95 with CD95-L plays a crucial role in the induction of fratricide. IFN-beta induced a sustained activation of c-Jun NH2-terminal kinase 1 (JNK1), but not extracellular signal-regulated kinases (ERKs). The IFN-beta-induced apoptosis and loss of delta psi m were substantially compromised in cells overexpressing a dominant-negative form of JNK1 (dnJNK1), and it was slightly enhanced in cells carrying a constitutively active JNK construct, MKK7-JNK1 fusion protein. The IFN-beta-induced up-regulation of CD95 together with caspase-8 activation was also abrogated in the dnJNK1 cells while it was further enhanced in the MKK7-JNK1 cells. The levels of cellular FLIP (c-FLIP), competitively interacting with caspase-8, were down-regulated by stimulation with IFN-beta but were reversed by the proteasome inhibitor lactacystin. Collectively, the IFN-beta-induced sustained activation of JNK mediates apoptosis, at least in part, through up-regulation of CD95 protein in combination with down-regulation of c-FLIP protein.  相似文献   

6.
Smilax glabra Roxb. (SGR) is the root of a traditional Chinese herb, referred to as tu fu ling in Chinese medicine. It is an inexpensive traditional Chinese medicine commonly used for the treatment of liver diseases, and a few studies have indicated that SGR has anti-hepatocarcinogenic and anti-cancer growth activities. In the current study, raw SGR plant was extracted with Accelerate Solvent Extractor, and the molecular mechanism by which S. glabra Roxb. extract (SGRE) has an anti-proliferative effect on the human hepatoma cell lines, HepG2 and Hep3B, was determined. We showed that SGRE inhibited HepG2 and Hep3B cell growth by causing cell-cycle arrest at either S phase or S/G2 transition and induced apoptosis, as evidenced by a DNA fragmentation assay. SGRE-induced apoptosis by alternation of mitochondrial transmembrane depolarization, release of mitochondrial cytochrome c, activation of caspase-3, and cleavage of poly(ADP-ribose) polymerase. The SGRE-mediated mitochondria-caspase dependent apoptotic pathway also involved activation of p38, JNK, and ERK mitogen-activated protein kinase signaling. Isometric compounds of astilbin (flavonoids) and smilagenin (saponin) have been identified as the main chemical constituents in SGRE by HPLC-MS/MS. These results have identified, for the first time, the biological activity of SGRE in HepG2 and Hep3B cells and should lead to further development of SGR for liver disease therapy.  相似文献   

7.
Tang W  Liu JW  Zhao WM  Wei DZ  Zhong JJ 《Life sciences》2006,80(3):205-211
Ganoderma lucidum is a well-known traditional Chinese medicinal herb containing many bioactive compounds. Ganoderic acid T (GA-T), which is a lanostane triterpenoid purified from methanol extract of G. lucidum mycelia, was found to exert cytotoxicity on various human carcinoma cell lines in a dose-dependent manner, while it was less toxic to normal human cell lines. Animal experiments in vivo also showed that GA-T suppressed the growth of human solid tumor in athymic mice. It markedly inhibited the proliferation of a highly metastatic lung cancer cell line (95-D) by apoptosis induction and cell cycle arrest at G(1) phase. Moreover, reduction of mitochondria membrane potential (Delta psi(m)) and release of cytochrome c were observed during the induced apoptosis. Our data further indicate that the expression of proteins p53 and Bax in 95-D cells was increased in a time-dependent manner, whereas the expression of Bcl-2 was not significantly changed; thus the ratio of Bcl-2/Bax was decreased. The results show that the apoptosis induction of GA-T was mediated by mitochondrial dysfunctions. Furthermore, stimulation of the activity of caspase-3 but not caspase-8 was observed during apoptosis. The experiments using inhibitors of caspases (Z-VAD-FMK, Z-DEVD-FMK and Z-IETD-FMK) confirmed that caspase-3 was involved in the apoptosis. All our findings demonstrate that GA-T induced apoptosis of metastatic lung tumor cells through intrinsic pathway related to mitochondrial dysfunction and p53 expression, and it may be a potentially useful chemotherapeutic agent.  相似文献   

8.
Serine/threonine phosphatase regulation of phosphorylation-mediated intracellular signaling controls a number of important processes in mammalian cells. In this study, we show that constitutively active protein phosphatase 2A (PP2A), which is a serine/threonine phosphatase, is essential for T leukemia cell survival. Jurkat and CCRF-CEM T leukemia cells treated with the PP2A-selective inhibitor okadaic acid (OA) showed a dose- and time-dependent induction of apoptosis, as indicated by loss of mitochondrial transmembrane potential (delta psi(m)), cleavage-induced activation of caspase-3, -8, and -9, and DNA fragmentation. In addition, caspase-8 or caspase-9 inhibition with z-IETD-fmk or z-LEHD-fmk, respectively, largely prevented OA-induced apoptosis. Although OA treatment did not affect constitutive Bcl-2 expression, overexpression of Bcl-2 prevented both OA-induced DNA fragmentation and dissipation of delta psi(m). Furthermore, inhibition of caspase-3, -8, or -9 partially protected against OA-induced loss of delta psi(m). In addition, caspase-9 and caspase-3 inhibition largely prevented procaspase-3 and procaspase-8 cleavage, respectively, while caspase-8 inhibition partially interfered with procaspase-9 cleavage in OA-treated T leukemia cells. Thus, PP2A inhibition triggered the intrinsic pathway of apoptosis, which was enhanced by a mitochondrial feedback amplification loop. PP2A has also been implicated in the regulation of p38 mitogen-activated protein kinase (MAPK). Co-immunoprecipitation analysis revealed a physical association between the catalytic subunit of PP2A and p38 MAPK in T leukemia cells. Moreover, OA treatment caused p38 MAPK to be phosphorylated in a dose- and time-dependent fashion, indicating that PP2A prevented p38 MAPK activation. Although p38 MAPK activation usually promotes apoptosis, pharmacologic inhibition of p38 MAPK exacerbated OA-induced DNA fragmentation and loss of delta psi(m) in T leukemia cells, suggesting that, in this instance, the p38 MAPK signaling pathway promoted cell survival. Collectively, these findings indicate that PP2A and p38 MAPK have coordinate effects on signaling pathways that regulate the survival of T leukemia cells.  相似文献   

9.
Hemmati S  Schmidt TJ  Fuss E 《FEBS letters》2007,581(4):603-610
A cDNA encoding a pinoresinol-lariciresinol reductase PLR (PLR-Lp1) was isolated from a cell culture of Linum perenne Himmelszelt accumulating the arylnaphthalene lignan justicidin B. The recombinant PLR-Lp1 prefers (+)-pinoresinol in the first reaction step, but (-)-lariciresinol in the second step. Therefore, it is the first PLR described with opposite enantiospecificity within the two reaction steps catalysed by PLRs. Hairy root lines transformed with an ihpRNAi construct to suppress plr gene expression show less mRNA accumulation for the plr-Lp1 gene and PLR enzyme activity. Justicidin B accumulation was reduced down to 24% in comparison to control lines showing the involvement of PLR-Lp1 in the biosynthesis of justicidin B.  相似文献   

10.
Cell suspension cultures of Linum perenne L. Himmelszelt accumulate justicidin B as the main component together with glycosides of 7-hydroxyjusticidin B (diphyllin). A hypothetical biosynthetic pathway for these compounds is suggested. Justicidin B 7-hydroxylase (JusB7H) catalyzes the last step in the biosynthesis of diphyllin by introducing a hydroxyl group in position 7 of justicidin B. This enzyme was characterized from a microsomal fraction prepared from a Linum perenne Himmelszelt suspension culture for the first time. The hydroxylase activity was strongly inhibited by cytochrome c as well as other cytochrome P450 inhibitors like clotrimazole indicating the involvement of a cytochrome P450-dependent monooxygenase. JusB7H has a pH optimum of 7.4 and a temperature optimum of 26 degrees C. Justicidin B was the only substrate accepted by JusB7H with an apparent K(m) of 3.9+/-1.3 microM. NADPH is predominantly accepted as the electron donor, but NADH was a weak co-substrate. A synergistic effect of NADPH and NADH was not observed. The apparent K(m) for NADPH is 102+/-10 microM.  相似文献   

11.
Bortezomib, a proteasome inhibitor, shows substantial anti-tumor activity in a variety of tumor cell lines, is in phase I, II, and III clinical trials and has recently been approved for the treatment of patients with multiple myeloma. The sequence of events leading to apoptosis following proteasome inhibition by bortezomib is unclear. Bortezomib effects on components of the mitochondrial apoptotic pathway were examined: generation of reactive oxygen species (ROS), alteration in the mitochondrial membrane potential (Delta psi m), and release of cytochrome c from mitochondria. With human H460 lung cancer cells, bortezomib exposure at 0.1 microM showed induction of apoptotic cell death starting at 24 h, with increasing effects after 48-72 h of treatment. After 3-6 h, an elevation in ROS generation, an increase in Delta psi m, and the release of cytochrome c into the cytosol, were observed in a time-dependent manner. Co-incubation with rotenone and antimycin A, inhibitors of mitochondrial electron transport chain complexes I and III, or with cyclosporine A, an inhibitor of mitochondrial permeability transition pore, resulted in inhibition of bortezomib-induced ROS generation, increase in Delta psi m, and cytochrome c release. Tiron, an antioxidant agent, blocked the bortezomib-induced ROS production, Delta psi m increase, and cytochrome c release. Tiron treatment also protected against the bortezomib-induced PARP protein cleavage and cell death. Benzyloxycarbonyl-VAD-fluoromethyl ketone, an inhibitor of pan-caspase, did not alter the bortezomib-induced ROS generation and increase in Delta psi m, although it prevented bortezomib-induced poly(ADP-ribose) polymerase cleavage and apoptotic death. In PC-3 prostate carcinoma cells (with overexpression of Bcl-2), a reduction of bortezomib-induced ROS generation, Delta psi m increase was correlated with cellular resistance to bortezomib and the attenuation of drug-induced apoptosis. The transient transfection of wild type p53 in p53 null H358 cells caused stimulation of the bortezomib-induced apoptosis but failed to enhance ROS generation and Delta psi m increase. Thus ROS generation plays a critical role in the initiation of the bortezomib-induced apoptotic cascade by mediation of the disruption of Delta psi m and the release of cytochrome c from mitochondria.  相似文献   

12.

Background

Houttuynia cordata Thunb (HCT) is commonly used in Taiwan and other Asian countries as an anti-inflammatory, antibacterial and antiviral herbal medicine. In this study, we investigated the anti-human lung cancer activity and growth inhibition mechanisms of HCT in human lung cancer A549 cells.

Results

In order to investigate effects of HCT on A549 cells, MTT assay was used to evaluate cell viability. Flow cytometry was employed for cell cycle analysis, DAPI staining, and the Comet assay was used for DNA fragmentation and DNA condensation. Western blot analysis was used to analyze cell cycle and apoptotic related protein levels. HCT induced morphological changes including cell shrinkage and rounding. HCT increased the G0/G1 and Sub-G1 cell (apoptosis) populations and HCT increased DNA fragmentation and DNA condensation as revealed by DAPI staining and the Comet assay. HCT induced activation of caspase-8 and caspase-3. Fas/CD95 protein levels were increased in HCT-treated A549 cells. The G0/G1 phase and apoptotic related protein levels of cyclin D1, cyclin A, CDK 4 and CDK 2 were decreased, and p27, caspase-8 and caspase-3 were increased in A549 cells after HCT treatment.

Conclusions

The results demonstrated that HCT-induced G0/G1 phase arrest and Fas/CD95-dependent apoptotic cell death in A549 cells  相似文献   

13.
We have examined the effects of the CDK1 inhibitor CGP74514A on cell cycle- and apoptosis-related events in human leukemia cells. An 18-hr exposure to 5 microM CGP74514A induced mitochondrial damage (i.e., loss of Delta psi(m)) and apoptosis in multiple human leukemia cell lines (e.g., U937, HL-60, KG-1, CCRF-CEM, Raji, and THP; range 30-95%). In U937 cells, CGP74514A- induced apoptosis (5 microM) became apparent within 4 hr and approached 100% by 24 hr. The pan- caspase inhibitor Boc-fmk and the caspase-8 inhibitor lETD-fmk opposed CGP74514A-induced caspase-9 activation and PARP degradation, but not cytochrome c or Smac/DIABLO release. CGP74514A-mediated apoptosis was substantially blocked by ectopic expression of full-length Bel- 2, a loop-deleted mutant Bcl-2, and Bcl-x(L). CGP74514A treatment (5 microM; 18 hr) resulted in increased p21(CIP1) expression, p27(KIP1) degradation, diminished E2F1 expression, and dephosphorylation of p34(CDC2). It also induced early (i.e., within 2 hr) inhibition of CDK1 activity and dephosphorylation of pRb, followed by pRb degradation, but did not block pRb phosphorylation at CDK2- and CDK4- specific sites. These findings indicate that the selective CDK1 inhibitor, CGP74514A, induces complex changes in cell cycle-related proteins in human leukemia cells accompanied by extensive mitochondrial damage, caspase activation, and apoptosis.  相似文献   

14.
The objective of this study was to evaluate whether ceramide, palmitate, and inhibitors of mitochondrial electron transport chain shared similar effects on the mitochondria of intact cardiomyocytes in order to determine the likelihood that ceramide and palmitate utilize similar mitochondrial mechanisms or pathways to apoptosis. In embryonic chick cardiomyocytes, ceramide, 100 microM for 24h, induced a 42.9+/-5.8% increase in cell death assessed by the MTT assay, and a significant (P<0.01) 3.9+/-0.6-fold increase in apoptosis assessed by propidium iodide staining of permeabilized cells. Mitochondrial potential (delta psi (m)), as demonstrated microscopically and by flow cytometry of cardiomyocytes stained with a J-aggregate dye, was markedly and significantly reduced by ceramide, palmitate, and two different inhibitors of the mitochondrial electron transport chain-rotenone and antimycin A. In contrast, the effect on mitochondria as assessed by CMX-Ros oxidation was dramatically different, as palmitate, rotenone, and antimycin A each produced a reduction, while ceramide increased CMX-Ros fluorescence. Further ceramide-induced cardiomyocyte apoptosis and loss of delta psi (m) operated through a cyclosporine-insensitive pathway similar to rotenone and antimycin A but distinct from palmitate which induced apoptosis though a cyclosporine-sensitive mechanism in these cells. These data suggest that ceramide acts on the mitochondria of intact cells through a cyclosporine-insensitive mechanism likely from a combination of actions including production of mitochondrial oxidants. The discordant findings between ceramide and palmitate suggest that palmitate-induced cell death is not primarily mediated by de novo ceramide synthesis.  相似文献   

15.
The maturation of epiphyseal chondrocytes is accompanied by dramatic changes in energy metabolism and shifts in proteins concerned with the induction of apoptosis. We evaluated the role of mitochondria in this process by evaluating the membrane potential (Delta psi m) of chondrocytes of embryonic tibia and the epiphyseal growth plate. We observed that there was a maturation-dependent change in fluorescence, indicating a fall in the Delta psi m. The level of mitochondrial Bcl-2 was decreased during maturation, while in the same time period there was an obvious increase in Bax levels in the mitochondrial fraction of the terminally differentiated chondrocytes. Bcl(xL), another anti-apoptotic protein, was also robustly expressed in the mitochondrial fraction, but its expression was not dependent on the maturation status of the chondrocytes. We found that caspase-3 was present throughout the growth plate and in hypertrophic cells in culture. We blocked caspase-3 activity and found that alkaline phosphatase staining and mineral formation was decreased, and the cells had lost their characteristic shape. Moreover, we noted that the undifferentiated cells were insensitive to elevated concentrations of inorganic phosphate (Pi). It is concluded that during hypertrophy, the change in membrane potential, the increased binding of a pro-apoptotic protein to mitochondria, and the activation of caspase-3 serve to prime cells for apoptosis. Only when the terminally differentiated chondrocytes are challenged with low levels of apoptogens there is activation of apoptosis.  相似文献   

16.
Through protein-protein binding assays, we found that HCV core protein interacted with 14-3-3epsilon protein. Interestingly, the expression of HCV core protein induced apoptosis in 293T cells. The apoptosis induced by core expression is accompanied by translocation of Bax from cytosol to mitochondria, disruption of mitochondrial membrane potential, cytochrome c release, and activation of caspase-9 and caspase-3. Furthermore, over-expression of 14-3-3epsilon inhibited the core-induced apoptosis and Bax translocation to mitochondria. These results indicate that HCV core protein induces the Bax-mediated apoptosis by interacting with 14-3-3epsilon protein in 293T cells. As a mechanism of apoptosis induction by HCV core, we propose that the interaction of HCV core with 14-3-3epsilon causes the dissociation of Bax from the Bax/14-3-3epsilon complex in cytosol, and the free Bax protein provokes activation of the mitochondrial apoptotic pathway.  相似文献   

17.
Dolichyl monophosphate (Dol-P) is involved in the attachment of carbohydrate chains to proteins in the formation of N-linked glycoprotein. We found that this compound induces apoptosis in human leukemia U937 cells. During this apoptotic execution, the increase of plasma membrane fluidity (5-20 min), reduction in mitochondrial transmembrane potential (delta psi m) and translocation of apoptosis-inducing factor (1-3 hr), caspase-3-like protease activation (2-4 hr), chromatin condensation and DNA ladder formation (3-4 hr) were observed successively. In this study, we examined mitochondrial morphological changes by electron microscopy and delta psi m by JC-1 from immediately after treatment of Dol-P. After 5 min of treatment, we observed clearly that mitochondrial cristae began to be disrupted ultrastructurally and almost all the cristae were disintegrated after 1 hr of treatment. The delta psi m of Dol-P treated cells was reduced to 34% as compared with that of control cells immediately after treatment and was quartered within 1 hr. The reduction in delta psi m was not inhibited by cyclosporin A, N-acetyl-L-cysteine and vitamin E. These results indicate that mitochondrial disruption is one of the first triggering events of Dol-P-induced apoptosis.  相似文献   

18.
Despite the wide use of anti-CD20 antibody rituximab in the cancer treatment of B cell malignancies, the signalling pathways of CD20-induced apoptosis are still not understood. By using dominant negative (DN)-caspase-9 overexpressing follicular lymphoma cells we demonstrated that the activation of caspase-9 was essential for rituximab-mediated apoptosis. The death receptor pathway mediated by caspase-8 activation was not involved in rituximab-mediated apoptosis since overexpression of FLIPshort or FLIPlong proteins, inhibitors of caspase-8 activation, could not inhibit rituximab-induced apoptosis. However, the death receptor pathway activation by anti-Fas antibodies showed an additive effect on rituximab-induced apoptosis. The stabilisation of the mitochondrial outer membrane by Bcl-xL overexpression inhibited cell death, showing the important role of mitochondria in rituximab-induced apoptosis. Interestingly, the rituximab-induced release of cytochrome c and collapse of mitochondrial membrane potential were regulated by caspase-9. We suggest that caspase-9 and downstream caspases may feed back to mitochondria to amplify mitochondrial disruption during intrinsic apoptosis.  相似文献   

19.
Lysosomal photosensitizers have been used in photodynamic therapy. The combination of such photosensitizers and light causes lysosomal photodamage, inducing cell death. Lysosomal disruption can lead to apoptosis but its signaling pathways remain to be elucidated. In this study, N-aspartyl chlorin e6 (NPe6), an effective photosensitizer that preferentially accumulates in lysosomes, was used to study the mechanism of apoptosis caused by lysosomal photodamage. Apoptosis in living human lung adenocarcinoma cells (ASTC-a-1) after NPe6-photodynamic treatment (NPe6-PDT) was studied using real-time single-cell analysis. Our results demonstrated that NPe6-PDT induced rapid generation of reactive oxygen species (ROS). The photodynamically produced ROS caused a rapid destruction of lysosomes, leading to release of cathepsins, and the ROS scavengers vitamin C and NAC prevent the effects. Then the following spatiotemporal sequence of cellular events was observed during cell apoptosis: Bcl-2-associated X protein (Bax) activation, cytochrome c release, and caspase-9/-3 activation. Importantly, the activation of Bax proved to be a crucial event in this apoptotic machinery, because suppressing the endogenous Bax using siRNA could significantly inhibit cytochrome c release and caspase-9/-3 activation and protect the cell from death. In conclusion, this study demonstrates that PDT with lysosomal photosensitizer induces Bax activation and subsequently initiates the mitochondrial apoptotic pathway.  相似文献   

20.
CD95 (Fas/Apo-1)-mediated apoptosis was shown to occur through two distinct pathways. One involves a direct activation of caspase-3 by large amounts of caspase-8 generated at the DISC (Type I cells). The other is related to the cleavage of Bid by low concentration of caspase-8, leading to the release of cytochrome c from mitochondria and the activation of caspase-3 by the cytochrome c/APAF-1/caspase-9 apoptosome (Type II cells). It is also known that the protein synthesis inhibitor cycloheximide (CHX) sensitizes Type I cells to CD95-mediated apoptosis, but it remains contradictory whether this effect also occurs in Type II cells. Here, we show that sub-lethal doses of CHX render both Type I and Type II cells sensitive to the apoptogenic effect of anti-CD95 antibodies but not to chemotherapeutic drugs. Moreover, Bcl-2-positive Type II cells become strongly sensitive to CD95-mediated apoptosis by the addition of CHX to the cell culture. This is not the result of a restraint of the anti-apoptotic effect of Bcl-2 at the mitochondrial level since CHX-treated Type II cells still retain their resistance to chemotherapeutic drugs. Therefore, CHX treatment is granting the CD95-mediated pathway the ability to bypass the mitochondria requirement to apoptosis, much alike to what is observed in Type I cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号