首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adhesion of ADP-stimulated platelets to immobilized fibrinogen induces the tyrosine phosphorylation of multiple proteins which include pp72syk and pp125FAK. The phosphorylation of these two proteins increases as function of time of platelet adhesion to fibrinogen; however, pp72syk results strongly phosphorylated already after 15 min. whereas pp125FAK reaches high levels of phosphorylation after 1 h of platelet adhesion. Phosphorylation of both proteins is only slightly detectable when platelets are held in suspension or when platelets are allowed to adhere to bovine serum albumin, a non-specific substrate. Echistatin, an Arg-Gly-Asp (RGD)-containing snake-venom protein, affects protein tyrosine phosphorylation promoted by platelet adhesion to fibrinogen, by causing an approximately 44% and 39% decrease of pp72syk and pp125FAK phosphorylation, respectively. The interaction of echistatin with fibrinogen receptor glycoprotein Ilb-Illa on platelet surface might be responsible for the block of integrin-mediated signaling cascade, including pp72syk and pp125FAK inactivation.  相似文献   

2.
The serine-rich repeat glycoproteins of Gram-positive bacteria comprise a large family of cell wall proteins. Streptococcus agalactiae (group B streptococcus, GBS) expresses either Srr1 or Srr2 on its surface, depending on the strain. Srr1 has recently been shown to bind fibrinogen, and this interaction contributes to the pathogenesis of GBS meningitis. Although strains expressing Srr2 appear to be hypervirulent, no ligand for this adhesin has been described. We now demonstrate that Srr2 also binds human fibrinogen and that this interaction promotes GBS attachment to endothelial cells. Recombinant Srr1 and Srr2 bound fibrinogen in vitro, with affinities of KD = 2.1 × 10−5 and 3.7 × 10−6 m, respectively, as measured by surface plasmon resonance spectroscopy. The binding site for Srr1 and Srr2 was localized to tandem repeats 6–8 of the fibrinogen Aα chain. The structures of both the Srr1 and Srr2 binding regions were determined and, in combination with mutagenesis studies, suggest that both Srr1 and Srr2 interact with a segment of these repeats via a “dock, lock, and latch” mechanism. Moreover, properties of the latch region may account for the increased affinity between Srr2 and fibrinogen. Together, these studies identify how greater affinity of Srr2 for fibrinogen may contribute to the increased virulence associated with Srr2-expressing strains.  相似文献   

3.
The nonspecific binding of heparin to plasma proteins compromises its anticoagulant activity by reducing the amount of heparin available to bind antithrombin. In addition, interaction of heparin with fibrin promotes formation of a ternary heparin-thrombin-fibrin complex that protects fibrin-bound thrombin from inhibition by the heparin-antithrombin complex. Previous studies have shown that heparin binds the E domain of fibrinogen. The current investigation examines the role of Zn2+ in this interaction because Zn2+ is released locally by platelets and both heparin and fibrinogen bind the cation, resulting in greater protection from inhibition by antithrombin. Zn2+ promotes heparin binding to fibrinogen, as determined by chromatography, fluorescence, and surface plasmon resonance. Compared with intact fibrinogen, there is reduced heparin binding to fragment X, a clottable plasmin degradation product of fibrinogen. A monoclonal antibody directed against a portion of the fibrinogen αC domain removed by plasmin attenuates binding of heparin to fibrinogen and a peptide analog of this region binds heparin in a Zn2+-dependent fashion. These results indicate that the αC domain of fibrinogen harbors a Zn2+-dependent heparin binding site. As a consequence, heparin-catalyzed inhibition of factor Xa by antithrombin is compromised by fibrinogen to a greater extent when Zn2+ is present. These results reveal the mechanism by which Zn2+ augments the capacity of fibrinogen to impair the anticoagulant activity of heparin.  相似文献   

4.
Summary Transglutaminase, purified from guinea pig liver, was used to catalyze the incorporation of [14C]putrescine into exposed surface proteins of intact mouse neuroblastoma cells. This method specifically labeled two surface proteins (Mr = 92 000 and 76 000) in the N-18 mouse neuroblastoma cells and three surface proteins (Mr = 92 000, 76 000, and 72 000) in the NB-15 mouse neuroblastoma cells. In addition, transglutaminase also catalyzed cross-linking reactions of exposed surface proteins. In both the N-18 and NB-15 cells, differentiation was accompanied by a 2-fold increase of specific radioactivity incorporated into trichloroacetic acid insoluble cellular material, suggesting that the differentiated mouse neuroblastoma cells may possess greater amount of accessible peptide-bound glutaminyl residues on their surface than their malignant counterparts. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorographic method revealed that while the [14C]putrescine-labeled protein patterns of undifferentiated and differentiated mouse neuroblastoma cells were similar, the intensity of labeling of individual bands was specifically modulated by cell differentiation.Abbreviations PMSF phenylmethylsulfonylfluoride - Bt2cAMP,N6,O2 Dibutyryl adenosine 3:5-cyclic monophosphate - IBMX 3-isobutyl-l-methyl xanthine - SDSPAGE sodiumdodecylsulfate-polyacrylamide gel electrophoresis - HEPES N-2-hydroxylethylpiperazine-N-2-ethanesulfonic acid  相似文献   

5.
In the present study we investigate the fibrin(ogen)-endothelial cell binding and the effect of thrombin on the endothelial cells in relation to fibrin(ogen) binding capacity. Endothelial cell fibrinogen binding was concentration and time-dependent, reaching saturation at 1.4 M of added ligand. At equilibrium, the number of fibrinogen molecules bound per endothelial cell in the monolayer was 5.8±0.7×106. When endothelial cells were activated by different concentrations of thrombin (0–0.1 NIH units ml–1), no increase in fibrinogen binding capacity was observed at all the thrombin concentration tested. Whereas disruption of endothelial cell monolayers was observed at thrombin concentrations higher than 0.05 NIH units ml–1, no increase in the amount of fibrinogen bound was observed. Therefore, resting and thrombin-activated endothelial cells show the same fibrinogen binding capacity.The adhesion of endothelial cells in suspension on immobilized fibrinogen or fibrin was studied to ascertain whether the behavior of fibrin is similar to that of fibrinogen. The extent of endothelial cell attachment to immobilized fibrinogen and fibrin was similar (4275±130 cells cm–2 for fibrinogen and 4350±235 cells cm–2 for fibrin) and represent approximately 40% of the added endothelial cells. However, endothelial cell adhesion to immobilized fibrin was significantly faster than endothelial cell adhesion to immobilized fibrinogen. The maximum binding rate was 66±9 and 46±8 cells cm–2 min–1 for fibrin and fibrinogen, respectively. Therefore, the fibrinopeptides released by thrombin from fibrinogen induce qualitative changes which enhance the fibrin interaction with the endothelial cells.  相似文献   

6.
A solid-phase radioimmunoassay for fibrinogen has been developed utilizing [14C]-methylated fibrinogen as standard antigen and fibrinogen-specific antibodies covalently linked to Sepharose. Fibrinogen was [14C]-methylated by reductive alkylation using [14C] formaldehyde and sodium borohydride. The methylated fibrinogen was unaltered in clotting ability and antigenicity.The assay, an isotope dilution assay, is quantitative for picomole amounts of fibrinogen. It is specific for fibrinogen in homologous plasma and in the presence of a variety of other proteins.  相似文献   

7.
HeLa 71 and 65 cells grown in attached culture possess a coat of extracellular proteins that can be released from the cell by mild EDTA-detachment, with no significant effect on cellular integrity. This suggests that these surface proteins are weakly associated with the cell, possibly through divalent cations. The high affinity of surface proteins for critical divalent cations, shown by their high precipitability by Zn2+, Ca2+ and Mg2+, supports this assumption. Since surface proteins appear to be phosphoproteins, as suggested by significant incorporation of 32Pi in vitro, it is possible that binding occurs through The amount of surface protein on HeLa 65 cells grown in suspension culture is greatly reduced compared with cells grown in monolayer culture. This may be related to impaired availability of Ca2+ in suspension culture medium. In monolayer grown HeLa cells surface proteins are predominantly distributed underneath the cells. The highest amount of these proteins is found on cells prior to growth initiation and steadily decreases as cells approach confluency. As shown by radioactive leucine protein labeling, surface proteins are primarily comprised of proteins synthesized within HeLa cells and released to the outer cell surface. The presence of serum proteins in surface protein matrix is physiologically significant.  相似文献   

8.
Treatment of washed, intact platelets with Bolton-Hunter reagent is a satisfactory method for 125I-labeling of many platelet proteins. Analysis by two dimensional polyacrylamide gel electrophoresis and autoradiography shows that the major platelet cytoskeletal proteins and at least four surface-exposed proteins are labeled. The method allows the identification of these labeled proteins in amounts that are below the limits of detection by Coomassie blue staining. Two granule proteins, thrombospondin and fibrinogen, are slightly labeled. Conditions of labeling do not appear to affect platelet structure or function, as assessed by phase-contrast microscopy, 51CrO42? release, and aggregation in response to thrombin or fibrinogen/adenosine-5′-diphosphate.  相似文献   

9.
Carbohydrate specific binding of fibronectin to Vibrio cholerae cells   总被引:1,自引:0,他引:1  
Cells of 10 strains of Vibrio cholerae were grown on Trypticase Soy Broth and were tested for different surface porperties such as expression of surface haemagglutinins, cell-surface hydrophobicity and binding to 3 connective tissue proteins: fibronectin, type II collagen and fibrinogen.All strains bound fibronectin and one selected strain was shown to bind in a time-dependent and saturable manner.The binding of 125I-labelled fibronectin could be completely inhibited by unlabelled fibronectin, and also partly by some other glycoproteins. Mannose inhibited binding of fibronectin up to 60%. The data indicate that carbohydrate structures within the 40 kDa (gelatin binding) and 105 kDa (cell binding) fragments of fibronectin are recognized by lectins on V. cholerae. The binding of collagen or fibrinogen was low or negligible.  相似文献   

10.
The surface-located fibrinogen-binding protein (clumping factor; ClfA) of Staphylococcus aureus has an unusual dipeptide repeat linking the ligand binding domain to the wall-anchored region. Southern blotting experiments revealed several other loci in the S. aureus Newman genome that hybridized to a probe comprising DNA encoding the dipeptide repeat. One of these loci is analysed here. It also encodes a fibrinogen-binding protein, which we have called ClfB. The overall organization of ClfB is very similar to that of ClfA, and the proteins have considerable sequence identity in the signal sequence and wall attachment domains. However, the A regions are only 26% identical. Recombinant biotinylated ClfB protein bound to fibrinogen in Western ligand blots. ClfB reacted with the α- and β-chains of fibrinogen in the ligand blots in contrast to ClfA, which binds exclusively to the γ-chain. Analysis of proteins released from the cell wall of S. aureus Newman by Western immunoblotting using antibody raised against the recombinant A region of ClfB identified a 124 kDa protein as the clfB gene product. This protein was detectable only on cells that were grown to the early exponential phase. It was absent from cells from late exponential phase or stationary phase cultures. Using a clfB mutant isolated by allelic replacement alone and in combination with a clfA mutation, the ClfB protein was shown to promote (i) clumping of exponential-phase cells in a solution of fibrinogen, (ii) adherence of exponential-phase bacteria to immobilized fibrinogen in vitro, and (iii) bacterial adherence to ex vivo human haemodialysis tubing, suggesting that it could contribute to the pathogenicity of biomaterial-related infections. However, in wild-type exponential-phase S. aureus Newman cultures, ClfB activity was masked by the ClfA protein, and it did not contribute at all to interactions of cells from stationary-phase cultures with fibrinogen. ClfB-dependent bacterial adherence to immobilized fibrinogen was inhibited by millimolar concentrations of Ca2+ and Mn2+, which indicates that, like ClfA, ligand binding by ClfB is regulated by a low-affinity inhibitory cation binding site.  相似文献   

11.
Health care-associated methicillin-resistant Staphylococcus aureus (HA-MRSA) forms biofilm in vitro that is dependent on the surface-located fibronectin binding proteins A and B (FnBPA, FnBPB). Here we provide new insights into the requirements for FnBP-dependent biofilm formation by MRSA. We show that expression of FnBPs is sustained at high levels throughout the growth cycle in the HA-MRSA strain BH1CC in contrast to laboratory strain SH1000, where expression could be detected only in exponential phase. We found that FnBP-mediated biofilm accumulation required Zn2+, while the removal of Zn2+ had no effect on the ability of FnBPA to mediate bacterial adherence to fibrinogen. We also investigated the role of FnBPA expressed on the surface of S. aureus in promoting biofilm formation and bacterial adhesion to fibrinogen. The minimum part of FnBPA required for ligand binding has so far been defined only with recombinant proteins. Here we found that the N1 subdomain was not required for biofilm formation or for FnBPA to promote bacterial adherence to fibrinogen. Residues at the C terminus of subdomain N3 required for FnBPA to bind to ligands using the “dock, lock, and latch” mechanism were necessary for FnBPA to promote bacterial adherence to fibrinogen. However, these residues were not necessary to form biofilm, allowing us to localize the region of FnBPA required for biofilm accumulation to residues 166 to 498. Thus, FnBPA mediates biofilm formation and bacterial adhesion to fibrinogen using two distinct mechanisms. Finally, we identified a hitherto-unrecognized thrombin cleavage site close to the boundary between subdomains N1 and N2 of FnBPA.  相似文献   

12.
With the use of 14C-arginine labelled basic proteins isolated from cytoplasma of Ehrlich ascites tumor cells it has been shown that these proteins are occluded by fibrin clots under the influence of thrombin. The occlusion of these proteins depends on their concentration. The experiments indicated that 2.5 μg of these proteins were occluded per one mg of fibrinogen in the presence of thrombin. The basic proteins occluded by fibrin make the clots resistant to the fibrinolityc action of plasmin. The clinical role of arginine-rich basic proteins appearing in circulation in malignancy have been discussed briefly.  相似文献   

13.
14.
1. A formula is proposed for calculating fractional synthesis rates of liver-produced plasma proteins that dispenses with urinary information or information about the size of the urea pool in the body or the fraction of urea that is endogenously catabolized. 2. Synthesis rates obtained for albumin and fibrinogen agreed well with corresponding catabolic rates for the 131I-labelled proteins except in two of the fibrinogen measurements. 3. Significant reutilization of 14C occurs in some animals after [14C]carbonate injections, giving rise to errors in the calculation of protein synthesis rates. These can best be avoided by using results obtained by injecting [13C]urea simultaneously. [15N]urea is shown not to be satisfactory for this purpose.  相似文献   

15.
Culturing cells in a three dimensional hydrogel environment is an important technique for developing constructs for tissue engineering as well as studying cellular responses under various culture conditions in vitro. The three dimensional environment more closely mimics what the cells observe in vivo due to the application of mechanical and chemical stimuli in all dimensions 1. Three-dimensional hydrogels can either be made from synthetic polymers such as PEG-DA 2 and PLGA 3 or a number of naturally occurring proteins such as collagen 4, hyaluronic acid 5 or fibrin 6,7. Hydrogels created from fibrin, a naturally occurring blood clotting protein, can polymerize to form a mesh that is part of the body''s natural wound healing processes 8. Fibrin is cell-degradable and potentially autologous 9, making it an ideal temporary scaffold for tissue engineering.Here we describe in detail the isolation of neonatal cardiomyocytes from three day old rat pups and the preparation of the cells for encapsulation in fibrin hydrogel constructs for tissue engineering. Neonatal myocytes are a common cell source used for in vitro studies in cardiac tissue formation and engineering 4. Fibrin gel is created by mixing fibrinogen with the enzyme thrombin. Thrombin cleaves fibrinopeptides FpA and FpB from fibrinogen, revealing binding sites that interact with other monomers 10. These interactions cause the monomers to self-assemble into fibers that form the hydrogel mesh. Because the timing of this enzymatic reaction can be adjusted by altering the ratio of thrombin to fibrinogen, or the ratio of calcium to thrombin, one can injection mold constructs with a number of different geometries 11,12. Further we can generate alignment of the resulting tissue by how we constrain the gel during culture 13.After culturing the engineered cardiac tissue constructs for two weeks under static conditions, the cardiac cells have begun to remodel the construct and can generate a contraction force under electrical pacing conditions 6. As part of this protocol, we also describe methods for analyzing the tissue engineered myocardium after the culture period including functional analysis of the active force generated by the cardiac muscle construct upon electrical stimulation, as well as methods for determining final cell viability (Live-Dead assay) and immunohistological staining to examine the expression and morphology of typical proteins important for contraction (Myosin Heavy Chain or MHC) and cellular coupling (Connexin 43 or Cx43) between myocytes.  相似文献   

16.
The surface proteins and glycoproteins on red cells from normal and Babesia bovis-infected calf blood have been compared. Several radiolabeling probes were used to label specifically external membrane molecules which were then separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and identified by autoradiography or fluorography. No differences were observed among the Coomassie Blue-stained membrane proteins of erythrocytes from individual uninfected calves. Comparison of red cells from these animals also indicated no qualitative differences in the surface proteins with accessible tyrosyl residues labeled by lactoperoxidase-catalyzed radioiodnation, although some quantitative variation in the uptake of radioactivity into particular proteins was observed. the major radioiodinated bands on normal bovine erythrocytes had Mr of 165, 130, 90, and 45 kiloDaltons. However, labeling of surface glycoproteins by the periodate/[3H]NaBH4 and galactose oxidase (± neuraminidase)/[3H]NaBH4 methods showed significant differences in the surface proteins of red cells from individual uninfected calves. of 14 animals tested, 5 had major labeled glycoproteins of unique Mr. No changes were observed in radioiodinated surface proteins of total red cell samples from infected calves with 0.5-6% parasitemia. Radioiodination of concentrated infected red cells from the same samples (concentrated by selective hypotonic lysis of uninfected erythrocytes in KC1) resulted in the labeling of 3 new surface proteins, with Mr of 118, 115, and 60 kiloDaltons. the same new 125I-labeled bands were identified on infected cells from 3 avirulent strains of B. bovis used in vaccine production. Furthermore, in concentrated infected cells there was very poor radiolabeling of major bands strongly labeled on uninfected cells (Mr 165, 130, and 90 kiloDaltons), suggesting parasite-induced loss of these proteins. Although there were some differences in 3H-labeled surface glycoproteins of red cells from normal and. B. bovis -infected blood, they were restricted to minor labeled bands and were not seen consistently. the labeled surface glycoproteins of concentrated infected cells were very similar to those of the uninfected red blood cells from infected blood.  相似文献   

17.
Platelet surface glycoproteins IIb-IIIa are considered to function as the binding site for fibrinogen. Fibrinogen binding is essential for platelet aggregation and several amines have been shown to inhibit this binding. The present study compares the binding properties of 125I-fibrinogen and [3H]lysine with platelets activated by the Ca2+ ionophore A23187. Many lines of similarities in the binding properties are apparent; however, several differences were also found. The similarities are listed below and the differences are pointed out in parentheses. (a) Marked enhancement by platelet activation; (b) deficiency of binding by thrombasthenic platelets lacking the glycoproteins IIb-IIIa; (c) saturability (fibrinogen binding approaches saturation at more than 12 μM, within 10 min; lysine binding at more than 100 mM within 1 min); (d) Ca2+-dependence (at 1 mM Ca2+ lysine binding is minute and fibrinogen binding is half-saturated); (e) reversibility; the binding achieved within 10 min is exchangeable; dissociation depends upon time and external ligand concentration; (f) inhibition by the oligoamines His-Lys and Lys4; (g) inhibition by serum from a thrombasthenic patient who developed anti-glycoproteins IIb-IIIa antibodies; (h) specificity; alanine neither binds to activated platelets nor inhibits fibrinogen binding; it thus appears that the lysine which associates with activated platelets is mostly bound onto the surface of the cells rather than being incorporated; Moreover, the major site of lysine binding seems to be the complexed glycoproteins IIb-IIIa.  相似文献   

18.
Although in vivo glycation proceeds in complex mixture of proteins, previous studies did not take in consideration the influence of protein–protein interaction on Maillard reaction. The aim of our study was to test the influence of human serum albumin (HSA) on glycation of fibrinogen. The isotopic labeling using [13C6] glucose combined with LC-MS were applied as tool for identification possible glycation sites in fibrinogen and for evaluation the effect of HSA on the glycation level of selected amino acids in fibrinogen.  相似文献   

19.
Clumping factor of Staphylococcus aureus is a fibrinogen-binding protein that is located on the bacterial cell surface. The protein has an unusual repeat domain (region R) comprising mainly the dipeptide aspartate and serine. To determine if region R has a role in the surface display of the fibrinogen-binding region A domain, deletions lacking the region R encoding region of the clfA gene were generated. To determine the minimum length of region R required for wild-type levels of ClfA expression, variants with truncated region R domains were constructed. S. aureus cells expressing mutated clfA genes were tested for (i) proteins released by lysostaphin treatment that reacted with antisera specific for region A, (ii) clumping in soluble fibrinogen, (iii) adherence to immobilized fibrinogen and (iv) expression of the ClfA antigen on the cell surface by fluorescent activated cell sorting analysis. Each construct expressed three major immunoreactive proteins, two of which were putative N-terminal degradation products. Region R residues greater than 40 were required between region A and W (72 residues between region A and the LPDTG sorting signal) for wild-type levels of clumping in fibrinogen. A stepwise decrease in clumping titre was observed as the distance between region A and LPDTG was decreased from 72 to 4 residues. Similarly, a decrease in binding of anti-ClfA serum and in binding to fibrinogen-coated plastic surfaces was observed with cells expressing ClfA with 40 region R residues or less. Nevertheless, low levels of adherence to fibrinogen and binding to anti-ClfA serum occurred with ClfA derivatives that lacked region R altogether. This indicates that a small proportion of the ClfA molecules are linked to peptidoglycan very close to the cell surface but that residues greater than 72 are needed to allow sufficient ClfA molecules to span the entire cell wall and to display the biologically active A domain in a form that can participate fully in fibrinogen binding.  相似文献   

20.
The surface proteins of cultured human skin fibroblasts were iodinated and then exposed to one or more of the following blood coagulation proteins: thrombin, fibrinogen, and factor XIII (plasma protransglutaminase). Radiolabeled polypeptides were analyzed by polyacrylamide gel electrophoresis in the presence of sodium dodecylsulfate. After exposure to physiological concentrations of activated factor XIII (XIIIa), the band of radioactivity corresponding to the major labeled surface protein (fibronectin, molecular weight = 2.2 × 105 daltons) was cross-linked to a very high molecular weight complex. The cross-linking reaction was inhibited by fibrin (which is known to bind the catalytic subunit of XIIIa). Cross-linking of labeled cell surface fibronectin to fibrin could not be demonstrated. The fibrillar pattern of surface fibronectin appeared unaffected by cross-linking when studied by immunofluorescence. Cross-linking of cell surface fibronectin by XIIIa requires highly specific enzyme-substrate and protein-protein interactions, and may be an important physiological reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号