首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Linkage disequilibrium (LD) has received much attention recently because of its value in localizing disease-causing genes. Due to the extensive LD between neighboring loci in the human genome, it is believed that a subset of the single nucleotide polymorphisms in a region (tagSNPs) can be selected to capture most of the remaining SNP variants. In this study, we examined LD patterns and HapMap tagSNP transferability in more than 300 individuals. A South Indian sample and an African Mbuti Pygmy population sample were included to evaluate the performance of HapMap tagSNPs in geographically distinct and genetically isolated populations. Our results show that HapMap tagSNPs selected with r(2) >= 0.8 can capture more than 85% of the SNPs in populations that are from the same continental group. Combined tagSNPs from HapMap CEU and CHB+JPT serve as the best reference for the Indian sample. The HapMap YRI are a sufficient reference for tagSNP selection in the Pygmy sample. In addition to our findings, we reviewed over 25 recent studies of tagSNP transferability and propose a general guideline for selecting tagSNPs from HapMap populations.  相似文献   

2.
Common genetic polymorphism may explain a portion of the heritable risk for common diseases, so considerable effort has been devoted to finding and typing common single-nucleotide polymorphisms (SNPs) in the human genome. Many SNPs show correlated genotypes, or linkage disequilibrium (LD), suggesting that only a subset of all SNPs (known as tagging SNPs, or tagSNPs) need to be genotyped for disease association studies. Based on the genetic differences that exist among human populations, most tagSNP sets are defined in a single population and applied only in populations that are closely related. To improve the efficiency of multi-population analyses, we have developed an algorithm called MultiPop-TagSelect that finds a near-minimal union of population-specific tagSNP sets across an arbitrary number of populations. We present this approach as an extension of LD-select, a tagSNP selection method that uses a greedy algorithm to group SNPs into bins based on their pairwise association patterns, although the MultiPop-TagSelect algorithm could be used with any SNP tagging approach that allows choices between nearly equivalent SNPs. We evaluate the algorithm by considering tagSNP selection in candidate-gene resequencing data and lower density whole-chromosome data. Our analysis reveals that an exhaustive search is often intractable, while the developed algorithm can quickly and reliably find near-optimal solutions even for difficult tagSNP selection problems. Using populations of African, Asian, and European ancestry, we also show that an optimal multi-population set of tagSNPs can be substantially smaller (up to 44%) than a typical set obtained through independent or sequential selection.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

3.
The pattern of linkage disequilibrium (LD) is critical for association studies, in which disease-causing variants are identified by allelic association with adjacent markers. The aim of this study is to compare the LD patterns in several distinct European populations. We analyzed four genomic regions (in total, 749 kb) containing candidate genes for complex traits. Individuals were genotyped for markers that are evenly distributed at an average spacing of approximately 2-4 kb in eight population-based samples from ongoing epidemiological studies across Europe. The Centre d'Etude du Polymorphisme Humain (CEPH) trios of the HapMap project were included and were used as a reference population. In general, we observed a conservation of the LD patterns across European samples. Nevertheless, shifts in the positions of the boundaries of high-LD regions can be demonstrated between populations, when assessed by a novel procedure based on bootstrapping. Transferability of LD information among populations was also tested. In two of the analyzed gene regions, sets of tagging single-nucleotide polymorphisms (tagSNPs) selected from the HapMap CEPH trios performed surprisingly well in all local European samples. However, significant variation in the other two gene regions predicts a restricted applicability of CEPH-derived tagging markers. Simulations based on our data set show the extent to which further gain in tagSNP efficiency and transferability can be achieved by increased SNP density.  相似文献   

4.
Genome-wide association studies (GWAS) have identified 14 tagging single nucleotide polymorphisms (tagSNPs) that are associated with the risk of colorectal cancer (CRC), and several of these tagSNPs are near bone morphogenetic protein (BMP) pathway loci. The penalty of multiple testing implicit in GWAS increases the attraction of complementary approaches for disease gene discovery, including candidate gene- or pathway-based analyses. The strongest candidate loci for additional predisposition SNPs are arguably those already known both to have functional relevance and to be involved in disease risk. To investigate this proposition, we searched for novel CRC susceptibility variants close to the BMP pathway genes GREM1 (15q13.3), BMP4 (14q22.2), and BMP2 (20p12.3) using sample sets totalling 24,910 CRC cases and 26,275 controls. We identified new, independent CRC predisposition SNPs close to BMP4 (rs1957636, P = 3.93×10(-10)) and BMP2 (rs4813802, P = 4.65×10(-11)). Near GREM1, we found using fine-mapping that the previously-identified association between tagSNP rs4779584 and CRC actually resulted from two independent signals represented by rs16969681 (P = 5.33×10(-8)) and rs11632715 (P = 2.30×10(-10)). As low-penetrance predisposition variants become harder to identify-owing to small effect sizes and/or low risk allele frequencies-approaches based on informed candidate gene selection may become increasingly attractive. Our data emphasise that genetic fine-mapping studies can deconvolute associations that have arisen owing to independent correlation of a tagSNP with more than one functional SNP, thus explaining some of the apparently missing heritability of common diseases.  相似文献   

5.
6.
Association mapping of complex traits typically employs tagSNP genotype data to identify a trait locus within a region of interest. However, considerable debate exists regarding the most powerful strategy for utilizing such tagSNP data for inference. A popular approach tests each tagSNP within the region individually, but such tests could lose power as a result of incomplete linkage disequilibrium between the genotyped tagSNP and the trait locus. Alternatively, one can jointly test all tagSNPs simultaneously within the region (by using genotypes or haplotypes), but such multivariate tests have large degrees of freedom that can also compromise power. Here, we consider a semiparametric model for quantitative-trait mapping that uses genetic information from multiple tagSNPs simultaneously in analysis but produces a test statistic with reduced degrees of freedom compared to existing multivariate approaches. We fit this model by using a dimension-reducing technique called least-squares kernel machines, which we show is identical to analysis using a specific linear mixed model (which we can fit by using standard software packages like SAS and R). Using simulated SNP data based on real data from the International HapMap Project, we demonstrate that our approach often has superior performance for association mapping of quantitative traits compared to the popular approach of single-tagSNP testing. Our approach is also flexible, because it allows easy modeling of covariates and, if interest exists, high-dimensional interactions among tagSNPs and environmental predictors.  相似文献   

7.
Analysis of haplotypes based on multiple single-nucleotide polymorphisms (SNP) is becoming common for both candidate gene and fine-mapping studies. Before embarking on studies of haplotypes from genetically distinct populations, however, it is important to consider variation both in linkage disequilibrium (LD) and in haplotype frequencies within and across populations, as both vary. Such diversity will influence the choice of "tagging" SNPs for candidate gene or whole-genome association studies because some markers will not be polymorphic in all samples and some haplotypes will be poorly represented or completely absent. Here we analyze 11 genes, originally chosen as candidate genes for oral clefts, where multiple markers were genotyped on individuals from four populations. Estimated haplotype frequencies, measures of pairwise LD, and genetic diversity were computed for 135 European-Americans, 57 Chinese-Singaporeans, 45 Malay-Singaporeans, and 46 Indian-Singaporeans. Patterns of pairwise LD were compared across these four populations and haplotype frequencies were used to assess genetic variation. Although these populations are fairly similar in allele frequencies and overall patterns of LD, both haplotype frequencies and genetic diversity varied significantly across populations. Such haplotype diversity has implications for designing studies of association involving samples from genetically distinct populations.  相似文献   

8.
Genetic variation in the human population may lead to functional variants of genes that contribute to risk for common chronic diseases such as cancer. In an effort to detect such possible predisposing variants, we constructed haplotypes for a candidate gene and tested their efficacy in association studies. We developed haplotypes consisting of 14 biallelic neutral-sequence variants that span 142 kb of the ATM locus. ATM is the gene responsible for the autosomal recessive disease ataxia-telangiectasia (AT). These ATM noncoding single-nucleotide polymorphisms (SNPs) were genotyped in nine CEPH families (89 individuals) and in 260 DNA samples from four different ethnic origins. Analysis of these data with an expectation-maximization algorithm revealed 22 haplotypes at this locus, with three major haplotypes having frequencies > or = .10. Tests for recombination and linkage disequilibrium (LD) show reduced recombination and extensive LD at the ATM locus, in all four ethnic groups studied. The most striking example was found in the study population of European ancestry, in which no evidence for recombination could be discerned. The potential of ATM haplotypes for detection of genetic variants through association studies was tested by analysis of 84 individuals carrying one of three ATM coding SNPs. Each coding SNP was detected by association with an ATM haplotype. We demonstrate that association studies with haplotypes for candidate genes have significant potential for the detection of genetic backgrounds that contribute to disease.  相似文献   

9.
The vast majority of genome-wide association study (GWAS) findings reported to date are from populations with European Ancestry (EA), and it is not yet clear how broadly the genetic associations described will generalize to populations of diverse ancestry. The Population Architecture Using Genomics and Epidemiology (PAGE) study is a consortium of multi-ancestry, population-based studies formed with the objective of refining our understanding of the genetic architecture of common traits emerging from GWAS. In the present analysis of five common diseases and traits, including body mass index, type 2 diabetes, and lipid levels, we compare direction and magnitude of effects for GWAS-identified variants in multiple non-EA populations against EA findings. We demonstrate that, in all populations analyzed, a significant majority of GWAS-identified variants have allelic associations in the same direction as in EA, with none showing a statistically significant effect in the opposite direction, after adjustment for multiple testing. However, 25% of tagSNPs identified in EA GWAS have significantly different effect sizes in at least one non-EA population, and these differential effects were most frequent in African Americans where all differential effects were diluted toward the null. We demonstrate that differential LD between tagSNPs and functional variants within populations contributes significantly to dilute effect sizes in this population. Although most variants identified from GWAS in EA populations generalize to all non-EA populations assessed, genetic models derived from GWAS findings in EA may generate spurious results in non-EA populations due to differential effect sizes. Regardless of the origin of the differential effects, caution should be exercised in applying any genetic risk prediction model based on tagSNPs outside of the ancestry group in which it was derived. Models based directly on functional variation may generalize more robustly, but the identification of functional variants remains challenging.  相似文献   

10.
Wang C  Hu YM  He JW  Gu JM  Zhang H  Hu WW  Yue H  Gao G  Xiao WJ  Yu JB  Ke YH  Hu YQ  Li M  Liu YJ  Fu WZ  Ren Y  Zhang ZL 《PloS one》2011,6(12):e28874
Low density lipoprotein receptor-related protein 2 gene (LRP2) is located next to the genomic region showing suggestive linkage with both hip and wrist bone mineral density (BMD) phenotypes. LRP2 knockout mice showed severe vitamin D deficiency and bone disease, indicating the involvement of LRP2 in the preservation of vitamin D metabolites and delivery of the precursor to the kidney for the generation of 1α,25(OH)(2)D(3). In order to investigate the contribution of LRP2 gene polymorphisms to the variation of BMD in Chinese population, a total of 330 Chinese female-offspring nuclear families with 1088 individuals and 400 Chinese male-offspring nuclear families with 1215 individuals were genotyped at six tagSNPs of the LRP2 gene (rs2389557, rs2544381, rs7600336, rs10210408, rs2075252 and rs4667591). BMD values at the lumbar spine 1-4 (L1-4) and hip sites were measured by DXA. The association between LRP2 polymorphisms and BMD phenotypes was assessed by quantitative transmission disequilibrium tests (QTDTs) in female- and male-offspring nuclear families separately. In the female-offspring nuclear families, rs2075252 and haplotype GA of rs4667591 and rs2075252 were identified in the nominally significant total association with peak BMD at L1-4; however, no significant within-family association was found between peak BMD at the L1-4 and hip sites and six tagSNPs or haplotypes. In male-offspring nuclear families, neither the six tagSNPs nor the haplotypes was in total association or within-family association with the peak BMD variation at the L1-4 and hip sites by QTDT analysis. Our findings suggested that the polymorphisms of LRP2 gene is not a major factor that contributes to the peak BMD variation in Chinese population.  相似文献   

11.
Exploiting the association between single nucleotide polymorphisms (SNP) can potentially reduce the costs of association mapping of common disease genes. Different methods have been proposed for defining subsets of SNPs as proxies (or tagSNPs) for other SNPs, some of which rely upon a model of haplotype blocks. Other approaches only consider the pair-wise correlation between markers as a basis for selecting tagSNPs. Yet another, recently proposed model-based method takes marker heterozygosity and genetic distance into account in order to maximize the expected utility of a marker set to map frequent, but unobserved genetic variants. We compared these tagging approaches with regard to their ability to correlate tagSNPs and bi-allelic, potentially disease-causing genetic variants. We used the CEU sample of chromosome 19 from the HapMap project for an initial comparison, and demonstrated a comparable performance of both approaches but a difference in terms of tagSNPs selected and variants captured. In any case, we conclude that a considerable loss of information appears to be inherent to any type of SNP tagging, even when dense marker sets are available for SNP selection.  相似文献   

12.
The genetic factors associated with carotid artery disease (CAAD) are not fully known. Because of its role in lipid metabolism, we hypothesized that common genetic variation in the very low density lipoprotein receptor (VLDLR) gene is associated with severe CAAD (>80% stenosis), body mass index (BMI), and lipid traits in humans. VLDLR was resequenced for variation discovery in 92 subjects, and single nucleotide polymorphisms (tagSNPs) were chosen for genotyping in a larger cohort (n = 1,027). Of the 17 tagSNPs genotyped, one tagSNP (SNP 1226; rs1454626) located in the 5' flanking region of VLDLR was associated with CAAD, BMI, and LDL-associated apolipoprotein B (apoB). We also identified receptor-ligand genetic interactions between VLDLR 1226 and APOE genotype for predicting CAAD case status. These findings may further our understanding of VLDLR function, its ligand APOE, and ultimately the pathogenesis of CAAD in the general population.  相似文献   

13.
Although human bitter taste perception is hypothesized to be a dietary adaptation, little is known about genetic signatures of selection and patterns of bitter taste perception variability in ethnically diverse populations with different diets, particularly from Africa. To better understand the genetic basis and evolutionary history of bitter taste sensitivity, we sequenced a 2,975 bp region encompassing TAS2R38, a bitter taste receptor gene, in 611 Africans from 57 populations in West Central and East Africa with diverse subsistence patterns, as well as in a comparative sample of 132 non-Africans. We also examined the association between genetic variability at this locus and threshold levels of phenylthiocarbamide (PTC) bitterness in 463 Africans from the above populations to determine how variation influences bitter taste perception. Here, we report striking patterns of variation at TAS2R38, including a significant excess of novel rare nonsynonymous polymorphisms that recently arose only in Africa, high frequencies of haplotypes in Africa associated with intermediate bitter taste sensitivity, a remarkably similar frequency of common haplotypes across genetically and culturally distinct Africans, and an ancient coalescence time of common variation in global populations. Additionally, several of the rare nonsynonymous substitutions significantly modified levels of PTC bitter taste sensitivity in diverse Africans. While ancient balancing selection likely maintained common haplotype variation across global populations, we suggest that recent selection pressures may have also resulted in the unusually high level of rare nonsynonymous variants in Africa, implying a complex model of selection at the TAS2R38 locus in African populations. Furthermore, the distribution of common haplotypes in Africa is not correlated with diet, raising the possibility that common variation may be under selection due to their role in nondietary biological processes. In addition, our data indicate that novel rare mutations contribute to the phenotypic variance of PTC sensitivity, illustrating the influence of rare variation on a common trait, as well as the relatively recent evolution of functionally diverse alleles at this locus.  相似文献   

14.
Significant efforts have been made to determine the correlation structure of common SNPs in the human genome. One method has been to identify the sets of tagSNPs that capture most of the genetic variation. Here, we evaluate the transferability of tagSNPs between populations using a population sample of Sami, the indigenous people of Scandinavia. Array-based SNP discovery in a 4.4 Mb region of 28 phased copies of chromosome 21 uncovered 5,132 segregating sites, 3,188 of which had a minimum minor allele frequency (mMAF) of 0.1. Due to the population structure and consequently high LD, the number of tagSNPs needed to capture all SNP variation in Sami is much lower than that for the HapMap populations. TagSNPs identified from the HapMap data perform only slightly better in the Sami than choosing tagSNPs at random from the same set of common SNPs. Surprisingly, tagSNPs defined from the HapMap data did not perform better than selecting the same number of SNPs at random from all SNPs discovered in Sami. Nearly half (46%) of the Sami SNPs with a mMAF of 0.1 are not present in the HapMap dataset. Among sites overlapping between Sami and HapMap populations, 18% are not tagged by the European American (CEU) HapMap tagSNPs, while 43% of the SNPs that are unique to Sami are not tagged by the CEU tagSNPs. These results point to serious limitations in the transferability of common tagSNPs to capture random sequence variation, even between closely related populations, such as CEU and Sami. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Single nucleotide polymorphisms (SNPs) are increasingly used to tag genetic loci associated with phenotypes such as risk of complex diseases. Technically, this is done genome-wide without prior restriction or knowledge of biological feasibility in scans referred to as genome-wide association studies (GWAS). Depending on the linkage disequilibrium (LD) structure at a particular locus, such tagSNPs may be surrogates for many thousands of other SNPs, and it is difficult to distinguish those that may play a functional role in the phenotype from those simply genetically linked. Because a large proportion of tagSNPs have been identified within non-coding regions of the genome, distinguishing functional from non-functional SNPs has been an even greater challenge. A strategy was recently proposed that prioritizes surrogate SNPs based on non-coding chromatin and epigenomic mapping techniques that have become feasible with the advent of massively parallel sequencing. Here, we introduce an R/Bioconductor software package that enables the identification of candidate functional SNPs by integrating information from tagSNP locations, lists of linked SNPs from the 1000 genomes project and locations of chromatin features which may have functional significance. Availability: FunciSNP is available from Bioconductor (bioconductor.org).  相似文献   

16.
Plasmodium vivax Duffy binding protein II (DBPII) plays an important role in reticulocyte invasion and is a potential vaccine candidate against vivax malaria. However, polymorphisms in DBPII are a challenge for the successful design of a broadly protective vaccine. In this study, the genetic diversity of DBPII among Thai isolates was analyzed from Plasmodium vivax-infected blood samples and polymorphism characters were defined with the MEGA4 program. Sequence analysis identified 12 variant residues that are common among Thai DBPII haplotypes with variant residues L333F, L424I, W437R and I503K having the highest frequency. Variant residue D384K occurs in combination with either E385K or K386N/Q. Additionally, variant residue L424I occurs in conjunction with W437R in most Thai DBPII alleles and these variants frequently occur in combination with the I503K variant. The polymorphic patterns of Thai isolates were defined into 9 haplotypes (Thai DBL-1, -2, -3, etc.…). Thai DBL-2, -5, -6 haplotypes are the most common DBPII variants in Thai residents. To study the association of these Thai DBPII polymorphisms with antigenic character, the functional inhibition of anti-DBPII monoclonal antibodies against a panel of Thai DBL variants was characterized by an in vitro erythrocyte binding inhibition assay. The functional inhibition of anti-DBPII monoclonal antibodies 3C9, 2D10 and 2C6 against Thai variants was significantly different, suggesting that polymorphisms of Thai DBPII variants alter the antigenic character of the target epitopes. In contrast, anti-DBPII monoclonal antibody 2H2 inhibited all Thai DBPII variants equally well. Our results suggest that the immune efficacy of a DBPII vaccine will depend on the specificity of the anti-DBPII antibodies induced and that it is preferable to optimize responses to conserved epitopes for broadly neutralizing protection against P. vivax.  相似文献   

17.
Little was known about the sequence variability of the human Arrestin domain-containing 4 gene (ARRDC4). We sequenced its DNA from exon 2 to exon 8 in a sample of 92 Russians. Seven variants were identified; one of them has not been described yet. It causes an amino acid change from Thr to Met. Identified variants were genotyped in the complete sample of 253 unrelated men and women to analyze haplotype distribution. Fifteen haplotypes were inferred. Nine haplotypes had estimated frequencies > 1%. Ninety-five percent of all haplotypes were determined by five haplotype-tagging single nucleotide polymorphisms. Haplotypes form two clades. The two most common haplotypes cover 76% of all haplotypes. The certainty of the haplotype reconstruction does not depend on the haplotype-inferring algorithms, but is a result of the anomalous haplotype distribution of ARRDC4, which makes this gene a suitable candidate gene for haplotype association studies. Interestingly, there is a great evolutionary distance between the two most common haplotypes, which could suggest a more complicated coalescent process with either past gene flow, selections, or bottlenecks.  相似文献   

18.
Recent studies have suggested that a significant fraction of the human genome is contained in blocks of strong linkage disequilibrium, ranging from ~5 to >100 kb in length, and that within these blocks a few common haplotypes may account for >90% of the observed haplotypes. Furthermore, previous studies have suggested that common haplotypes in candidate genes are generally shared across populations and represent the majority of chromosomes in each population. The conclusions drawn from these preliminary studies, however, are based on an incomplete knowledge of the variation in the regions examined. To bridge this gap in knowledge, we have completely resequenced 100 candidate genes in a population of African descent and one of European descent. Although these genes have been well studied because of their medical importance, we demonstrate that a large amount of sequence variation has not yet been described. We also report that the average number of inferred haplotypes per gene, when complete data is used, is higher than in previous reports and that the number and proportion of all haplotypes represented by common haplotypes per gene is variable. Furthermore, we demonstrate that haplotypes shared between the two populations constitute only a fraction of the total number of haplotypes observed and that these shared haplotypes represent fewer of the African-descent chromosomes than was expected from previous studies. Finally, we show that restricting variation discovery to coding regions does not adequately describe all common haplotypes or the true haplotype block structure observed when all common variation is used to infer haplotypes. These data, derived from complete knowledge of genetic variation in these genes, suggest that the haplotype architecture of candidate genes across the human genome is more complex than previously suggested, with important implications for candidate gene and genomewide association studies.  相似文献   

19.
Our goal was to compare methods for tagging single-nucleotide polymorphisms (tagSNPs) with respect to the power to detect disease association under differing haplotype-disease association models. We were also interested in the effect that SNP selection samples, consisting of either cases, controls, or a mixture, would have on power. We investigated five previously described algorithms for choosing tagSNPS: two that picked SNPs based on haplotype structure (Chapman-haplotypic and Stram), two that picked SNPs based on pair-wise allelic association (Chapman-allelic and Cousin), and one control method that chose equally spaced SNPs (Zhai). In two disease-associated regions from the Genetic Analysis Workshop 14 simulated data, we tested the association between tagSNP genotype and disease over the tagSNP sets chosen by each method for each sampling scheme. This was repeated for 100 replicates to estimate power. The two allelic methods chose essentially all SNPs in the region and had nearly optimal power. The two haplotypic methods chose about half as many SNPs. The haplotypic methods had poor performance compared to the allelic methods in both regions. We expected an improvement in power when the selection sample contained cases; however, there was only moderate variation in power between the sampling approaches for each method. Finally, when compared to the haplotypic methods, the reference method performed as well or worse in the region with ancestral disease haplotype structure.  相似文献   

20.
The distribution of lipoprotein(a) [Lp(a)] levels can differ dramatically across diverse racial/ethnic populations. The extent to which genetic variation in LPA can explain these differences is not fully understood. To explore this, 19 LPA tagSNPs were genotyped in 7,159 participants from the Third National Health and Nutrition Examination Survey (NHANES III). NHANES III is a diverse population-based survey with DNA samples linked to hundreds of quantitative traits, including serum Lp(a). Tests of association between LPA variants and transformed Lp(a) levels were performed across the three different NHANES subpopulations (non-Hispanic whites, non-Hispanic blacks, and Mexican Americans). At a significance threshold of p<0.0001, 15 of the 19 SNPs tested were strongly associated with Lp(a) levels in at least one subpopulation, six in at least two subpopulations, and none in all three subpopulations. In non-Hispanic whites, three variants were associated with Lp(a) levels, including previously known rs6919246 (p = 1.18 × 10(-30)). Additionally, 12 and 6 variants had significant associations in non-Hispanic blacks and Mexican Americans, respectively. The additive effects of these associated alleles explained up to 11% of the variance observed for Lp(a) levels in the different racial/ethnic populations. The findings reported here replicate previous candidate gene and genome-wide association studies for Lp(a) levels in European-descent populations and extend these findings to other populations. While we demonstrate that LPA is an important contributor to Lp(a) levels regardless of race/ethnicity, the lack of generalization of associations across all subpopulations suggests that specific LPA variants may be contributing to the observed Lp(a) between-population variance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号