首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A newly devised, simple and highly reproducible method for fungal staining is reported. Grocott's method, in which methenamine-silver nitrate solution is employed, has been widely used for the staining of fungi in tissue sections, but it frequently produces heavy background staining because of sudden and progressive reaction in the methenamine-silver nitrate solution. We therefore replace the latter solution with an ammoniacal silver nitrate solution. This new method yields more consistent results in fungal staining without background staining, since the reaction time in die ammoniacal silver nitrate solution is prolonged. The present method is considered superior to Grocott's method with regard to its simplicity and reproducibility.  相似文献   

2.
A newly devised, simple and highly reproducible method for fungal staining is reported. Grocott's method, in which methenamine-silver nitrate solution is employed, has been widely used for the staining of fungi in tissue sections, but it frequently produces heavy background staining because of sudden and progressive reaction in the methenamine-silver nitrate solution. We therefore replace the latter solution with an ammoniacal silver nitrate solution. This new method yields more consistent results in fungal staining without background staining, since the reaction time in the ammoniacal silver nitrate solution is prolonged. The present method is considered superior to Grocott's method with regard to its simplicity and reproducibility.  相似文献   

3.
Silver staining of nucleolar organizer regions (NORs) and their subsequent quantification by image analysis are used increasingly in human pathological specimens and experimental models. Because certain conditions determined by the type of tissue and/or its fixation render AgNOR segmentation for image analysis difficult due to insufficient contrast or nonspecific silver precipitation, we propose three improvements to the original technique to overcome these difficulties. Pretreatment with 7% nitric acid produced very distinct dark brown images of AgNORs on a yellow background. The gradient of background colors allowed easy discrimination of nucleolar, nuclear and cytoplasmic structures. Seven morphometric parameters related to number, size and shape of AgNORs were evaluated quantitatively by image analysis on sections pretreated with nitric acid and on adjacent sections treated with citrate buffer in a wet autoclave according to the most widely accepted method for image analysis of AgNOR. Both methods yielded similar results. A second improvement was achieved by coating the slides with 7% celloidin solution in ethyl alcohol-ether prior to AgNOR staining and acid pretreatment. This coating prevented nonspecific silver deposition on argyrophilic bacteria and other tissue debris in human vaginal smears that could make visualizing AgNOR sites difficult. Finally, placing sections face down on the staining solution prevents the formation of nonspecific silver precipitates. These procedures can be applied together or separately according to the requirements of the material to be evaluated.  相似文献   

4.
Silver staining of nucleolar organizer regions (NORs) and their subsequent quantification by image analysis are used increasingly in human pathological specimens and experimental models. Because certain conditions determined by the type of tissue and/or its fixation render AgNOR segmentation for image analysis difficult due to insufficient contrast or nonspecific silver precipitation, we propose three improvements to the original technique to overcome these difficulties. Pretreatment with 7% nitric acid produced very distinct dark brown images of AgNORs on a yellow background. The gradient of background colors allowed easy discrimination of nucleolar, nuclear and cytoplasmic structures. Seven morphometric parameters related to number, size and shape of AgNORs were evaluated quantitatively by image analysis on sections pretreated with nitric acid and on adjacent sections treated with citrate buffer in a wet autoclave according to the most widely accepted method for image analysis of AgNOR. Both methods yielded similar results. A second improvement was achieved by coating the slides with 7% celloidin solution in ethyl alcohol-ether prior to AgNOR staining and acid pretreatment. This coating prevented nonspecific silver deposition on argyrophilic bacteria and other tissue debris in human vaginal smears that could make visualizing AgNOR sites difficult. Finally, placing sections face down on the staining solution prevents the formation of nonspecific silver precipitates. These procedures can be applied together or separately according to the requirements of the material to be evaluated.  相似文献   

5.
A rapid, reliable silver impregnation method is described for nervous tissue fixed in formol-saline, Bouin or Sum. Sections are impregnated for 10-15 minutes at room temperature or 37 C in a solution containing 0.5 g Protargol-S, 0.005-0.01 g allantoin, 1 ml of 1% Cu[NO2]2, 1 ml of 1% AgNO3. and 1-2 drops of 30% H2O2 in 100 ml distilled water. Thereafter the dons arc reduced in a hydroquinone-formalin solution. This is followed by gold toning and subsequent reduction and mounting. Alternatively. following the first reduction, the silver image can be intensified by placing sections in a silver-allantoin bath which is followed by reduction and mounting. This method is very reliable and selective, making it suitable for general routine and research use.  相似文献   

6.
This report presents a method which can be used for counterstaining semithin sections of plastic embedded tissue. The sections are treated with a solution of silver lactate, followed by physical development. During the silver lactate treatment, silver ions are bound by various tissue components as metallic silver or silver sulfide. During physical development catalytic reduction of silver ions to metallic silver takes place where silver has been bound in the tissue, enlarging the silver deposits to microscopically visible dimensions. The amplified silver deposits give high contrast staining in yellow, brown and black suitable for both color and monochrome photography. The localization of the silver deposits is highly specific and may reflect several independent chemical processes. Examples in several tissues are shown.  相似文献   

7.
This report presents a method which can be used for counterstaining semithin sections of plastic embedded tissue. The sections are treated with a solution of silver lactate, followed by physical development. During the silver lactate treatment, silver ions are bound by various tissue components as metallic silver or silver sulfide. During physical development catalytic reduction of silver ions to metallic silver takes place where silver has been bound in the tissue, enlarging the silver deposits to microscopically visible dimensions. The amplified silver deposits give high contrast staining in yellow, brown and black suitable for both color and monochrome photography. The localization of the silver deposits is highly specific and may reflect several independent chemical processes. Examples in several tissues are shown.  相似文献   

8.
The method is based on substitution fixation at —25° C of quickly frozen tissue with a 90% alcohol solution saturated with silver nitrate. The silver salts are photochemically reduced in the histological preparations. At this low temperature very little staining of the protein structure of the tissue takes place. Silver ions adsorbed by the tissue can be removed by treatment with a sodium nitrate solution. About 2/3 of the brown material in the histological preparations of cerebral cortex was due to the chloride in the tissue, 1/6 to the phosphate, 1/10 to an unidentified (probably organic) anion, and 1/20 to bicarbonate. When the alcoholic silver nitrate solution used for the fixation is acidified, or the sections are treated with nitric acid, the colored material consists of reduced silver chloride only. A comparison of the light absorption in histological preparations of cortex treated with neutral and with acid solutions supported the conclusion that about 2/3 of the colored material in the tissue is reduced silver chloride.  相似文献   

9.
To clarify tthe mechanism by which local application of silver compounds protects burns against infection, an ion-specific electrode was used to measùre the concentration of silver ions in solutions. By this method it was shown that in burn dressings silver ions were reduced to a very low level by precipitation as silver chloride. The antibacterial effect was found to depend on the availability of silver ions from solution in contact with precipitate. Between 10-5 and 10-6 molar silver nitrate solution in water was rapidly bactericidal. The minimal amount of silver nitrate causing inhibition of respiration of skin in tissue culture was about 25 times the minimal concentration of silver nitrate that inhibited growth of Pseudomonas aeruginosa.  相似文献   

10.
A LaVelle 《Stain technology》1985,60(5):271-273
Silver staining has become a versatile method for the visualization of specific cell structures and products. The similarity of the impregnation "nuclei" of reduced silver staining to the silver "specks" or "nuclei" of the latent image in photography is noted. "Physical" development (reduction of ionic silver in solution) in silver staining as compared to "chemical" development (reduction of ionic silver remaining in a silver halide crystal) in photographic procedures is briefly discussed.  相似文献   

11.
AgNORs are nucleolar proteins that interact specifically with silver salts. The size of silver precipitates measured by image analysis (ICM) in cycling cells proved to be inversely proportional to the cell cycle time and provided a significant correlation with prognosis for a large spectrum of cancers. Because ICM is time-consuming and poorly reproducible among laboratories using different imaging settings, this article presents a new approach to AgNOR quantitation based on flow cytometry (FCM). We report that silver precipitates caused a great decrease in the forward scattered light and that this effect was correlated with the AgNOR's relative area as measured by ICM. These results were confirmed by measuring cell lines having different cell cycle durations. Moreover, double staining using APase-Fast red fluorescence to reveal the Ki-67/MIB 1 antigen of cycling cells and silver nitrate to stain the AgNORs was successfully analyzed by FCM. The procedure makes it possible, for the first time, to validly and rapidly compare the growth fraction and cycling speed of partially proliferating cell populations, such as tumors.  相似文献   

12.
A reduced silver technique using physical development to stain embryonic nervous tissue is described. Brains are fixed in Bodian's fixative. Paraffin sections are pretreated with 1% chromic acid or 5% formol. They are impregnated with 0.01% silver nitrate dissolved in 0.1 M boric acid/sodium tetraborate buffer of pH 8 or with silver proteinate. Finally they are developed in a special physical developer which contains 0.1% silver nitrate, 0.01-0.l% formol as developed agent, 25% sodium carbonate to buffer the solution at pH 10.3, 0.1% ammonium nitrate to prevent precipitation of silver hydroxide, and 5% tungstosilicic acid as a protective colloid. The development takes several minutes in this solution, thus the intensity of staining can be controlled easily. The method yields uniform, complete and reproducible staining of axons at all developmental stages of the nervous tissue and is easy to handle.  相似文献   

13.
A reduced silver technique using physical development to stain embryonic nervous tissue is described. Brains are fixed in Bodian's fixative. Paraffin sections are pretreated with 1% chromic acid or 5% formol. They are impregnated with 0.01% silver nitrate dissolved in 0.1 M boric acid/sodium tetraborate buffer of pH 8 or with silver proteinate. Finally they are developed in a special physical developer which contains 0.1% silver nitrate, 0.01-0.1% formol as reducing agent, 2.5% sodium carbonate to buffer the solution at pH 10.3, 0.1% ammonium nitrate to prevent precipitation of silver hydroxide, and 5% tungstosilicic acid as a protective colloid. The development takes several minutes in this solution, thus the intensity of staining can be controlled easily. The method yields uniform, complete and reproducible staining of axons at all developmental stages of the nervous tissue and is easy to handle.  相似文献   

14.
Enterochromaffin cells from the small intestine of man, guinea pig, dog, chicken, rabbit, cat and rat were stained using the Masson-Fontana ammoniacal silver method with varying dilutions of silver nitrate solution (0.25 to 5 g per 100 ml of distilled water) and incubation temperatures (60 C and 75 C). The 0.5% solution of silver nitrate gave an argentaffin pattern similar to that of the 5% solution and had two major advantages: economically, since much less silver nitrate is used, and methodologically, since low background resulted with tissue of those species (rat, cat and rabbit) that required unusually long incubation. The staining of melanocytes was similar for all dilutions at the usual staining time (15-30 min).  相似文献   

15.
Enterochromaffin cells from the small intestine of man, guinea pig, dog, chicken, rabbit, cat and rat were stained using the Masson-Fontana ammoniacal silver method with varying dilutions of silver nitrate solution (0.25 to 5 g per 100 ml of distilled water) and incubation temperatures (60 C and 75 C). The 0.5% solution of silver nitrate gave an argentaffin pattern similar to that of the 5% solution and had two major advantages: economically, since much less silver nitrate is used, and methodologically, since low background resulted with tissue of those species (rat, cat and rabbit) that required unusually long incubation. The staining of melanocytes was similar for all dilutions at the usual staining time (15-30 min).  相似文献   

16.
Silver staining has become a versatile method for the visualization of specific cell structures and products. The similarity of the impregnation “nuclei” of reduced silver staining to the silver “specks” or “nuclei” of the latent image in photography is noted. “Physical” development (reduction of ionic silver in solution) in silver staining as compared to “chemical” development (reduction of ionic silver remaining in a silver halide crystal) in photographic procedures is briefly discussed.  相似文献   

17.
A modification of the Del Rio-Hortega method for the demonstration of central nervous system elements is presented. This silver impregnation technique is particularly useful for the classification of cell types for quantitative differential cell counts. Formalin fixed paraffin sections are immersed in formol-ammonium bromide for 1 1/2 hours; this solution is an excellent mordant for various silver nitrate stains. The samples are stained for 20 to 60 minutes in a silver carbonate solution (25 ml of 25% silver nitrate combined with 200 ml of 5% sodium carbonate) and then reduced in a 1% formaldehyde solution to which 20 drops of acetic acid have been added. Finally, the slides are fixed in sodium thiosulfate, rinsed in tap water, dehydrated, cleared, and mounted. This procedure will enable this investigator to identify neurons, oligodendroglia, and astrocytes on the basis of their nuclear staining as well as to demonstrate the laminae of brain tissue since the method allows differentiation of cell layers and fiber tracts.  相似文献   

18.
Summary Golgi preparations were made by consecutive treatment of formalin-fixed brain and liver with potassium dichromate and silver nitrate. Impregnated tissue dissected from thin slices of the blocks were studied by X-ray powder diffraction methods, in a diffractometer and a Guinier camera. Such tissue proved to contain crystalline silver chromate, Ag2CrO4, both while still in the silver nitrate solution and after dehydration in ethanol and clearing in xylene and xylene-Dammar resin. No other compounds containing chromium or silver were detectable. Formalin-fixed tissue merely treated with silver nitrate contained silver chloride, but in impregnated tissue the amount was too scarce to be visible. Hence, silver chloride was no integral part of the Golgi precipitate.A number of mostly ethereal oils traditionally used for clearing histological sections, did not cause the appearance of metallic silver in detectable amount in the Golgi preparations. However, after treatment with clove oil and creosote metallic silver was detected in the tissue.This study was supported by U.S. P.H. S. Grant NS 07998. This aid is gratefully acknowledged.We are indebted to Miss I. Madsen and Mrs. K. Sörensen for technical assistance.  相似文献   

19.
Factors influencing the consistency and specificity of the staining of neuronal degeneration products were studied in brain sections by varying systematically the composition of solutions used in the steps which are common to the degeneration methods. The formation of nuclei of metallic silver was determined either by physical development of 110Ag, after dissolving reducible silver by acetic acid. In degenerating axons metallic silver nucleic are formed by their own reducing groups in the first (acid) and in the second (alkaline) impregnating bath. The first impregnation turned out to be sufficient to produce complete staining of degenerating axons. The reducing capacity of normal axons and myelin can be suppressed by oxidation or by lowering the pH of the impregnating solution. Degenerating axon terminals are not able to reduce silver ions in either of the impregnating baths. Rather, the metallic silver nuclei initiating their staining are formed in the Nauta reducer by interaction of its reducing agent (formol) with silver ions which had been trapped in the tissue during the impregnation. Thus the nuclei are enlarged to microscopic visibility by a nonstandardized physical developer coming about from the Nauta reducer and the silver ions transferred with the sections. In this reaction catalytic sites in degenerating terminals as well as ammonium ions and the alkali reserve of the tissue play an important role. On the basis of the present results it was possible to stabilize the conditions for staining degenerating axons and degenerating axons terminals in two separate staining procedures detailed in following papers.  相似文献   

20.
Factors influencing the consistency and specificity of the staining of neuronal degeneration products were studied in brain sections by varying systematically the composition of solutions used in the steps which are common to the degeneration methods. The formation of nuclei of metallic silver was determined either by physical development or 110Ag, after dissolving reducible silver by acetic acid. In degenerating axons metallic silver nuclei are formed by their own reducing groups in the first (acid) and in the second (alkaline) impregnating bath. The first impregnation turned out to be sufficient to produce complete staining of degenerating axons. The reducing capacity of normal axons and myelin can be suppressed by oxidation or by lowering the pH of the impregnating solution. Degenerating axon terminals are not able to reduce silver ions in either of the impregnating baths. Rather, the metallic silver nuclei initiating their staining are formed in the Nauta reducer by interaction of its reducing agent (formol) with silver ions which had been trapped in the tissue during the impregnation. Thus the nuclei are enlarged to microscopic visibility by a nonstandardized physical developer coming about from the Nauta reducer and the silver ions transferred with the sections. In this reaction catalytic sites in degenerating terminals as well as ammonium ions and the alkali reserve of the tissue play an important role. On the basis of the present results it was possible to stabilize the conditions for staining degenerating axons and degenerating axon terminals in two separate staining procedures detailed in following papers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号