首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To investigate the mechanisms responsible for the difference in gas exchange during constant-flow ventilation (CFV) when using gases with different physical properties, we used mixtures of 70% N2-30% O2 (N2-O2) and 70% He-30% O2 (He-O2) as the insufflating gases in 12 dogs. All dogs but one had higher arterial PCO2 (PaCO2) with He-O2 compared with N2-O2. At a flow of 0.37 +/- 0.12 l/s, the mean PaCO2's with N2-O2 and He-O2 were 41.3 +/- 13.9 and 53.7 +/- 20.3 Torr, respectively (P less than 0.01); at a flow rate of 0.84 +/- 0.17 l/s, the mean PaCO2's were 29.1 +/- 11.3 and 35.3 +/- 13.6 Torr, respectively (P less than 0.01). The chest was then opened to alter the apposition between heart and the lungs, thereby reducing the extent of cardiogenic oscillations by 58.4 +/- 18.4%. This intervention did not significantly alter the difference in PaCO2 between N2-O2 and He-O2 from that observed in the intact animals, although the individual PaCO2 values for each gas mixture did increase. When the PaCO2 was plotted against stagnation pressure (rho V2), the difference in PaCO2 between N2-O2 and He-O2 was nearly abolished in both the closed- and open-chest animals. These findings suggest that the different PaCO2's obtained by insufflating gases with different physical properties at a fixed flow rate, catheter position, and lung volume result mainly from a difference in the properties of the jet.  相似文献   

2.
Analysis of momentum transfer between inflow jets and resident gas during constant-flow ventilation (CFV) predicts inhomogeneity of alveolar pressures (PA) and volume, which might account for specific ventilation-variance in the lung. Using alveolar needles to measure pressures (PA) during CFV in eight anesthetized dogs with wide thoracotomy, we observed random dispersion of PA among lobes of up to 12.5 cmH2O. Within each lobe, the PA dispersion was up to 10 cmH2O at CFV of 90 l/min; when flow decreased, PA at all sites decreased, as did the intralobar dispersion. These pressure differences were not observed during conventional mechanical ventilation (CMV). During CFV with room air, dogs were hypoxemic [arterial PO2 (Pao2) 54 +/- 15 Torr] and the venous admixture (Qva/QT) was 50 +/- 15%. When inspiratory O2 fraction was increased to 0.4, Pao2 increased to 172 +/- 35 Torr and Qva/QT dropped to 13.5 +/- 8.4%, confirming considerable ventilation-perfusion (VA/Q) variance not observed during CMV. We conclude that momentum transfer between the inflow stream and resident gas caused inhomogeneities of alveolar pressures, volumes, and ventilation responsible for VA/Q variance and hypoxemia during CFV. Conceivably, the abnormal ventilation distribution is minimized by collateral ventilation and forces of interdependence between regions of high and low alveolar pressures. Momentum transfer also predicted the mucosal damage observed on histological evaluation of the bronchial walls near the site of inflow jet impact.  相似文献   

3.
We simulated gas transport due to cardiogenic oscillations (CO) using a model developed to quantify the gas mixing due to high-frequency ventilation (16). The basic components of the model are 1) gas mixing by augmented transport, 2) symmetrical lung morphometry, and 3) a Lagrangian (moving) reference frame. The theoretical predictions of the model are in general agreement with published experimental studies that have examined the effect of CO on the nitrogen concentration obtained by intrapulmonary gas sampling and the effect of CO on regional and total anatomical dead space. Further, the model predicts that augmentation of gas transport due to CO is less, nearer to the alveolar regions of the lung, and that the effect of CO during normal tidal breathing is negligible, but that CO may contribute up to approximately 10% of the alveolar ventilation in patients with severe hypoventilation. The agreement between experimental and theoretical results suggests that it may not be necessary to invoke gas transport mechanisms specific to an asymmetrical bronchial tree to explain the major proportion of gas transport due to CO.  相似文献   

4.
Previous studies have shown that normal arterial PCO2 can be maintained during apnea in anesthetized dogs by delivering a continuous stream of inspired ventilation through cannulas aimed down the main stem bronchi, although this constant-flow ventilation (CFV) was also associated with a significant increase in ventilation-perfusion (VA/Q) inequality, compared with conventional mechanical ventilation (IPPV). Conceivably, this VA/Q inequality might result from differences in VA/Q ratios among lobes caused by nonuniform distribution of ventilation, even though individual lobes are relatively homogeneous. Alternatively, the VA/Q inequality may occur at a lobar level if those factors causing the VA/Q mismatch also existed within lobes. We compared the efficiency of gas exchange simultaneously in whole lung and left lower lobe by use of the multiple inert gas elimination technique in nine anesthetized open-chest dogs. Measurements of whole lung and left lower lobe gas exchange allowed comparison of the degree of VA/Q inequality within vs. among lobes. During IPPV with positive end-expiratory pressure, arterial PO2 and PCO2 (183 +/- 41 and 34.3 +/- 3.1 Torr, respectively) were similar to lobar venous PO2 and PCO2 (172 +/- 64 and 35.7 +/- 4.1 Torr, respectively; inspired O2 fraction = 0.44 +/- 0.02). Switching to CFV (3 l.kg-1.min-1) decreased arterial PO2 (112 +/- 26 Torr, P less than 0.001) and lobar venous PO2 (120 +/- 27 Torr, P less than 0.01) but did not change the shunt measured with inert gases (P greater than 0.5).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
A semiempirical model of constant-flow ventilation (CFV) is developed to test the hypothesis that a three-zone serial model with the following characteristics can explain the adequate CO2 transport observed during CFV: 1) a zone of jet recirculation immediately downstream of the catheter in which convection dominates; 2) a zone influenced by turbulence but with little or no bulk flow; and 3) a peripheral zone, free of turbulence, in which transport is governed by molecular and augmented diffusion. Interactions between turbulent eddies and cardiogenic oscillations are included using a modification of Taylor dispersion theory according to the formulation of Kamm et al. Predicted values for arterial PCO2 are reasonably similar to experimental results for He-O2, air, and SF6-O2 mixtures for catheter flow rates from 0.2 to 1.6 l/s. Specific impedance to gas exchange was found to be largest immediately proximal to the end of turbulent mixing zone, where transport is governed by low-level eddy mixing and molecular diffusion. Simulations suggest that, during CFV, cardiogenic oscillations augment gas exchange primarily by promoting turbulent eddy dispersion in the distal airways and by extending the length of the turbulent mixing zone. Even small displacements of the catheter are shown to have a dramatic effect on gas exchange.  相似文献   

6.
7.
Jet high-frequency artificial ventilation produces oscillations of some parts of the chest wall, which in its turn transmits oscillations to the lung parenchyma. It results in the mix-up of the gas in the alveolar space, which leads to the increase in the gradient of oxygen concentration on the alveolar membranes, thus, augmenting oxygen saturation of the blood. The effect is the same when oscillation artificial ventilation is performed, owing to the provocation of the oscillations amplified by the resonance in the natural acoustic circuit, formed by the adjacent parts of the chest and lung parenchyma. Derangement of the exudative adhesion to the bronchi epithelial tissue intensifies gas exchange, when the oscillations are generated in the lungs. It facilitates the removal of the exudate and lets the air into the previously obstructed parts of the lungs. Clinical studies confirm the effect of the increase in the blood oxygenation (by average 20%) at the feeding air column by pneumatic oscillations in the range of 65 Hz, when traditional artificial ventilation is performed.  相似文献   

8.
In a previous study using tracheal insufflation of O2 (TRIO) at a rate of 2 l/min, we showed that anesthetized paralyzed dogs could be adequately oxygenated for up to 5 h, albeit with hypercapnia (mean arterial PCO2 approximately 160 Torr). To examine the contribution of cardiogenic oscillations in producing this gas exchange, we studied seven anesthetized paralyzed dogs weighing between 19.6 and 25.5 kg and quantified gas transport by analyzing continuous N2-washout curves in vivo and postmortem. We found that cardiogenic oscillations increase gas mixing roughly fourfold and that this value was independent of insufflation flow rate (0.2-10.0 l/min). Our results lend indirect evidence that, with regard to gas exchange, there are two mechanistically different zones in the lung during TRIO. One zone, located in the more peripheral areas of the lung, is dominated by the effects of cardiac oscillations and molecular diffusion and accounts for the increase in gas mixing found in the alive vs. dead dog. A second zone, close to the insufflated jet of O2, uses convective streaming to produce greater gas mixing at higher flows.  相似文献   

9.
10.
During the cardiac cycle, cardiogenic oscillations of expired gas (x) concentrations (COS([x])) are generated. At the same time, there are heart-synchronous cardiogenic oscillations of airway flow (COS(flow)), where inflow occurs during systole. We hypothesized that both phenomena, although primarily generated by the heartbeat, would react differently to the cephalad blood shift caused by inflation of an anti-gravity (anti-G) suit and to changes in gravity. Twelve seated subjects performed a rebreathing-breath-holding-expiration maneuver with a gas mixture containing O2 and He at normal (1 G) and moderately increased gravity (2 G); an anti-G suit was inflated to 85 mmHg in each condition. When the anti-G suit was inflated, COS(flow) amplitude increased (P = 0.0028) at 1 G to 186% of the control value without inflation (1-G control) and at 2 G to 203% of the control value without inflation (2-G control). In contrast, the amplitude of COS of the concentration of the blood-soluble gas O2 (COS([O2/He])), an index of the differences in pulmonary perfusion between lung units, declined to 75% of the 1-G control value and to 74% of the 2-G control value (P = 0.0030). There were no significant changes in COS(flow) or COS([O2/He]) amplitudes with gravity. We conclude that the heart-synchronous mechanical agitation of the lungs, as expressed by COS(flow), is highly dependent on peripheral-to-central blood shifts. In contrast, COS([blood-soluble gas]) appears relatively independent of this mechanical agitation and seems to be determined mainly by differences in intrapulmonary perfusion.  相似文献   

11.
Constant-flow ventilation (CFV) maintains alveolar ventilation without tidal excursion in dogs with normal lungs, but this ventilatory mode requires high CFV and bronchoscopic guidance for effective subcarinal placement of two inflow catheters. We designed a circuit that combines CFV with continuous positive-pressure ventilation (CPPV; CFV-CPPV), which negates the need for bronchoscopic positioning of CFV cannula, and tested this system in seven dogs having oleic acid-induced pulmonary edema. Addition of positive end-expiratory pressure (PEEP, 10 cmH2O) reduced venous admixture from 44 +/- 17 to 10.4 +/- 5.4% and kept arterial CO2 tension (PaCO2) normal. With the innovative CFV-CPPV circuit at the same PEEP and respiratory rate (RR), we were able to reduce tidal volume (VT) from 437 +/- 28 to 184 +/- 18 ml (P less than 0.001) and elastic end-inspiratory pressures (PEI) from 25.6 +/- 4.6 to 17.7 +/- 2.8 cmH2O (P less than 0.001) without adverse effects on cardiac output or pulmonary exchange of O2 or CO2; indeed, PaCO2 remained at 35 +/- 4 Torr even though CFV was delivered above the carina and at lower (1.6 l.kg-1.min-1) flows than usually required to maintain eucapnia during CFV alone. At the same PEEP and RR, reduction of VT in the CPPV mode without CFV resulted in CO2 retention (PaCO2 59 +/- 8 Torr). We conclude that CFV-CPPV allows CFV to effectively mix alveolar and dead spaces by a small bulk flow bypassing the zone of increased resistance to gas mixing, thereby allowing reduction of the CFV rate, VT, and PEI for adequate gas exchange.  相似文献   

12.
13.
14.
In partial liquid ventilation (PLV), perfluorocarbon (PFC) acts as a diffusion barrier to gas transport in the alveolar space since the diffusivities of oxygen and carbon dioxide in this medium are four orders of magnitude lower than in air. Therefore convection in the PFC layer resulting from the oscillatory motions of the alveolar sac during ventilation can significantly affect gas transport. For example, a typical value of the Péclet number in air ventilation is Pe approximately 0.01, whereas in PLV it is Pe approximately 20. To study the importance of convection, a single terminal alveolar sac is modeled as an oscillating spherical shell with gas, PFC, tissue and capillary blood compartments. Differential equations describing mass conservation within each compartment are derived and solved to obtain time periodic partial pressures. Significant partial pressure gradients in the PFC layer and partial pressure differences between the capillary and gas compartments (P(C)-Pg) are found to exist. Because Pe> 1, temporal phase differences are found to exist between P(C)-Pg and the ventilatory cycle that cannot be adequately described by existing non-convective models of gas exchange in PLV The mass transfer rate is nearly constant throughout the breath when Pe>1, but when Pe<1 nearly 100% of the transport occurs during inspiration. A range of respiratory rates (RR), including those relevant to high frequency oscillation (HFO) +PLV, tidal volumes (V(T)) and perfusion rates are studied to determine the effect of heterogeneous distributions of ventilation and perfusion on gas exchange. The largest changes in P(C)O2 and P(C)CO2 occur at normal and low perfusion rates respectively as RR and V(T) are varied. At a given ventilation rate, a low RR-high V(T) combination results in higher P(C)O2, lower P(C)CO2 and lower (P(C)-Pg) than a high RR-low V(T) one.  相似文献   

15.
Adequate CO2 elimination and normal arterial PCO2 levels can be maintained in dogs during apnea by delivering a continuous flow of inspired gas at high flow rate (1-3 l.min-1.kg-1) through tubes placed in the main-stem bronchi. However, during constant-flow ventilation (CFV) the mean alveolar pressure is increased, causing increased lung volume despite low pressures in the trachea. We hypothesized that the increased dynamic alveolar pressures during CFV were due to momentum transfer from the high-velocity jet stream to resident gas in the lung. To test this, we simulated CFV in straight tubes and in a branched airway model to determine whether changes in gas flow rate (V), gas density (rho), and tube diameter (D) altered the pressure difference (delta P) between alveoli and airway opening in a manner consistent with that predicted by conservation of momentum. Momentum analysis predicts that delta P should vary with V2, whereas measurements yielded a dependence of V1.69 in branched tubes and V1.9 in straight tubes. Substitution of heliox (80% He-20% O2) for air significantly reduced lung hyperinflation during CFV. As predicted by momentum transfer, delta P varied with rho 1.0. Momentum analysis also predicts that delta P should vary with D-2.0, whereas measurements indicated a dependence on D-2.02. The influence of V and rho on depth of penetration of the jet down the airway was explored in a straight tube model by varying the flow rate and gas used. The influence of geometry on penetration was measured by changing the ratio of jet-to-airway tube diameters.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
18.
To study the influence of gas exchanges on the slope of phase III, single-breath nitrogen tests (SB-N2) and reversed tests (SB-R) were performed with 10 normal volunteers at expiratory flows of 100 ml.s-1, 500 ml.s-1,11.s-1, and 21.s-1. During the prolonged expiration required for the SB-N2 test, more O2 is consumed that CO2 eliminated. This factor could contribute to the rising slope of phase III. However, if one obtains a reversed slope of phase III (by having O2 as the residual gas and room air as the inspired gas), factors increasing N2 concentration with time of expiration should decrease the steepness of this reversed slope. Our data show that, at an expiratory flow of 100 ml.s-1, the slope of phase III was steeper in SB-N2 than in SB-R by 0.92 +/- 0.31% N2 1-1 (mean +/- SD, p less than 0.01). As the expiratory flow was increased to 500 ml.s-1, this difference decreased to 0.33 +/- 0.19% N2 1-1, and both slopes became similar in magnitude but opposite in direction at an expiratory flow of 1 1.s-1. These data suggest that active gas exchange has a significant influence on the slope of phase III of the SB-N2 test.  相似文献   

19.
20.
The relationship between ventilation (VE), oxygen consumption (VO2), and carbon dioxide production (VCO2) during work were studied in four trained males during exercise-induced carbohydrate depletion. Repeated bouts of heavy treadmill exercise (6 min at 95% VO2 max) were performed once per hour for 24 h in order to promote a shift in energy substrate from carbohydrate to fat. Measurements of VO2 and VCO2 recorded during each minute indicated that VO2 was unaffected by the number of runs, whereas VCO2 showed a progressive reduction which amounted to 24% during the final run. A corresponding decline of 19% was observed in the respiratory exchange ratio. No significant change in VE occurred between any of the runs. It is concluded that during heavy, repeated, muscular exercise, reductions in VO2, strongly suggestive of an increased fat oxidation, are not accompanied by a corresponding change in ventilation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号