首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fanconi anemia (FA) is a recessive chromosomal instability syndrome that is clinically characterized by multiple symptoms. Chromosome breakage hypersensitivity to alkylating agents is the gold standard test for FA diagnosis. In this study, we provide a detailed laboratory protocol for accurate assessment of FA diagnosis based on mitomycin C (MMC) test. Induced chromosomal breakage study was successful in 171 out of 205 aplastic anemia (AA) patients. According to the sensitivity of MMC at 50 ng/ml, 38 patients (22.22%) were diagnosed as affected and 132 patients (77.17%) as unaffected. Somatic mosaicism was suspected in an 11-year-old patient with a FA phenotype. Twenty-six siblings of FA patients were also evaluated and five of them (19.23%) were diagnosed as FA. From this study, a standard protocol for diagnosis of FA was developed. It is routinely used as a diagnostic test of FA in Tunisia.  相似文献   

2.
The Fanconi anemia/BRCA pathway: a coordinator of cross-link repair   总被引:1,自引:0,他引:1  
Fanconi anemia (FA) is a rare inherited disease characterized by genomic instability and markedly increased cancer risk. Efforts to elucidate the molecular basis of FA have unearthed a novel DNA damage response pathway, the integrity of which is critical for cellular resistance to DNA cross-linking agents. Despite significant progress in uncovering the molecular events underlying FA, the precise function of this pathway in DNA repair is unknown. This article will review evidence implicating FA proteins in multiple aspects of DNA cross-link repair and propose a model to explain the selectivity of the FA pathway toward DNA cross-linking agents.  相似文献   

3.
Mammalian chromosome ends are protected by nucleoprotein structures called telomeres. Telomeres ensure genome stability by preventing chromosome termini from being recognized as DNA damage. Telomere length homeostasis is inevitable for telomere maintenance because critical shortening or over-lengthening of telomeres may lead to DNA damage response or delay in DNA replication, and hence genome instability. Due to their repetitive DNA sequence, unique architecture, bound shelterin proteins, and high propensity to form alternate/secondary DNA structures, telomeres are like common fragile sites and pose an inherent challenge to the progression of DNA replication, repair, and recombination apparatus. It is conceivable that longer the telomeres are, greater is the severity of such challenges. Recent studies have linked excessively long telomeres with increased tumorigenesis. Here we discuss telomere abnormalities in a rare recessive chromosomal instability disorder called Fanconi Anemia and the role of the Fanconi Anemia pathway in telomere biology. Reports suggest that Fanconi Anemia proteins play a role in maintaining long telomeres, including processing telomeric joint molecule intermediates. We speculate that ablation of the Fanconi Anemia pathway would lead to inadequate aberrant structural barrier resolution at excessively long telomeres, thereby causing replicative burden on the cell.  相似文献   

4.
FANCD2, a key factor in the FANC-BRCA1 pathway is monoubiquitinated and targeted to discrete nuclear foci following DNA damage. Since monoubiquitination of FANCD2 is a crucial indicator for cellular response to DNA damage, we monitored the fate of FANCD2 and its monoubiquitination following DNA damage. Disappearance of FANCD2 protein was induced following DNA damage in a dose-dependent manner, which correlated with degradation of BRCA1 and poly-ADP ribose polymerase (PARP), known targets for caspase-mediated apoptosis. Disappearance of FANCD2 was not affected by a proteasome inhibitor but was blocked by a caspase inhibitor. DNA damage-induced disappearance of FANCD2 was also observed in cells lacking FANCA, suggesting that disappearance of FANCD2 does not depend on FANC-BRCA1 pathway and FANCD2 monoubiquitination. In keeping with this, cells treated with TNF-α, an apoptotic stimulus without causing any DNA damage, also induced disappearance of FANCD2 without monoubiquitination. Together, our data suggest that FANCD2 is a target for caspase-mediated apoptotic pathway, which may be an early indicator for apoptotic cell death.  相似文献   

5.

BACKGROUND:

Fanconi anemia (FA) is a rare autosomal recessive genetic disorder that shows an increased sensitivity to the intercalating agents such as mytomycin C (MMC), measured as chromosomal aberrations. This study was conducted to differentiate between FA and “idiopathic” aplastic anemia on the basis of induced chromosomal breakage study with MMC.

MATERIALS AND METHODS:

MMC stress tests in different final concentrations of 20 and 50 ng/ml of MMC were conducted on peripheral blood lymphocytes from 32 patients with aplastic anemia and 13 healthy controls. Fifty nanograms per milliliter of MMC from old, fresh and frozen stocks was used to check the sensitivity of diagnosis on FA-diagnosed patients. Statistical analysis was used for the assessment of aberrations, including chromatid and chromosome breaks and exchanges.

RESULTS:

Eight patients (25%) with a very high percentage of chromosomal breakage were diagnosed as FA on the basis of the chromosomal breakage study. Six of these patients exhibited congenital anomalies at presentation, while another two lacked such anomalies or had minor physical problems. Freshly made MMC has shown more sensitivity to detect FA patients compared with frozen or 1-week-old MMC stock.

CONCLUSIONS:

The study indicates that freshly made MMC stress test provides an unequivocal means of differentiation between FA and “idiopathic” aplastic anemia. Further, the study, the first of its kind from Iran, stresses on the need for conducting this test in all aplastic anemia cases, even those without congenital anomalies, for accurate and timely diagnosis of FA to implement appropriate therapy.  相似文献   

6.
  相似文献   

7.
8.
9.
《Cytotherapy》2014,16(7):976-989
Background aimsFanconi anemia is an autosomal recessive or X-linked genetic disorder characterized by bone marrow (BM) failure/aplasia. Failure of hematopoiesis results in depletion of the BM stem cell reservoir, which leads to severe anemia, neutropenia and thrombocytopenia, frequently requiring therapeutic interventions, including hematopoietic stem cell transplantation (HSCT). Successful BM transplantation (BMT) requires reconstitution of normal immunity.MethodsIn the present study, we performed a detailed analysis of the distribution of peripheral blood subsets of T, B and natural killer (NK) lymphocytes in 23 patients with Fanconi anemia before and after BMT on days +30, +60, +100, +180, +270 and +360. In parallel, we evaluated the effect of related versus unrelated donor marrow as well as the presence of graft-versus-host disease (GVHD).ResultsAfter transplantation, we found different kinetics of recovery for the distinct major subsets of lymphocytes. NK cells were the first to recover, followed by cytotoxic CD8+ T cells and B cells, and finally CD4+ helper T cells. Early lymphocyte recovery was at the expense of memory cells, potentially derived from the graft, whereas recent thymic emigrant (CD31+ CD45RA+) and naive CD4+ or CD8+ T cells rose only at 6 months after HSCT, in the presence of immunosuppressive GVHD prophylactic agents. Only slight differences were observed in the early recovery of cytotoxic CD8+ T cells among those cases receiving a graft from a related donor versus an unrelated donor. Patients with GVHD displayed a markedly delayed recovery of NK cells and B cells as well as of regulatory T cells and both early thymic emigrant and total CD4+ T cells.ConclusionsOur results support the utility of post-transplant monitoring of a peripheral blood lymphocyte subset for improved follow-up of patients with Fanconi anemia undergoing BMT.  相似文献   

10.
Fanconi anemia (FA) is an inherited cancer-susceptibility disorder, characterized by genomic instability, hypersensitivity to DNA cross-linking agents, and a prolonged G2 phase of the cell cycle. We observed a marked dose-dependent accumulation of FA cells in the G2 compartment after treatment with 4,5',8-trimethylpsoralen (Me(3)Pso) in combination with 365 nm irradiation. Using bivariate DNA distribution methodology, we determined the proportion of replicating and arresting S-phase cells and observed that, whereas normal cells arrested DNA replication in the presence of Me(3)Pso cross-links and monoadducts, FA lymphoblasts failed to arrest DNA synthesis. Taken together, the above data suggest that, in response to damage induced by DNA cross-linking agents, the S-phase checkpoint is inefficient in FA cells. This would lead to accumulation of secondary lesions, such as single- and double-strand breaks and gaps. The prolonged time in G2 phase seen in FA cells therefore exists in order to allow the cells to remove lesions which accumulated during the preceding abnormal S phase.  相似文献   

11.
The principal cellular feature of Fanconi anemia (FA), an inherited cancer prone disorder, is a high level of chromosomal breakage, amplified after treatment with crosslinking agents. Three of the eight genes involved in FA have been cloned: FANCA, FANCC and FANCG. However, their biological functions remain unknown. We previously observed an excessive production of deletions at the HPRT locus in FA lymphoblasts belonging to the relatively rare complementation group D(1) and an increased frequency of glycophorin A (GPA) variants in erythrocytes derived from FA patients (2). In thi study, we examined the molecular nature of 31 HPRT mutations formed in vivo in circulating T-lymphocytes isolated from 9 FA male patients. The results show that in all FA patients investigated the deletions are by far the most prevalent mutational event in contrast to age matched healthy donors, in which point mutations predominate. The complementation group in the FA patients examined in the present study has not yet been defined. However, knowing that mutations in the FANCA and FANCC gene are found to be involved in at least 70% of the FA patients, it can be expected that the excessive production of deletions is a general feature of the FA phenotype. In addition, the spectrum of HPRT deletions observed in FA patients differs from that of healthy children: there is a high frequency of 3'-terminal deletions and a strikingly low proportion of V(D)J mediated events. Based on previous findings, a decreased fidelity of coding V(D)J joint formation (3) and an inaccurate repair of specific DNA double strand breaks via Non-Homologous End Joining (4), we propose that FA genes play a role in the control of the fidelity of rejoining of specific DNA ends. Such a defect may explain several basic features of FA, such as chromosomal instability and deletion pronenness.  相似文献   

12.
Fanconi anemia (FA), a genetic disorder predisposing to aplastic anemia and cancer, is characterized by hypersensitivity to DNA-damaging agents and oxidative stress. Five of the cloned FA proteins (FANCA, FANCC, FANCE, FANCF, FANCG) appear to be involved in a common functional pathway that is required for the monoubiquitination of a sixth gene product, FANCD2. Here, we report that FANCA associates with the IkappaB kinase (IKK) signalsome via interaction with IKK2. Components of the FANCA complex undergo rapid, stimulus-dependent changes in phosphorylation, which are blocked by kinase-inactive IKK2 (IKK2 K > M). When exposed to mitomycin C, cells expressing IKK2 K > M develop a cell cycle abnormality characteristic of FA. Thus, FANCA may function to recruit IKK2, thus providing the cell a means of rapidly responding to stress.  相似文献   

13.
Fanconi anemia (FA) is a rare and complex inherited blood disorder of the child. At least 15 genes are associated with the disease. The highest frequency of mutations belongs to groups A, C and G. Genetic instability and cytokine hypersensitivity support the selection of leukemic over non-leukemic stem cells.  相似文献   

14.
Fanconi anemia (FA) is an inherited disease caused by mutations in at least 13 genes and characterized by genomic instability. In addition to displaying strikingly heterogenous clinical phenotypes, FA patients are exquisitely sensitive to treatments with crosslinking agents that create interstrand crosslinks (ICL). In contrast to bacteria and yeast, in which ICLs are repaired through replication-dependent and -independent mechanisms, it is thought that ICLs are repaired primarily during DNA replication in vertebrates. However, recent data indicate that replication-independent ICL repair also operates in vertebrates. While the precise role of the FA pathway in ICL repair remains elusive, increasing evidence suggests that FA proteins function at different steps in the sensing, recognition and processing of ICLs, as well as in signaling from these very toxic lesions, which can be generated by a wide variety of cancer chemotherapeutic drugs. Here, we discuss some of the recent findings that have shed light on the role of the FA pathway in ICL repair, with special emphasis on the implications of these findings for cancer therapy since disruption of FA genes have been associated with cancer predisposition.  相似文献   

15.
The principal cellular feature of Fanconi anemia (FA), an inherited cancer prone disorder, is a high level of chromosomal breakage, amplified after treatment with crosslinking agents. Three of the eight genes involved in FA have been cloned: FANC , FANC and FANC . However, their biological functions remain unknown. We previously observed an excessive production of deletions at the HPRT locus in FA lymphoblasts belonging to the relatively rare complementation group D(1) and an increased frequency of glycophorin A (GPA) variants in erythrocytes derived from FA patients (2). In this study, we examined the molecular nature of 31 HPRT mutations formed in vivo in circulating T-lymphocytes isolated from 9 FA male patients. The results show that in all FA patients investigated the deletions are by far the most prevalent mutational event in contrast to age matched healthy donors, in which point mutations predominate. The complementation group in the FA patients examined in the present study has not yet been defined. However, knowing that mutations in the FANC and FANC gene are found to be involved in at least 70% of the FA patients, it can be expected that the excessive production of deletions is a general feature of the FA phenotype. In addition, the spectrum of HPRT deletions observed in FA patients differs from that of healthy children: there is a high frequency of 3′-terminal deletions and a strikingly low proportion of V(D)J mediated events. Based on previous findings, a decreased fidelity of coding V(D)J joint formation (3) and an inaccurate repair of specific DNA double strand breaks via Non-Homologous End Joining (4), we propose that FA genes play a role in the control of the fidelity of rejoining of specific DNA ends. Such a defect may explain several basic features of FA, such as chromosomal instability and deletion pronenness.  相似文献   

16.
If replication forks are perturbed, a multifaceted response including several DNA repair and cell cycle checkpoint pathways is activated to ensure faithful DNA replication. Here, we show that poly(ADP‐ribose) polymerase 1 (PARP1) binds to and is activated by stalled replication forks that contain small gaps. PARP1 collaborates with Mre11 to promote replication fork restart after release from replication blocks, most likely by recruiting Mre11 to the replication fork to promote resection of DNA. Both PARP1 and PARP2 are required for hydroxyurea‐induced homologous recombination to promote cell survival after replication blocks. Together, our data suggest that PARP1 and PARP2 detect disrupted replication forks and attract Mre11 for end processing that is required for subsequent recombination repair and restart of replication forks.  相似文献   

17.
贺燕  谢梦女  余立  任真  朱芳  符淳 《遗传》2017,39(6):469-481
范可尼贫血(Fanconi anemia, FA)是一种罕见的常染色体或X染色体连锁的隐性遗传病,其发生源于范可尼贫血基因(FA基因)突变。FA基因是一组在DNA交联损伤中起同源重组修复作用的基因。FA女性患者常见早发性卵巢功能衰退(premature ovarian insufficient, POI)的特征,而FA小鼠也表现出生殖细胞严重缺乏,这些结果提示FA基因在哺乳动物卵泡发育中起重要作用。研究显示FA基因在促进原始生殖细胞增生,维持正常卵母细胞减数分裂,参与卵泡发育的促性腺激素调节以及卵母细胞与颗粒细胞生长过程中的相互调节等方面调节卵泡发育。本文综述了FA基因在卵泡发育中的作用和分子机制方面的研究进展,为POI的病因学解析提供遗传基础。  相似文献   

18.
Fanconi anemia (FA) is an autosomal or X-linked recessive disorder characterized by chromosomal instability, bone marrow failure, cancer susceptibility, and a profound sensitivity to agents that produce DNA interstrand cross-link (ICL). To date, 15 genes have been identified that, when mutated, result in FA or an FA-like syndrome. It is believed that cellular resistance to DNA interstrand cross-linking agents requires all 15 FA or FA-like proteins. Here, we review our current understanding of how these FA proteins participate in ICL repair and discuss the molecular mechanisms that regulate the FA pathway to maintain genome stability.  相似文献   

19.
Oxidative stress is considered as an important pathogenic factor in many human diseases including Fanconi anemia (FA), an inherited bone marrow failure syndrome with extremely high risk of leukemic transformation. Members of the FA protein family are involved in DNA damage and other cellular stress responses. Loss of FA proteins renders cells hypersensitive to oxidative stress and cancer transformation. However, how FA cells respond to oxidative DNA damage remains unclear. By using an in vivo stress-response mouse strain expressing the Gadd45β-luciferase transgene, we show here that haematopoietic stem and progenitor cells (HSPCs) from mice deficient for the FA gene Fanca or Fancc persistently responded to oxidative stress. Mechanistically, we demonstrated that accumulation of unrepaired DNA damage, particularly in oxidative damage-sensitive genes, was responsible for the long-lasting response in FA HSPCs. Furthermore, genetic correction of Fanca deficiency almost completely abolished the persistent oxidative stress-induced G2/M arrest and DNA damage response in vivo. Our study suggests that FA pathway is an integral part of a versatile cellular mechanism by which HSPCs respond to oxidative stress.  相似文献   

20.
Cells have evolved multiple distinct DNA repair pathways to efficiently correct a variety of genotoxic lesions, and decades of study have led to an improved understanding of the mechanisms and regulation of these individual pathways. However, there is now an increasing appreciation that extensive crosstalk exists among DNA repair pathways and that this crosstalk serves to increase the efficiency and diversity of response to damage. The Fanconi anemia (FA)/BRCA and nucleotide excision repair (NER) pathways have been shown to share common factors, and often work in concert to repair damage. Genomic studies are now revealing that many tumors harbor somatic mutations in FA/BRCA or NER genes, which may provide a growth advantage, but which could also be exploited therapeutically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号