首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous work demonstrated that a mixture of NH4Cl and KNO3 as nitrogen source was beneficial to fed-batch Arthrospira (Spirulina) platensis cultivation, in terms of either lower costs or higher cell concentration. On the basis of those results, this study focused on the use of a cheaper nitrogen source mixture, namely (NH4)2SO4 plus NaNO3, varying the ammonium feeding time (T = 7-15 days), either controlling the pH by CO2 addition or not. A. platensis was cultivated in mini-tanks at 30 °C, 156 μmol photons m−2 s−1, and starting cell concentration of 400 mg L−1, on a modified Schlösser medium. T = 13 days under pH control were selected as optimum conditions, ensuring the best results in terms of biomass production (maximum cell concentration of 2911 mg L−1, cell productivity of 179 mg L−1 d−1 and specific growth rate of 0.77 d−1) and satisfactory protein and lipid contents (around 30% each).  相似文献   

2.
The repellent activity of the essential oil of the catmint plant, Nepeta cataria (Lamiaceae), and the main iridoid compounds (4aS,7S,7aR) and (4aS,7S,7aS)-nepetalactone, was assessed against (i) major Afro-tropical pathogen vector mosquitoes, i.e. the malaria mosquito, Anopheles gambiae s.s. and the Southern house mosquito, Culex quinquefasciatus, using a World Health Organisation (WHO)-approved topical application bioassay (ii) the brown ear tick, Rhipicephalus appendiculatus, using a climbing repellency assay, and (iii) the red poultry mite, Dermanyssus gallinae, using field trapping experiments. Gas chromatography (GC) and coupled GC-mass spectrometry (GC-MS) analysis of two N. cataria chemotypes (A and B) used in the repellency assays showed that (4aS,7S,7aR) and (4aS,7S,7aS)-nepetalactone were present in different proportions, with one of the oils (from chemotype A) being dominated by the (4aS,7S,7aR) isomer (91.95% by GC), and the other oil (from chemotype B) containing the two (4aS,7S,7aR) and (4aS,7S,7aS) isomers in 16.98% and 69.83% (by GC), respectively. The sesquiterpene hydrocarbon (E)-(1R,9S)-caryophyllene was identified as the only other major component in the oils (8.05% and 13.19% by GC, respectively). Using the topical application bioassay, the oils showed high repellent activity (chemotype A RD50 = 0.081 mg cm−2 and chemotype B RD50 = 0.091 mg cm−2) for An. gambiae comparable with the synthetic repellent DEET (RD50 = 0.12 mg cm−2), whilst for Cx. quinquefasciatus, lower repellent activity was recorded (chemotype A RD50 = 0.34 mg cm−2 and chemotype B RD50 = 0.074 mg cm−2). Further repellency testing against An. gambiae using the purified (4aS,7S,7aR) and (4aS,7S,7aS)-nepetalactone isomers revealed overall lower repellent activity, compared to the chemotype A and B oils. Testing of binary mixtures of the (4aS,7S,7aR) and (4aS,7S,7aS) isomers across a range of ratios, but all at the same overall dose (0.1 mg), revealed not only a synergistic effect between the two, but also a surprising ratio-dependent effect, with lower activity for the pure isomers and equivalent or near-equivalent mixtures, but higher activity for non-equivalent ratios. Furthermore, a binary mixture of (4aS,7S,7aR) and (4aS,7S,7aS) isomers, in a ratio equivalent to that found in chemotype B oil, was less repellent than the oil itself, when tested at two doses equivalent to 0.1 and 0.01 mg chemotype B oil. The three-component blend including (E)-(1R,9S)-caryophyllene at the level found in chemotype B oil had the same activity as chemotype B oil. In a tick climbing repellency assay using R. appendiculatus, the oils showed high repellent activity comparable with data for other repellent essential oils (chemotype A RD50 = 0.005 mg and chemotype B RD50 = 0.0012 mg). In field trapping assays with D. gallinae, addition of the chemotype A and B oils, and a combination of the two, to traps pre-conditioned with D. gallinae, all resulted in a significant reduction of D. gallinae trap capture. In summary, these data suggest that although the nepetalactone isomers have the potential to be used in human and livestock protection against major pathogen vectors, intact, i.e. unfractionated, Nepeta spp. oils offer potentially greater protection, due to the presence of both nepetalactone isomers and other components such as (E)-(1R,9S)-caryophyllene.  相似文献   

3.
Our study aimed to test the ability of aquatic plants to use bicarbonate when acclimated to three different bicarbonate concentrations. To this end, we performed experiments with the three species Ceratophyllum demersum, Egeria densa, Lagarosiphon major to determine photosynthetic rates under varying bicarbonate concentrations. We measured bicarbonate use efficiency, photosynthetic performance and respiration. For all species, our results revealed that photosynthetic rates were highest in replicates grown at low alkalinity. Thus, E. densa had approx. five times higher rates at low (264 ± 15 μmol O2 g−1 DW h−1) than at high alkalinity (50 ± 27 μmol O2 g−1 DW h−1), C. demersum had three times higher rates (336 ± 95 and 120 ± 31 μmol O2 g−1 DW h−1), and L. major doubled its rates at low alkalinity (634 ± 114 and 322 ± 119 μmol O2 g−1 DW h−1). Similar results were obtained for bicarbonate use efficiency by E. densa (136 ± 44 and 43 ± 10 μmol O2 mequiv. L−1 g−1 DW h−1) and L. major (244 ± 29 and 82 ± 24 μmol O2 mequiv. L−1 g−1 DW h−1). As to C. demersum, efficiency was high but unaffected by alkalinity, indicating high adaptation ability to varied alkalinities. A pH drift experiment supported these results. Overall, our results suggest that the three globally widespread worldwide species of our study adapt to low inorganic carbon availability by increasing their efficiency of bicarbonate use.  相似文献   

4.
The effects of short term hypoxia on bioturbation activity and inherent solute fluxes are scarcely investigated even if increasing number of coastal areas are subjected to transient oxygen deficits. In this work dark fluxes of oxygen (O2), dissolved inorganic carbon (TCO2) and nutrients across the sediment-water interface, as well as rates of denitrification (isotope pairing), were measured in intact sediment cores collected from the dystrophic pond of Sali e Pauli (Sardinia, Italy). Sediments were incubated at 100, 70, 40 and 10% of O2 saturation in the overlying water, with both natural benthic communities, dominated by the polychaete Polydora ciliata (11.100 ± 2.500  ind. m− 2), and after the addition of individuals of the deep-burrower polychaete Hediste diversicolor. Below an uppermost oxic layer of ~ 1 mm, sediments were highly reduced, with up to 6 mM of S2− in the 5 mm layer. Flux of S2− and O2 calculated from pore water gradients were 8.61 ± 1.12 and − 2.27 ± 0.56 mmol m− 2 h− 1, respectively. However, sediment oxygen demand (SOD) calculated from core incubation was − 10.52 ± 0.33 mmol m− 2 h− 1, suggesting a major contribution of P. ciliata to O2-mediated sulphide oxidation. P. ciliata also strongly stimulated NH4+ and PO43− fluxes, with rates ~ 15 and ~ 30 folds higher, respectively, than those estimated from pore water gradients. P. ciliata activity was significantly reduced at 10% O2 saturation, coupled to decreased rates of solutes transfer. The addition of H. diversicolor further stimulated SOD, NH4+ efflux and SiO2 mobilisation. Similarly to P. ciliata, the degree of stimulation of SOD and NH4+ flux by H. diversicolor depended on the level of oxygen saturation. TCO2 regeneration, respiratory quotients, PO43− fluxes and denitrification of added 15NO3 were not affected by the addition of H. diversicolor, but depended upon the O2 levels in the water column. Denitrification rates supported by water column 14NO3 and sedimentary nitrification were both negligible (< 0.5 µmol m− 2 h− 1). They were not significantly affected by oxygen saturation nor by bioturbation, probably due to the limited availability of NO3 in the water column (< 3 µM) and O2 in the sediments. This study demonstrates for the first time the integrated short term effect of transient hypoxia and bioturbation on solute fluxes across the sediment-water interface within a simplified lagoonal benthic community.  相似文献   

5.
The mass fragmentation patterns of stilbene glycosides isolated from the genus Lysidice were investigated by negative ion electrospray ionization tandem mass spectrometry, and the influence of collision energy on their fragmentation behavior is discussed. It is found that the presence of the Y0 and B0 ions in the MS2 spectra is characteristic for 1 → 6 linked diglycosyl stilbenes, while the Y0, Y1, and Z1 ions are representative ions of 1 → 2 linked diglycosyl stilbenes. These results indicate that ESI-MSn in the negative ion mode can be used to differentiate 1 → 6 and 1 → 2 linked diglycosyl stilbenes. Based on the fragmentation rules, 9 new trace constituents were identified or tentatively characterized in a fraction of Lysidice brevicalyx by using HPLC/HRMS and HPLC-DAD/ESI-MSn. The results of the present study can assist in on-line structural identification of analogous constituents and targeted isolation of novel compounds from crude plant extracts.  相似文献   

6.
Vermistabilization of primary sewage sludge   总被引:4,自引:0,他引:4  
Hait S  Tare V 《Bioresource technology》2011,102(3):2812-2820
An integrated composting-vermicomposting process has been developed for utilization of primary sewage sludge (PSS). Matured vermicompost was used as bulking material and a source of active microbial culture during aerobic activated composting (AAC). AAC resulted in sufficient enrichment of bulking material with organic matter after 20 cycles of recycling and mixing with PSS and produced materials acceptable for vermicomposting. Vermicomposting caused significant reduction in pH, volatile solids (VS), specific oxygen uptake rate (SOUR), total organic carbon (TOC), C/N ratio and pathogens and substantial increase in electrical conductivity (EC), total nitrogen (TN) and total phosphorous (TP) as compared to compost. Environmental conditions and stocking density have profound effects on vermicomposting. Temperature of 20 °C with high humidity is favorable environmental condition for vermicomposting employing Eisenia fetida. Favorable stocking density range for vermiculture is 0.5-2.0 kg m−2 (optimum: 0.5 kg m−2) and for vermicomposting is 2.0-4.0 kg m−2 (optimum: 3.0 kg m−2), respectively.  相似文献   

7.
The ability to cope with NH4+-N was studied in the littoral helophytes Phragmites australis and Glyceria maxima, species commonly occupying fertile habitats rich in NH4+ and often used in artificial wetlands. In the present study, Glyceria growth rate was reduced by 16% at 179 μM NH4+-N, and the biomass production was reduced by 47% at 3700 μM NH4+-N compared to NO3-N. Similar responses were not found in Phragmites. The amounts (mg g−1 dry wt) of starch and total non-structural carbohydrates (TNC) in rhizomes were significantly lower in NH4+ (8.9; 12.2 starch; 20.1; 41.9 TNC) compared to NO3 treated plants (28.0; 15.6 starch; 58.5; 56.3 TNC) in Phragmites and Glyceria, respectively. In addition, Glyceria showed lower amounts (mg g−1 dry wt) of soluble sugars, TNC, K+, and Mg2+ in roots under NH4+ (5.6; 14.3; 20.6; 1.9) compared to NO3 nutrition (11.6; 19.9; 37.9; 2.9, for soluble sugars, TNC, K+, and Mg2+, respectively), while root internal levels of NH4+ and Ca2+ (0.29; 4.6 mg g−1 dry wt, mean of both treatments) were only slightly affected. In Phragmites, no changes in soluble sugars, TNC, Ca2+, K+, and Mg2+ contents of roots (7.3; 14.9; 5.1; 17.3; 2.6 mg g−1 dry wt, means of both treatments) were found in response to treatments. The results, therefore, indicate a more pronounced tolerance towards high NH4+ supply in Phragmites compared to Glyceria, although the former may be susceptible to starch exhaustion in NH4+-N nutrition. In contrast, Glyceria's ability to colonize fertile habitats rich in NH4+ is probably related to the avoidance strategy due to shallow rooting or to the previously described ability to cope with high NH4+ levels when P availability is high and NO3 is also provided.  相似文献   

8.
Chen L  Yang X  Raza W  Luo J  Zhang F  Shen Q 《Bioresource technology》2011,102(4):3900-3910
Agro-industrial wastes of cattle dung, vinegar-production residue and rice straw were solid-state fermented by inoculation with Trichoderma harzianum SQR-T037 (SQR-T037) for production of bioorganic fertilizers containing SQR-T037 and 6-pentyl-α-pyrone (6PAP) to control Fusarium wilt of cucumber in a continuously cropped soil. Fermentation days, temperature, inoculum and vinegar-production residue demonstrated significant effects on the SQR-T037 biomass and the yield of 6PAP, based on fractional factorial design. Three optimum conditions for producing the maximum SQR-T037 biomass and 6PAP yield were predicted by central composite design and validated. Bioorganic fertilizer containing 8.46 log10 ITS copies g−1 dry weight of SQR-T037 and 1291.73 mg kg−1 dry weight of 6PAP, and having the highest (p < 0.05) biocontrol efficacy, was achieved at 36.7 fermentation days, 25.9 °C temperature, 7.6% inoculum content, 41.0% vinegar-production residue, 20.0% rice straw and 39.0% cattle dung. This is a way to offer a high value-added use for agro-industrial wastes.  相似文献   

9.
Two extracellular chitinases (designated as Chi-56 and Chi-64) produced by Massilia timonae were purified by ion-exchange chromatography, ammonium sulfate precipitation, and gel-filtration chromatography. The molecular mass of Chi-56 was 56 kDa as determined by both SDS-PAGE and gel-filtration chromatography. On the other hand, Chi-64 showed a molecular mass of 64 kDa by SDS-PAGE and 28 kDa by gel-filtration chromatography suggesting that its properties may be different from those of Chi-56. The optimum temperature, optimum pH, pI, Km, and Vmax of Chi-56 were 55 °C, pH 5.0, pH 8.5, 1.1 mg mL−1, and 0.59 μmol μg−1 h−1, respectively. For Chi-64, these values were 60 °C, pH 5.0, pH 8.5, 1.3 mg mL−1, and 1.36 μmol μg−1 h−1, respectively. Both enzymes were stimulated by Mn2+ and inhibited by Hg2+, and neither showed exochitinase activity. The N-terminal sequences of Chi-56 and Chi-64 were determined to be Q-T-P-T-Y-T-A-T-L and Q-A-D-F-P-A-P-A-E, respectively.  相似文献   

10.
A novel assay method was investigated for urease (EC 3.5.1.5) from Pseudomonas aeruginosa and Canavalia ensiformis by Fourier transform infrared spectroscopy. This enzyme catalyzed the hydrolysis of urea in phosphate buffer in deuterium oxide (2H2O). The intensities of the bicarbonate bands maxima at 1625 and 1365 cm−1 and of the amide I band at 1605 cm−1 were measured as a function of time to study the kinetics of urea hydrolysis. The extinction coefficients ε of urea and bicarbonate were determined to be 0.72, 0.48, and 0.56 mM−1 cm−1 at 1625, 1605, and 1365 cm−1, respectively. The initial velocity is proportional to the enzyme concentration by using the ureases from both C.ensiformis and P. aeruginosa. The kinetic constants (Vmax, Km, and Kcat) determined by Lineweaver-Burk plot were 532.2  U mg−1 protein, 6.4 mM, and 806.36 s−1, respectively. These data are in agreement with the results obtained by a spectrophotometric method using a linked assay based on glutamate dehydrogenase in aqueous media. Therefore, this spectroscopic method is highly suited to assay for urease activity and its kinetic parameters by using either cell-free extracts or purified enzyme preparations with an additional advantage of performing a real-time measurement of urease activity.  相似文献   

11.
In order for cryopreservation to become a practical tool for aquaculture, optimized protocols must be developed for each species and cell type. Knowledge of a cell’s osmotic tolerance and membrane permeability characteristics can assist in optimized protocol development. In this study, these characteristics were determined for Pacific oyster oocytes and modified methods for loading and unloading ethylene glycol (EG) were tested. Oocytes were found to behave as ideal osmometers and their osmotically inactive fraction (Vb) was calculated to be 0.48. Oocytes exposed to NaCl solutions of 0.6 to 2.3 Osm fertilized at rates equivalent to oocytes left in seawater. This corresponds to volume changes of +27.3 and −38.1 ± 1.2%. The permeability of the oocytes to water (Lp) was determined to be 3.8 ± 0.4 × 10−2, 5.7 ± 0.8 × 10−2, and 13.2 ± 1.3 × 10−2 μm min−1 atm−1, when measured at temperatures of 5, 10 and 20 °C. The respective EG permeability values (Ps) were 9.5 ± 0.1 × 10−5, 14.6 ± 1.2 × 10−5, and 41.7 ± 2.4 × 10−5 cm min−1. The activation energies for Lp and Ps were determined to be 14.5 and 17.5 kcal mol−1, respectively. Different models for EG loading and unloading from oocytes were developed and tested. Post-thaw fertilization did not differ significantly between a published step addition method and single step addition at 20 °C. This represents a considerable reduction in handling. The results of this study demonstrate that the cryobiological characteristics of a given cell type should be taken into account when developing cryopreservation methods.  相似文献   

12.
Salt marshes near urban, industrial and mining areas are often affected both by heavy metals and by eutrophic water. The aim of this study was to assess and evaluate the main processes involved in the decrease of nitrate concentration in pore water of mine wastes flooded with eutrophic water, considering the presence or absence of plant rhizhosphere. Basic (pH ∼ 7.8) carbonated loam mine wastes and free-carbonated acidic (pH ∼ 6.2) sandy-loam mine wastes were collected from polluted coastal salt marshes of SE Spain which regularly receive nutrient-enriched water. The wastes were put in pots and flooded for 15 weeks with eutrophic water (dissolved organic carbon ∼26 mg L−1, PO43− ∼23 mg L−1, NO3 ∼180 mg L−1). Three treatments were assayed for each type of waste: pots with Sarcocornia fruticosa, pots with Phragmites australis and unvegetated pots. Soluble organic carbon, nitrate, soluble Cd, Pb and Zn, pH and Eh were monitored. But the 2nd day of flooding, nitrate concentrations had decreased between 70% and 90% (equivalent to 1.01-1.12 g N-NO3 m−2 day−1) with respect to the content in the water used for flooding, except in unvegetated pots with acidic wastes. Denitrification was the main mechanism associated with the removal of nitrate. The role of vegetation in improving the rhizospheric environment was relevant in the acidic wastes because higher sand content, lower pH and higher soluble metal concentrations might strongly hinder microbial activity Hence, revegetation of salt marshes polluted by acidic sandy mining wastes might improve the capacity of this type of environment to act as a green filter against excessive nitrate contents flowing through them.  相似文献   

13.
The Iberian Peninsula encompasses more than 80% of the species richness of European aquatic ranunculi. The floristic diversity of the phytocoenosis characterised by aquatic Ranunculus and the main physical–chemical factors of the water were studied in 43 localities of the central Iberian Peninsula. Four aquatic Ranunculus communities are found in most of the aquatic environments. These are species-poor and have an uneven distribution: three species of Batrachium are heterophyllous and their communities are distributed in different aquatic ecosystems on silicated substrates; one species is homophyllous and its community occurs in various aquatic ecosystems with carbonated waters. In the Mediterranean climate, Ranunculus species are present in different habitats, as shown by the results of all the statistical analyses. Ranunculus trichophyllus communities occur in base-rich waters with a high buffering capacity (2273.44 ± 794.57 mg CaCO3 L−1) and a high concentration of cations (Ca2+, 121 ± 33.12 mg L−1; Mg2+, 71.64 ± 82.77 mg L−1), nitrates (2.89 ± 4.80 mg L−1), ammonium (2.19 ± 1.36 mg L−1) and sulphates (216.25 ± 218.54 mg L−1). Ranunculus penicillatus communities are found in flowing waters with a high concentration of phosphates (0.48 ± 0.6 mg L−1) and intermediate buffering capacity (683.66 ± 446.76 mg CaCO3 L−1). Both Ranunculus pseudofluitans and Ranunculus peltatus communities grow in waters with low buffering capacity (R. pseudofluitans, 385.91 ± 209.2 mg CaCO3 L−1; R. peltatus, 263.3 ± 180.36 mg CaCO3 L−1), and a low concentration of cations (R. pseudofluitans: Ca2+, 12.57 ± 9.42 mg L−1; Mg2+, 3.42 ± 1.67 mg L−1; R. peltatus: Ca2+, 15 ± 18.26 mg L−1; Mg2+, 6.26 ± 8.89 mg L−1) and nutrients (R. pseudofluitans: nitrates, 0.23 ± 0.2 mg L−1; phosphates, 0.09 ± 0.1 mg L−1; R. peltatus: nitrates, 0.19 ± 0.21 mg L−1; phosphates, 0.09 ± 0.12 mg L−1); the first in flowing waters, the latter in still waters.  相似文献   

14.
The cosmopolitan presence of Ulva spp. is partly due to its great reproductive ability, but relatively little information is available for the radiation conditions triggering reproduction. In the present study, we investigated the effect of photon irradiance, photoperiod, and spectral qualities of light on growth and reproduction of Ulva pertusa.During 8-day culture of discs cut from marginal parts of the thallus of U. pertusa, the size of the thallus discs was greatest at 10 μmol m−2 s−1, while saturation of reproduction occurred at 30 μmol m−2 s−1. The minimum photon irradiance allowing growth and reproduction was 5 and 10 μmol m−2 s−1, respectively. Rapid increases in the size and subsequent initiation of sporulation were observed in samples transferred to saturating irradiance from 5 μmol m−2 s−1 or darkness for 9 days. When exposed to different photoperiods (8:16-, 12:12-, 16:8-h LD and continuous light regimes) combined with different photon irradiances (10 and 100 μmol m−2 s−1), U. pertusa thallus showed that the thallus size attained at the low irradiance was similar in daylengths longer than 12 h per day, while the surface area increased in parallel with increasing light duration at the high irradiance. The degree of sporulation at 10 μmol m−2 s−1 varied, ranging from no sporulation in 8:16-h LD to 80% in 16:8-h LD and continuous light. On the other hand, there was no remarkable difference in the degree of sporulation between the photoperiods except for slightly smaller percentage sporulation in 8:16-h LD at 100 μmol m−2 s−1.At 5 μmol m−2 s−1, the growth of U. pertusa was markedly lower in green than in blue or red light, but there was no sporulation in any spectral quality. The degree of sporulation at 20 μmol m−2 s−1 was almost twice as much in blue or red as in green light.The size of plants irradiated with 1.0 W m−2 of UV-B for 20-40 min increased by 18-21% relative to control, whereas higher UV irradiance caused inhibition of growth. There was a significantly lower incidence of sporulation in UV-B-irradiated plants with the degree of reduction being greater in those exposed to higher UV doses. The total biologically effective UV-B dose for 50% inhibition of sporulation was 0.085 Doseeff kJ m−2. The time required to achieve 50% inhibition would be longer than 13 h at depths below 1 m in Ahnin coastal waters. The vertical attenuation coefficient of PAR (λ=400-700 nm) and UV-B (λ=300-320 nm) in April 1998 at Ahnin on the eastern coast of Korea was 0.21 m−1 for KPAR and 0.54 m−1 for KUV-B. A large reduction of light quantity and rapid disappearance of blue wavelength occurred by shading from overlying thalli.Percentage inhibition of sporulation was only 14-18% at 150-200 μmol m−2 s−1 compared with 70% at 10 μmol m−2 s−1, when plants were incubated under different irradiances of PAR immediately after UV-B exposures.These different photoadaptive strategies for sporulation may in part account for the great ecological success of U. pertusa.  相似文献   

15.
Rasineni GK  Guha A  Reddy AR 《Plant science》2011,181(4):428-438
The photosynthetic response of trees to rising CO2 concentrations largely depends on source-sink relations, in addition to differences in responsiveness by species, genotype, and functional group. Previous studies on elevated CO2 responses in trees have either doubled the gas concentration (>700 μmol mol−1) or used single large addition of CO2 (500-600 μmol mol−1). In this study, Gmelina arborea, a fast growing tropical deciduous tree species, was selected to determine the photosynthetic efficiency, growth response and overall source-sink relations under near elevated atmospheric CO2 concentration (460 μmol mol−1). Net photosynthetic rate of Gmelina was ∼30% higher in plants grown in elevated CO2 compared with ambient CO2-grown plants. The elevated CO2 concentration also had significant effect on photochemical and biochemical capacities evidenced by changes in FV/FM, ABS/CSm, ET0/CSm and RuBPcase activity. The study also revealed that elevated CO2 conditions significantly increased absolute growth rate, above ground biomass and carbon sequestration potential in Gmelina which sequestered ∼2100 g tree−1 carbon after 120 days of treatment when compared to ambient CO2-grown plants. Our data indicate that young Gmelina could accumulate significant biomass and escape acclimatory down-regulation of photosynthesis due to high source-sink capacity even with an increase of 100 μmol mol−1 CO2.  相似文献   

16.
Kumar D  Gaur JP 《Bioresource technology》2011,102(3):2529-2535
The pH-dependent metal sorption by Oscillatoria- and Phormidium-dominated mats was effectively expressed by the Hill function. The estimated Hill functions can fruitfully predict the amount of metal sorbed at a particular initial pH. Pretreatment of biomass with 0.1 mmol L−1 HCl was more effective than pretreatment with CaCl2, HNO3, NaOH, and SDS in enhancing metal sorption ability of the biomass. Desorption of metal ions in the presence of 100 mmol L−1 HCl from metal-loaded mat biomass was completed within 1 h. After six cycles of metal sorption/desorption, sorption decreased by 6-15%. Only 6% and 11% of the biomass derived from the Oscillatoria sp.- and Phormidium sp.-dominated mats was lost during the cycling. The cyanobacterial mats seem to have better potential than several biomass types for use in metal sorption from wastewaters as they are ubiquitous, self-immobilized, and have good reusability.  相似文献   

17.
We evaluated the kinetic culture characteristics of the microalgae Cyanobium sp. grown in vertical tubular photobioreactor in semicontinuous mode. Cultivation was carried out in vertical tubular photobioreactor for 2 L, in 57 d, at 30 °C, 3200 Lux, and 12 h light/dark photoperiod. The maximum specific growth rate was found as 0.127 d−1, when the culture had blend concentration of 1.0 g L−1, renewal rate of 50%, and sodium bicarbonate concentration of 1.0 g L−1. The maximum values of productivity (0.071 g L−1 d−1) and number of cycles (10) were observed in blend concentration of 1.0 g L−1, renewal rate of 30%, and bicarbonate concentration of 1.0 g L−1. The results showed the potential of semicontinuous cultivation of Cyanobium sp. in closed tubular bioreactor, combining factors such as blend concentration, renewal rate, and sodium bicarbonate concentration.  相似文献   

18.
The most extensively studied ficins have been isolated from the latex of Ficus glabrata and Ficus carica. However the proteases (ficins) from other species are less known. The purification and characterization of a protease from the latex of Ficus racemosa is reported. The enzyme purified to homogeneity is a single polypeptide chain of molecular weight of 44,500 ± 500 Da as determined by MALDI-TOF. The enzyme exhibited a broad spectrum of pH optima between pH 4.5-6.5 and showed maximum activity at 60 ± 0.5 °C. The enzyme activity was completely inhibited by pepstatin-A indicating that the purified enzyme is an aspartic protease. Far-UV circular dichroic spectra revealed that the purified enzyme contains predominantly β-structures. The purified protease is thermostable. The apparent Tm, (mid point of thermal inactivation) was found to be 70 ± 0.5 °C. Thermal inactivation was found to follow first order kinetics at pH 5.5. Activation energy (Ea) was found to be 44.0 ± 0.3 kcal mol−1. The activation enthalpy (ΔH), free energy change (ΔG) and entropy (ΔS) were estimated to be 43 ± 4 kcal mol−1, −26 ± 3 kcal mol−1 and 204 ± 10 cal mol−1 K−1, respectively. Its enzymatic specificity studied using oxidized B chain of insulin indicates that the protease preferably hydrolyzed peptide bonds C-terminal to glutamate, leucine and phenylalanine (at P1 position). The broad specificity, pH optima and elevated thermal stability indicate the protease is distinct from other known ficins and would find applications in many sectors for its unique properties.  相似文献   

19.
Two Gram-staining-negative, moderately halophilic bacteria, strains M1-18T and L1-16, were isolated from a saltern located in Huelva (Spain). They were motile, strictly aerobic rods, growing in the presence of 3–25% (w/v) NaCl (optimal growth at 7.5–10% [w/v] NaCl), between pH 4.0 and 9.0 (optimal at pH 6.0–7.0) and at temperatures between 15 and 40 °C (optimal at 37 °C). Phylogenetic analysis based on 16S rRNA gene sequence comparison showed that both strains showed the higher similarity values with Chromohalobacter israelensis ATCC 43985T (95.2–94.8%) and Chromohalobacter salexigens DSM 3043T (95.0–94.9%), and similarity values lower than 94.6% with other species of the genera Chromohalobacter, Kushneria, Cobetia or Halomonas. Multilocus sequence analysis (MLSA) based on the partial sequences of atpA, rpoD and secA housekeeping genes indicated that the new isolates formed an independent and monophyletic branch that was related to the peripheral genera of the family Halomonadaceae, Halotalea, Carnimonas and Zymobacter, supporting their placement as a new genus of the Halomonadaceae. The DNA–DNA hybridization between both strains was 82%, whereas the values between strain M1-18T and the most closely related species of Chromohalobacter and Kushneria were equal or lower to 48%. The major cellular fatty acids were C18:1ω7c/C18:1ω6c, C16:0, and C16:1ω7c/C16:1ω6c, a profile that differentiate this new taxon from species of the related genera. We propose the placement of both strains as a novel genus and species, within the family Halomonadaceae, with the name Larsenia salina gen. nov., sp. nov. The type strain is M1-18T (= CCM 8464 = CECT 8192T = IBRC-M 10767T = LMG 27461T).  相似文献   

20.
Fucogalactans from edible Agaricus bisporus (RFP-Ab) and wild Lactarius rufus (RFP-Lr) mushrooms were obtained on aqueous extraction followed by purification. RFP-Ab had Mw 43.8 × 104 g mol−1 and RFP-Lr Mw 1.4 × 104 g mol−1. RFP-Lr had a (1 → 6)-linked α-d-Galp main-chain partially substituted at O-2 by nonreducing end-units of α-l-Fucp (29%). While RFP-Ab had a similar main chain, it was partially substituted at O-2 by nonreducing end-units of α-l-Fucp (2.8%) and β-d-Galp (14.5%), and partially methylated at HO-3. Both RFP-Lr and RFP-Ab were tested in mice against polymicrobial sepsis. Lethality rate, myeloperoxidase (MPO) activity and cytokine levels were determined. It was observed a reduction in late mortality rate by 62.5% and 50%, respectively, prevention of neutrophil accumulation in ileum and decreasing in TNF-α and IL-1β serum levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号