首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
When an enzyme is bound to an insoluble polyelectrolyte it may acquire novel kinetic properties generated by Donnan effects. It the enzyme is homogeneously distributed within the matrix, a variation of the electrostatic partition coefficient, when substrate concentration is varied, mimics either positive or negative co-operativity. This type of non-hyperbolic behaviour may be distinguished from true co-operativity by an analysis of the Hill plots. If the enzyme is heterogeneously distributed within the polyelectrolyte matrix, an apparent negative co-operativity occurs, even if the electrostatic partition coefficient does not vary when substrate concentration is varied in the bulk phase. If the partition coefficient varies, mixed positive and negative co-operativities may occur. All these effects must be suppressed by raising the ionic strength in the bulk phase. Attraction of cations by fixed negative charges of the polyanionic matrix may be associated with a significant decrease of the local pH. The magnitude of this effect is controlled by the pK of the fixed charges groups of the Donnan phase. The local pH cannot be much lower than the value of this pK. This effect may be considered as a regulatory device of the local pH. Acid phosphatase of sycamore (Acer pseudoplatanus) cell walls is a monomeric enzyme that displays classical Michaelis-Menten kinetics in free solution. However, when bound to small cell-wall fragments or to intact cells, it has an apparent negative co-operativity at low ionic strength. Moreover a slight increase of ionic strength apparently activates the bound enzymes and tends to suppress the apparent co-operativity. At I0.1, or higher, the bound enzyme has a kinetic behavior indistinguishable from that of the purified enzyme in free solution. These results are interpreted in the light of the Donnan theory. Owing to the repulsion of the substrate by the negative charges of cell-wall polygalacturonates, the local substrate concentration in the vicinity of the bound enzyme is smaller than the corresponding concentration in bulk solution. The kinetic results obtained are consistent with the view that there exist at least three populations of bound enzyme with different ionic environments: a first population with enzyme molecules not submitted to electrostatic effects, and two other populations with molecules differently submitted to these effects. The theory allows one to estimate the proportions of enzyme belonging to these populations, as well as the local pH values and the partition coefficients within the cell walls.  相似文献   

2.
At 'low' ionic strength, acid phosphatase bound to plant cell walls exhibits an apparent negative co-operativity, whereas it displays classic Michaelis-Menten kinetics in free solution. Conversely, at 'high' ionic strength, the bound enzyme and the soluble enzyme behave identically. This apparent negative co-operativity is explained by the existence of an electrostatic partition of the charged substrate by the fixed negative charges of the cell wall. Raising the ionic strength suppresses these electrostatic repulsion effects. Calcium may be removed from the cell walls by acid treatment and the acid phosphatase is apparently strongly inhibited. This inhibition occurs together with an increased apparent negative co-operativity of the enzyme. Incubating cell wall fragments previously depleted of calcium with CaCl2 restores the initial behaviour of the enzyme. Calcium, which tightly binds to cell wall pectic compounds, has by itself no effect on the enzyme in free solution. It affects the net charge of the cell wall and therefore the amplitude of electrostatic repulsion effects. Non-linear least-square fitting methods make it possible to estimate the density of fixed negative charges as well as the electrostatic partition coefficient, for both the 'native' and 'calcium-deprived' cell wall fragments. It may be shown directly that calcium loading and unloading in the cell wall controls the electrostatic effects, by monitoring proton extrusion from cell wall fragments upon raising the ionic strength. Proton outflux in the bulk phase is considerably enhanced upon removal of calcium from the cell walls. The main conclusion is that loading and unloading of calcium during cell elongation and division may regulate the activity of cell wall enzymes.  相似文献   

3.
4.
Abstract. An acid phosphatase is isolated and purified to homogeneity from sycamore cell walls. The enzyme, which has a molecular weight close to 100,000, is a glycoprotein and is most probably made up of one polypeptide chain only. Its amino acid composition has been determined. Although homogeneous to polyacrylamide gel electrophoresis under non-denaturing conditions, the enzyme preparation still contains protease traces that tend to split polypeptide chain in two fragments.  相似文献   

5.
Boron in plant cell walls   总被引:26,自引:0,他引:26  
Matoh  Toru 《Plant and Soil》1997,193(1-2):59-70
Boron is an essential element for higher plants, yet the primary functions remain unclear. In intact tissues of higher plants, this element occurs as both water soluble and water insoluble forms. In this review, the intracellular localisation of B and possible function of B in cell walls of higher plants are discussed. The majority of the water soluble B seems to be localised in the apoplastic region as boric acid. The water insoluble B is associated with rhamnogalacturonan II (RG-II) and the complex is ubiquitous in higher plants. In the Brassicaceae, Apiaceae, Chenopodiaceae, Asteraceae, Amaryllidaceae, and Liliaceae, nearly all the cell wall B is associated with RG-II, while in the Cucurbitaceae, only half of the cell wall B is in this complex. In duckweed, a different type of B-polysaccharide complex has been identified.Analysis of the structure of the B–RG-II complex reveals that the complex is composed of boric acid and two chains of monomeric RG-II. Boric acid does not merely bind to sugars but crosslinks two chains of pectic polysaccharide at the RG-II region through borate-diester bonding, thus forming a network of pectic polysaccharides in cell walls. The B–RG-II complex is reconstituted in vitro only by mixing monomeric RG-II and boric acid at pH 4.0. In the in vitro reconstitution, germanic acid can substitute for boric acid to some extent. The RG-II epitope, which cross reacts with the antibody toward the B-RG-II complex, is detected in walls of every cell in radish roots. The epitope is also detected in growing pollen tube cell walls, which are claimed to require B.Whilst it is now clear that boric acid links some cell wall components, it is not yet clear whether there is a structural requirement for B in cell wall function.  相似文献   

6.
Self-assembly of plant cell walls   总被引:2,自引:1,他引:1  
The object of this paper is to define criteria for distinguishing between self-assembly and template-based assembly in plant cell walls. The example of cellulose shows that cell wall polymers biosynthesized at a membrane may retain parallel chain packing arrangements that are thermodynamically unstable and cannot be reproduced in vitro, making the experimental testing of the self-assembly hypothesis difficult. Also, natural cellulose is ordered on a number of scales of pattern, each of which may be constructed by either self- or template-based assembly independently of the rest. These conceptual problems apply equally to the self-assembly of complete cell walls and other cell wall polymers. It is suggested that the self-assembly concept should be applied only to one stage or level in the synthesis of a cell wall, and that an additional concept of parallel assembly may be useful for understanding the synthesis of some polysaccharides.  相似文献   

7.
Purple acid phosphatase in the walls of tobacco cells   总被引:1,自引:0,他引:1  
Kaida R  Hayashi T  Kaneko TS 《Phytochemistry》2008,69(14):2546-2551
Purple acid phosphatase isolated from the walls of tobacco cells appears to be a 220 kDa homotetramer composed of 60 kDa subunits, which is purple in color and which contains iron as its only metal ion. Although the phosphatase did not require dithiothreitol for activity and was not inhibited by phenylarsine oxide, the enzyme showed a higher catalytic efficiency (kcat/Km) for phosphotyrosine-containing peptides than for other substrates including p-nitrophenyl-phosphate and ATP. The phosphatase formed as a 120 kDa dimer in the cytoplasm and as a 220 kDa tetramer in the walls, where Brefeldin A blocked its secretion during wall regeneration. According to our double-immunofluorescence labeling results, the enzyme might be translocated through the Golgi apparatus to the walls at the interphase and to the cell plate during cytokinesis.  相似文献   

8.
Summary The distribution of particles on the surface of the plasmalemma in the collenchyma of Apium graveolens was studied by the freeze-etching technique. The aim was to determine whether the distribution of particles was related to the known longitudinal or transverse orientation of cellulose microfibrils in different layers of the walls of these cells. Preliminary statistical studies have shown no obvious correlation between particle distribution and microfibril orientation although the distribution appeared uniform rather than random. Qualitatively, the particle distribution on the plasmalemma of differentiating xylem fibres of Eucalyptus maculata and of the cortical parenchyma of Avena sativa coleoptiles appeared to be similar to that observed on the plasmalemma of Apium. No correlation between the particle distribution and the microfibril orientation known to exist in the walls of these cells could be discerned.The orientation of microtubules in the cytoplasm of collenchyma cells of Apium graveolens was parallel to the microfibril orientation in many instances, but exceptions were noted. A possible interpretation for this variation is discussed. It is concluded that the microtubules are the structures which are most likely to be involved in determining microfibril orientation in the cell wall.  相似文献   

9.
Roger B. Homer  Keith Roberts 《Planta》1979,146(2):217-222
The major structural glycoprotein of the cell wall of Chlamydomonas reinhardii has a protein core, at least 50% of which is in the unusual polyproline II conformation. This has been demonstrated by examining the circular dichroism of the cell wall, its constituent glycoproteins, and thermolysin released wall glycopeptides. One of these glycopeptides, T2, has a high hydroxyproline and sugar content, and possesses upward of 85% polyproline II structure. The main extracellular matrix glycoprotein therefore has a rigid, rod-like structure and the significance of this and its relation to higher plant cell wall glycoproteins is discussed. The unusual conformation appears to confer great stability on the glycoprotein as it is unchanged either by certain denaturing agents or during the transition from protomer to assembled cell wall.Abbreviations CD circular dichroism - HP 4-hydroxy-L-proline - PP poly-L-proline - SDS sodium dodecylsulphate This is the eight paper in a series entitled Structure, Composition and Morphogenesis of the Cell Wall of Chlamydomonas reinhardii. The last paper in this series was Catt et al. (1978)  相似文献   

10.
Ionic channels in plant cell membranes   总被引:2,自引:0,他引:2  
The use of patch clamp methods for identifying ion-specific channels and other transport structures in plant cell membranes is described. Methodology, basic concepts that underlie data analysis, and applications of this powerful technique are emphasized.  相似文献   

11.
Nagahashi  G.  Abney  G. D.  Uknalis  J. 《Protoplasma》1994,178(3-4):129-137
Summary The cortex was physically separated from the stele of corn roots. The isolated walls from cortical cells were less dense than the walls isolated from stelar cells. The cell walls from each tissue were centrifuged on a step gradient composed of 50 and 60% sucrose for 5 min at 900 g. After the short centrifugation time, the cortical cell walls banded at the 50/60% interface while the vascular tissue walls pelleted through 60% sucrose. An aliquot of vascular cell walls was then marked with cytochromec. The marked cell walls were mixed with cortical cell walls and centrifuged on a 50/60% sucrose gradient and after 5 min, the vascular tissue walls were cleanly separated from the cortical cell walls. The experiment was repeated without prior separation of tissue types with another corn variety, carrot roots grown in culture, and pea roots. A clean separation of cell wall types was achieved after homogenization of intact roots in liquid nitrogen, extrusion from a nitrogen bomb, and centrifugation in sucrose gradients.  相似文献   

12.
13.
Polygalacturonase inhibiting protein (PGIP) is localized in plant cell walls and plays an important role both in pectic substance metabolism and in prevention of the penetration of phytopathogenic microorganisms. Apparently, PGIP is responsible for the specificity of cell--cell interactions during pollination or inoculation by fungi nonpathogenic for the particular plant. PGIPs from different plants share a basic common structure. They are rather thermostable glycoproteins enriched with leucine and contain about 20% carbohydrates; the molecular weight varies between 37-54 kD. The synthesis of PGIP is encoded by one gene, and its expression is stimulated by injury and fungal infection. The resistance of plant tissues to infection frequently correlates with PGIP expression and with inhibiting action on fungal PG. Thus, PGIP is believed to be useful for gene engineering to obtain transgenic plants resistant to fungal infection or retaining commercial value during storage.  相似文献   

14.
15.
A procedure was developed to measure the degree of pectin methylation in small samples of isolated cell walls from nonlignified plant tissues or pectin solutions. Galacturonic acid was determined colorimetrically with the 3,5-dimethylphenol reagent. Methylation was measured by base hydrolysis of galacturonic acid methyl esters, followed by gas chromatographic determination of released methanol. Estimates of the precision of analysis of pectin and cell wall samples were made. The coefficient of variation for estimates of the pectin esterification in cell walls isolated from 10-g samples of cucumber tissue ranged from 7.7 to 13.2%.  相似文献   

16.
Expansive growth of plant cell walls.   总被引:39,自引:0,他引:39  
The enlargement of plant cell walls is a key determinant of plant morphogenesis. Current models of the cell wall are reviewed with respect to their ability to account for the mechanism of cell wall enlargement. The concept of primary and secondary wall loosening agents is presented, and the possible roles of expansins, xyloglucan endotransglycosylase, endo-1,4-beta-D-glucanase, and wall synthesis in the process of cell wall enlargement are reviewed and critically evaluated. Experimental results indicate that cell wall enlargement may be regulated at many levels.  相似文献   

17.
Human prostate acid phosphatase (EC 3.1.3.2) has been shown to dephosphorylate different phosphoproteins with the maximum rate at pH 4.0-4.5. The activity with phosvitin is distinctly higher than with beta-casein, casein and most of all than with riboflavin-binding protein. The native phosvitin is homogeneous on isoelectric focusing with pI value of 2.1, whereas phosvitin partially dephosphorylated (in about 15%) by the prostate acid phosphatase shows multiple bands with pI values of 3.5 - 6.8 or higher. The phosphate groups bound to serine residues are removed enzymatically twice as fast as phosphothreonine residues. The apparent Km value for phosvitin was 2.4 X 10(-7) M, and is by three orders of magnitude lower than Km of p-nitrophenyl phosphate (2.9 X 10(-4) M). The competitive inhibitors of prostate acid phosphatase, fluoride and L(+)-tartrate, show the same Ki values for phosvitin and p-nitrophenyl phosphate.  相似文献   

18.
19.
Designing the deconstruction of plant cell walls   总被引:2,自引:0,他引:2  
Cell wall architecture plays a key role in the regulation of plant cell growth and differentiation into specific cell types. Gaining genetic control of the amount, composition, and structure of cell walls in different cell types will impact both the quantity and yield of fermentable sugars from biomass for biofuels production. The recalcitrance of plant biomass to degradation is a function of how polymers crosslink and aggregate within walls. Novel imaging technologies provide an opportunity to probe these higher order structures in their native state. If cell walls are to be efficiently deconstructed enzymatically to release fermentable sugars, then we require a detailed understanding of their structural organization in future bioenergy crops.  相似文献   

20.
In vitro autolysis of plant cell walls   总被引:15,自引:14,他引:1       下载免费PDF全文
Primary cell walls of Zea mays prepared in a glycerol medium are capable of autolysis in vitro. Autolysis results in solubilization of about 10% of the wall substance during an 8 hour incubation period. Approximately 10% of the solubilized material is glucose and the remainder consists of an unidentified polymer which yields only glucose upon hydrolysis. Cell wall autolysis is a linear function of time of incubation and of wall concentration. The autolytic process occurs optimally over the pH range of 5.5 to 6.5. The possible relationship between autolytic capacity and capacity for elongation is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号