首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bovine leukemia virus p34 is a transactivator protein.   总被引:13,自引:1,他引:12       下载免费PDF全文
Recombinant Moloney murine retroviruses containing the BLV post-envelope long open reading frame were constructed and transfected into the psi 2 packaging cell line. They were shown to encode and to express a 34-kd protein able to transactivate the BLV long terminal repeat-directed gene expression in the respective transfected cells. These data demonstrate that the BLV X-LOR gene encodes a p34 transactivator product. Furthermore, the different cell lines produced infectious recombinant retroviruses capable of transferring X-LOR genes into recipient cells. The availability of the BLV transactivator protein should allow us to understand the role of the transactivator protein in BLV-induced leukemogenesis.  相似文献   

2.
To gain insight into the cellular regulation of bovine leukemia virus (BLV) trans activation, a lambda-gt11 cDNA library was constructed with mRNA isolated from a BLV-induced tumor and the recombinant proteins were screened with an oligonucleotide corresponding to the tax activation-responsive element (TAR). Two clones (called TAR-binding protein) were isolated from 750,000 lambda-gt11 plaques. The binding specificity was confirmed by Southwestern (DNA-protein) and gel retardation assays. Nucleotide sequence analysis revealed that TAR-binding protein is very similar to the CREB2 protein. It contains a leucine zipper structure required for dimerization, a basic amino acid domain, and multiple potential phosphorylation sites. A vector expressing CREB2 was transfected into D17 osteosarcoma cells. In the absence of the tax transactivator, the CREB2 protein and the cyclic AMP-dependent protein kinase A activate the BLV long terminal repeat at a basal expression level: trans activation reached 10% of the values obtained in the presence of tax alone. These data demonstrate that CREB2 is a cellular factor able to induce BLV long terminal repeat expression in the absence of tax protein and could thus be involved in the early stages of viral infection. In addition, we observed that in vitro tax-induced trans activation can be activated or inhibited by CREB2 depending on the presence or absence of protein kinase A. These data suggest that the cyclic AMP pathway plays a role in the regulation of viral expression in BLV-infected animals.  相似文献   

3.
4.
Recently, particular cytokines have been identified to affect progression of a variety of diseases and retrovirus infections. Previously, we demonstrated that interleukin-2 (IL-2), IL-12, and gamma interferon increased in peripheral blood mononuclear cells (PBMCs) from animals with early disease and decreased in PBMCs from animals with late disease stages of bovine leukemia virus (BLV) infection. In contrast, IL-10 increased with disease progression. To examine the effects of these cytokines on BLV expression, BLV tax and pol mRNA and p24 protein were quantified by competitive PCR and immunoblotting, respectively. IL-10 inhibited BLV tax and pol mRNA levels in BLV-infected PBMCs; however, the inhibitory effect of IL-10 was prevented in PBMCs depleted of monocytes and/or macrophages (monocyte/macrophages). To determine whether these factors were secreted or monocyte/macrophage associated, monocyte/macrophage-depleted PBMCs were cultured with isolated monocyte/macrophages in transwells where contact between monocyte/macrophages and nonadherent PBMCs was blocked. BLV tax and pol mRNA levels increased in transwell cultures similar to cultures containing nonseparated cells, and IL-10 addition inhibited the increase of BLV tax and pol mRNA. These results suggest that monocyte/macrophages secrete soluble factor(s) that increases BLV mRNA levels and that secretion of these soluble factor(s) could be inhibited by IL-10. In contrast, IL-2 increased BLV tax and pol mRNA and p24 protein production. Thus, IL-10 production by BLV-infected animals with late stage disease may serve to control BLV mRNA levels, while IL-2 may increase BLV mRNA in the early disease stage. To determine a correlation between cell proliferation and BLV expression, the effect of IL-2 and IL-10 on PBMC proliferation was tested. As anticipated, IL-2 stimulated while IL-10 suppressed antigen-specific PBMC proliferation. The present study, combined with our previous findings, suggests that increased IL-10 production in late disease stages suppresses BLV mRNA levels, while IL-2-activated immune responses stimulate BLV expression by BLV-infected B cells.  相似文献   

5.
Prostaglandin E(2) (PGE(2)), produced by macrophages, has important immune regulatory functions, suppressing a type 1 immune response and stimulating a type 2 immune response. Type 1 cytokines (interleukin-2 [IL-2], IL-12, and gamma interferon) increase in freshly isolated peripheral blood mononuclear cells (PBMCs) of animals with an early disease stage of bovine leukemia virus (BLV) infection, while IL-10 increases in animals with a late disease stage. Although IL-10 has an immunosuppressive role in the host immune system, IL-10 also inhibits BLV tax and pol mRNA levels in vitro. In contrast, IL-2 stimulates BLV tax and pol mRNA and p24 protein expression in cultured PBMCs. The inhibitory effect of IL-10 on BLV expression depends on soluble factors secreted by macrophages. Thus, we hypothesized that PGE(2), a cyclooxygenase 2 (COX-2) product of macrophages, may regulate BLV expression. Here, we show that the level of COX-2 mRNA was decreased in PBMCs treated with IL-10, while IL-2 enhanced the level of COX-2 mRNA. Addition of PGE(2) stimulated BLV tax and pol mRNA levels and reversed the IL-10 inhibition of BLV mRNA. In addition, the specific COX-2 inhibitor, NS-398, inhibited the amount of BLV mRNA detected. Addition of PGE(2) increased BLV tax mRNA regardless of NS-398 addition. PGE(2) inhibited antigen-specific PBMC stimulation, suggesting that stimulation of BLV tax and pol mRNA levels by PGE(2) is independent of cell proliferation. These findings suggest that macrophage-derived COX-2 products, such as PGE(2), regulate virus expression and disease progression in BLV infection.  相似文献   

6.
为研究JDV与其它三种牛反转录病毒BIV、BLV、BFV的相互作用关系,将以JDV、BIV、BLV、BFV的LTR为启动子,以Luc为报告基因的质粒和以上病毒反式激活因子的表达质粒共转染BLl2细胞系,通过瞬时表达分析试验证明了JDV和BIV的LTR和Tat之间亲缘关系很近,能够相互激活;JDV Tat可以反式激活BLVLTR,BLVTax不能激活JDVLTR;JDVLTR上存在BFVTas的应答元件;BLV、BFV和BIV的LTR和反式激活因子问不存在相互激活。  相似文献   

7.
8.
The nucleic acid-binding proteins of bovine leukemia virus (BLV) and feline leukemia virus (FeLV) were isolated in a high state of purity with chloroform-methanol extraction followed by reversed-phase liquid chromatography. Selective solubilization and purity of BLV p12 and FeLV p10 was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The compositions and molecular weights were determined by amino acid analysis. An abundance of lysine and arginine residues along with their size identifies both BLV p12 and FeLV p10 as small basic proteins similar to well-defined type C viral nucleoproteins. NH2-terminal degradation by the semiautomated Edman method provided the sequence of the first 40 amino acids for both proteins. The putative nucleic acid binding site found in several type C viral nucleoproteins was contained within this sequence, with the most homology centered around an eight-amino acid region involving seven identical residues and one substitution. Antisera were developed in rabbits, and specificity and titers were determined by electroblotting and immunoautoradiography. By this technique, an immunological cross-reaction was found between BLV p12 and FeLV p10. The shared antigenic determinant most likely exists in the highly conserved eight-amino acid region. Although this sequence is also highly conserved in the nucleic acid-binding proteins of murine leukemia viruses, the shared antigenic determinant is not found in these or any other type C viruses tested. It is suggested that substitution of arginine (BLV p12/FeLV p10) to lysine (murine leukemia virus p10) is sufficient to elicit a change in antibody specificity.  相似文献   

9.
The bovine leukaemia virus (BLV) is an exogenous retrovirus that is closely related to the human T cell leukaemia viruses. Genetic resistance and susceptibility to persistent lymphocytosis (PL), an advanced subclinical stage of infection characterized by a polyclonal expansion of the infected B cell population, have been mapped to structural motifs in bovine MHC DRB3 (class II) alleles. To determine whether alleles of DRB3 influence the number of BLV-infected B cells in peripheral blood, seven pairs of Holstein cows naturally infected with BLV were matched on the basis of DRB3 genotype (resistance or susceptibility to PL), age, and year of seroconversion. Flow cytometry was used to separate B cell populations that then were tested for the presence of provirus by a single-cell PCR methodology. Animals with the PL-resistance associated DRB3.2*11 allele had significantly fewer BLV-infected B cells than did age- and seroconversion-matched cows with DRB3 alleles associated with susceptibility to PL. Our results demonstrate that DRB3 or a closely linked gene may play a direct role in controlling the number of BLV-infected peripheral B cells in vivo . Association of MHC class II alleles with resistance to disease progression in cattle naturally infected with BLV provides a unique immunogenetic model for the study of host resistance to human and other animal retroviral infections.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
The polymerase-chain reaction was applied for detection of provirus DNA of the bovine leukaemia virus (BLV). A short fragment of 292 bp including region R and U5 LTR 5' of BLV was amplified, and the optimum parameters of amplification of this fragment were established. Electrophoresis revealed the presence of the 292 bp fragment from the leucocytes of four out of six cows showing a positive serological response to BLV antigens. Application of the polymerase-chain reaction in diagnosis of bovine leukaemia is suggested.  相似文献   

18.
Infection with a replication-competent bovine leukemia virus structural gene vector (BLV SGV) is an innovative vaccination approach to prevent disease by complex retroviruses. Previously we developed BLV SGV that constitutively expresses BLV gag, pol, and env and related cis-acting sequences but lacks tax, rex, RIII, and GIV and most of the BLV long terminal repeat sequences, including the cis-acting Tax and Rex response elements. The novel SGV virus is replication competent and replicates a selectable vector to a titer similar to that of the parental BLV in cell culture. The overall goal of this study was to test the hypothesis that infection with BLV SGV is nonpathogenic in rabbits. BLV infection of rabbits by inoculation of cell-free BLV or cell-associated BLV typically causes an immunodeficiency-like syndrome and death by 1 year postinfection. We sought to evaluate whether in vivo transfection of BLV provirus recapitulates pathogenic BLV infection and to compare BLV and BLV SGV with respect to infection, immunogenicity, and clinical outcome. Three groups of rabbits were subjected to in vivo transfection with BLV, BLV SGV, or negative control DNA. The results of our 20-month study indicate that in vivo transfection of rabbits with BLV recapitulates the fatal BLV infection produced by cell-free or cell-associated BLV. The BLV-infected rabbits exhibited sudden onset of clinical decline and immunodeficiency-like symptoms that culminated in death. BLV and BLV SGV infected peripheral blood mononuclear cells and induced similar levels of seroconversion to BLV structural proteins. However, BLV SGV exhibited a reduced proviral load and did not trigger the immunodeficiency-like syndrome. These results are consistent with the hypothesis that BLV SGV is infectious and immunogenic and lacks BLV pathogenicity in rabbits, and they support the use of this modified proviral vector delivery system for vaccines against complex retroviruses like BLV.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号