首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
AAA+ chaperone ClpX has been suggested to be a modulator of prokaryotic cytoskeletal protein FtsZ, but the details of recognition and remodeling of FtsZ by ClpX are largely unknown. In this study, we have extensively investigated the nature of FtsZ polymers and mechanisms of ClpX-regulated FtsZ polymer dynamics. We found that FtsZ polymerization is inhibited by ClpX in an ATP-independent manner and that the N-terminal domain of ClpX plays a crucial role for the inhibition of FtsZ polymerization. Single molecule analysis with high speed atomic force microscopy directly revealed that FtsZ polymer is in a dynamic equilibrium between polymerization and depolymerization on a time scale of several seconds. ClpX disassembles FtsZ polymers presumably by blocking reassembly of FtsZ. Furthermore, Escherichia coli cells overproducing ClpX and N-terminal domain of ClpX show filamentous morphology with abnormal localization of FtsZ. These data together suggest that ClpX modulates FtsZ polymer dynamics in an ATP-independent fashion, which is achieved by interaction between the N-terminal domain of ClpX and FtsZ monomers or oligomers.  相似文献   

2.
FtsZ is an essential division protein in bacteria that functions by forming a ring at midcell that mediates septation. To further study the function of the Z ring the effect of a temperature-sensitive mutation, ftsZ84(Ts), on ring dynamics and septal progression was examined. Shifting a strain carrying an ftsZ84(Ts) mutation to the nonpermissive temperature led to loss of Z rings within 1 min. Septal ingrowth was immediately inhibited, and sharply demarcated septa, present at the time of the shift, were gradually replaced by blunted septa. These results indicate that the Z ring is required throughout septation. Shifting filaments to permissive temperature led to a rapid localization of FtsZ84 at regular intervals. Included in these localization events were complete and partial rings as well as spots, although some of these eventually aborted. These results reveal the rapid dynamics of FtsZ localization and indicate that nucleation sites are formed in the absence of FtsZ function. Interestingly, Z rings could not reform at division sites that were constricted although they could reform at sites that had not begun constriction.  相似文献   

3.
Polymer formation by the essential FtsZ protein plays a crucial role in the cytokinesis of most prokaryotes. Lateral associations between these FtsZ polymers to form bundles or sheets are widely predicted to be extremely important for FtsZ function in vivo. We have carried out a study in vitro of FtsZ polymer formation and bundling using linear dichroism (LD) to assess structural properties of the polymers. We demonstrate proof-of-principle experiments to show that LD can be used as a technique to follow FtsZ polymerization, and we present the LD spectra of FtsZ polymers. Our subsequent examination of FtsZ polymer bundling induced by calcium reveals a substantial increase in the LD signal indicative of increased polymer length and rigidity. We also detect a specific conformational change in the guanine moiety associated with bundling, whereas the conformation and configuration of the FtsZ monomers within the polymer remain largely unchanged. We demonstrate that other divalent cations can induce this conformational change in FtsZ-bound GTP coincident with polymer bundling. Therefore, we present "flipping" of the guanine moiety in FtsZ-bound GTP as a mechanism that explains the link between reduced GTPase activity, increased polymer stability, and polymer bundling.  相似文献   

4.
The cell division protein FtsZ is composed of three regions based on sequence similarity: a highly conserved N-terminal region of ≈320 amino acids; a variable spacer region; and a conserved C-terminal region of eight amino acids. We show that FtsZ mutants missing different C-terminal fragments have dominant lethal effects because they block cell division in Caulobacter crescentus by two different mechanisms. Removal of the C-terminal conserved region, the linker, and 40 amino acids from the end of the N-terminal conserved region (FtsZΔC281) prevents the localization or the polymerization of FtsZ. Because two-hybrid analysis indicates that FtsZΔC281 does not interact with FtsZ, we hypothesize that FtsZΔC281 blocks cell division by competing with a factor required for FtsZ localization or that it titrates a factor required for the stability of the FtsZ ring. The removal of 24 amino acids from the C-terminus of FtsZ (FtsZΔC485) causes a punctate pattern of FtsZ localization and affects its interaction with FtsA. This suggests that the conserved C-terminal region of FtsZ is required for proper polymerization of FtsZ in Caulobacter and for its interaction with FtsA.  相似文献   

5.
Recently, we found that divalent calcium has no detectable effect on the assembly of Mycobacterium tuberculosis FtsZ (MtbFtsZ), whereas it strongly promoted the assembly of Escherichia coli FtsZ (EcFtsZ). While looking for potential calcium binding residues in EcFtsZ, we found a mutation (E93R) that strongly promoted the assembly of EcFtsZ. The mutation increased the stability and bundling of the FtsZ protofilaments and produced a dominating effect on the assembly of the wild type FtsZ (WT-FtsZ). Although E93R-FtsZ was found to bind to GTP similarly to the WT-FtsZ, it displayed lower GTPase activity than the WT-FtsZ. E93R-FtsZ complemented for its wild type counterpart as observed by a complementation test using JKD7–1/pKD3 cells. However, the bacterial cells became elongated upon overexpression of the mutant allele. We modeled the structure of E93R-FtsZ using the structures of MtbFtsZ/Methanococcus jannaschi FtsZ (MjFtsZ) dimers as templates. The MtbFtsZ-based structure suggests that the Arg93-Glu138 salt bridge provides the additional stability, whereas the effect of mutation appears to be indirect (allosteric) if the EcFtsZ dimer is similar to that of MjFtsZ. The data presented in this study suggest that an increase in the stability of the FtsZ protofilaments is detrimental for the bacterial cytokinesis.  相似文献   

6.
FtsZ is the first protein recruited to the bacterial division site, where it forms the cytokinetic Z ring. We have determined the functional energetics of FtsZ assembly, employing FtsZ from the thermophilic Archaea Methanococcus jannaschii bound to GTP, GMPCPP, GDP, or GMPCP, under different solution conditions. FtsZ oligomerizes in a magnesium-insensitive manner. FtsZ cooperatively assembles with magnesium and GTP or GMPCPP into large polymers, following a nucleated condensation polymerization mechanism, under nucleotide hydrolyzing and non-hydrolyzing conditions. The effect of temperature on the critical concentration indicates polymer elongation with an apparent heat capacity change of -800 +/- 100 cal mol-1 K-1 and positive enthalpy and entropy changes, compatible with axial hydrophobic contacts of each FtsZ in the polymer, and predicts optimal polymer stability near 75 degrees C. Assembly entails the binding of one medium affinity magnesium ion and the uptake of one proton per FtsZ. Interestingly, GDP- or GMPCP-liganded FtsZ cooperatively form helically curved polymers, with an elongation only 1-2 kcal mol-1 more unfavorable than the straight polymers formed with nucleotide triphosphate, suggesting a physiological requirement for FtsZ polymerization inhibitors. This GTP hydrolysis switch should provide the basic properties for FtsZ polymer disassembly and its functional dynamics.  相似文献   

7.
FtsZ is required throughout the cell division process in eubacteria and in archaea. We report the isolation of novel mutants of the FtsZ gene in Caulobacter crescentus. Clusters of charged amino acids were changed to alanine to minimize mutations that affect protein folding. Molecular modelling indicated that all the clustered-charged-to-alanine mutations had altered amino acids at the surface of the protein. Of 13 such mutants, four were recessive-lethal, three were dominant-lethal, and six had no discernible phenotype. An FtsZ depletion strain of Caulobacter was constructed to analyse the phenotype of the recessive-lethal mutations and used to show that they blocked cell division at distinct stages. One mutation blocked the initiation of cell division, two mutations blocked cell division randomly, and one mutation blocked both early and late stages of cell division. The effect of the recessive mutations on the subcellular localization of FtsZ was determined. Models to explain the various mutant phenotypes are discussed. This is the first set of recessive alleles of ftsZ blocked at different stages of cell division.  相似文献   

8.
To understand further the role of the nucleoid and the min system in selection of the cell division site, we examined FtsZ localization in Escherichia coli cells lacking MinCDE and in parC mutants defective in chromosome segregation. More than one FtsZ ring was sometimes found in the gaps between nucleoids in min mutant filaments. These multiple FtsZ rings were more apparent in longer cells; double or triple rings were often found in the nucleoid-free gaps in ftsI min and ftsA min double mutant filaments. Introducing a parC mutation into the ftsA min double mutant allowed the nucleoid-free gaps to become significantly longer. These gaps often contained dramatic clusters of FtsZ rings. In contrast, filaments of the ftsA parC double mutant, which contained active MinCDE, assembled only one or two rings in most of the large nucleoid-free gaps. These results suggest that all positions along the cell length are competent for FtsZ ring assembly, not just sites at mid-cell or at the poles. Consistent with previous results, unsegregated nucleoids also correlated with a lack of FtsZ localization. A model is proposed in which both the inhibitory effect of the nucleoid and the regulation by MinCDE ensure that cells divide precisely at the midpoint.  相似文献   

9.
The cytoskeletal protein FtsZ polymerizes to a ring structure (Z ring) at the inner cytoplasmic membrane that marks the future division site and scaffolds the division machinery in many bacterial species. FtsZ is known to polymerize in the presence of GTP into single-stranded protofilaments. In vivo, FtsZ polymers become associated with the cytoplasmic membrane via interaction with the membrane-binding proteins FtsA and ZipA. The FtsZ ring structure is highly dynamic and undergoes constantly polymerization and depolymerization processes and exchange with the cytoplasmic pool. In this theoretical study, we consider a scenario of Z ring self-organization via self-enhanced attachment of FtsZ polymers due to end-to-end interactions and lateral interactions of FtsZ polymers on the membrane. With the assumption of exclusively circumferential polymer orientations, we derive coarse-grained equations for the dynamics of the pool of cytoplasmic and membrane-bound FtsZ. To capture stochastic effects expected in the system due to low particle numbers, we simulate our computational model using a Gillespie-type algorithm. We obtain ring- and arc-shaped aggregations of FtsZ polymers on the membrane as a function of monomer numbers in the cell. In particular, our model predicts the number of FtsZ rings forming in the cell as a function of cell geometry and FtsZ concentration. We also calculate the time of FtsZ ring localization to the midplane in the presence of Min oscillations. Finally, we demonstrate that the assumptions and results of our model are confirmed by 3D reconstructions of fluorescently-labeled FtsZ structures in E. coli that we obtained.  相似文献   

10.
FtsZ1 and FtsZ2 are phylogenetically distinct homologues of the tubulin-like bacterial cell division protein FtsZ that play major roles in the initiation and progression of plastid division in plant cells. Both proteins are components of a mid-plastid ring, the Z-ring, which functions as a contractile ring on the stromal surface of the chloroplast IEM (inner envelope membrane). FtsZ1 and FtsZ2 have been shown to interact, but their in vivo biochemical properties are largely unknown. To gain insight into the in vivo biochemical relationship between FtsZ1 and FtsZ2, in the present study we investigated their molecular levels in wild-type Arabidopsis thaliana plants and endogenous interactions in Arabidopsis and pea. Quantitative immunoblotting and morphometric analysis showed that the average total FtsZ concentration in chloroplasts of 3-week-old Arabidopsis plants is comparable with that in Escherichia coli. FtsZ levels declined as plants matured, but the molar ratio between FtsZ1 and FtsZ2 remained constant at approx. 1:2, suggesting that this stoichiometry is regulated and functionally important. Density-gradient centrifugation, native gel electrophoresis, gel filtration and co-immunoprecipitation experiments showed that a portion of the FtsZ1 and FtsZ2 in Arabidopsis and pea chloroplasts is stably associated in a complex of approximately 200-245 kDa. This complex also contains the FtsZ2-interacting protein ARC6 (accumulation and replicatioin of chloroplasts 6), an IEM protein, and analysis of density-gradient fractions suggests the presence of the FtsZ1-interacting protein ARC3. Based on the mid-plastid localization of ARC6 and ARC3 and their postulated roles in promoting and inhibiting chloroplast FtsZ polymer formation respectively, we hypothesize that the FtsZ1-FtsZ2-ARC3-ARC6 complex represents an unpolymerized IEM-associated pool of FtsZ that contributes to the dynamic regulation of Z-ring assembly and remodelling at the plastid division site in vivo.  相似文献   

11.
FtsZ, a tubulin homologue, forms a cytokinetic ring at the site of cell division in prokaryotes. The ring is thought to consist of polymers that assemble in a strictly GTP-dependent way. GTP, but not guanosine-5'-O-(3-thiotriphosphate) (GTP-gamma-S), has been shown to induce polymerization of FtsZ, whereas in vitro Ca2+ is known to inhibit the GTP hydrolysis activity of FtsZ. We have studied FtsZ dynamics at limiting GTP concentrations in the presence of 10 mM Ca2+. GTP and its non-hydrolysable analogue GTP-gamma-S bind FtsZ with similar affinity, whereas the non-hydrolysable analogue guanylyl-imidodiphosphate (GMP-PNP) is a poor substrate. Preformed FtsZ polymers can be stabilized by GTP-gamma-S and are destabilized by GDP. As more than 95% of the nucleotide associated with the FtsZ polymer is in the GDP form, it is concluded that GTP hydrolysis by itself does not trigger FtsZ polymer disassembly. Strikingly, GTP-gamma-S exchanges only a small portion of the FtsZ polymer-bound GDP. These data suggest that FtsZ polymers are stabilized by a small fraction of GTP-containing FtsZ subunits. These subunits may be located either throughout the polymer or at the polymer ends, forming a GTP cap similar to tubulin.  相似文献   

12.
Escherichia coli cells that contain the pss-93 null mutation are completely deficient in the major membrane phospholipid phosphatidylethanolamine (PE). Such cells are defective in cell division. To gain insight into how a phospholipid defect could block cytokinesis, we used fluorescence techniques on whole cells to investigate which step of the cell division cycle was affected. Several proteins essential for early steps in cytokinesis, such as FtsZ, ZipA, and FtsA, were able to localize as bands to potential division sites in pss-93 filaments, indicating that the generation and localization of potential division sites was not grossly affected by the absence of PE. However, there was no evidence of constriction at most of these potential division sites. FtsZ and green fluorescent protein (GFP) fusions to FtsZ and ZipA often formed spiral structures in these mutant filaments. This is the first report of spirals formed by wild-type FtsZ expressed at normal levels and by ZipA-GFP. The results suggest that the lack of PE may affect the correct interaction of FtsZ with membrane nucleation sites and alter FtsZ ring structure so as to prevent or delay its constriction.  相似文献   

13.
In Escherichia coli, spatiotemporal control of cell division occurs at the level of the assembly/disassembly process of the essential cytoskeletal protein FtsZ. A number of regulators interact with FtsZ and modulate the dynamics of the assembled FtsZ ring at the midcell division site. In this article, we report the identification of an FtsZ stabilizer, ZapC (Z-associated protein C), in a protein localization screen conducted with E. coli. ZapC colocalizes with FtsZ at midcell and interacts directly with FtsZ, as determined by a protein-protein interaction assay in yeast. Cells lacking or overexpressing ZapC are slightly elongated and have aberrant FtsZ ring morphologies indicative of a role for ZapC in FtsZ regulation. We also demonstrate the ability of purified ZapC to promote lateral bundling of FtsZ in a sedimentation reaction visualized by transmission electron microscopy. While ZapC lacks sequence similarity with other nonessential FtsZ regulators, ZapA and ZapB, all three Zap proteins appear to play an important role in FtsZ regulation during rapid growth. Taken together, our results suggest a key role for lateral bundling of the midcell FtsZ polymers in maintaining FtsZ ring stability during division.  相似文献   

14.
Replication of chloroplasts is essential for achieving and maintaining optimal plastid numbers in plant cells. The plastid division machinery contains components of both endosymbiotic and host cell origin, but little is known about the regulation and molecular mechanisms that govern the division process. The Arabidopsis mutant arc6 is defective in plastid division, and its leaf mesophyll cells contain only one or two grossly enlarged chloroplasts. We show here that arc6 chloroplasts also exhibit abnormal localization of the key plastid division proteins FtsZ1 and FtsZ2. Whereas in wild-type plants, the FtsZ proteins assemble into a ring at the plastid division site, chloroplasts in the arc6 mutant contain numerous short, disorganized FtsZ filament fragments. We identified the mutation in arc6 and show that the ARC6 gene encodes a chloroplast-targeted DnaJ-like protein localized to the plastid envelope membrane. An ARC6-green fluorescent protein fusion protein was localized to a ring at the center of the chloroplasts and rescued the chloroplast division defect in the arc6 mutant. The ARC6 gene product is related closely to Ftn2, a prokaryotic cell division protein unique to cyanobacteria. Based on the FtsZ filament morphology observed in the arc6 mutant and in plants that overexpress ARC6, we hypothesize that ARC6 functions in the assembly and/or stabilization of the plastid-dividing FtsZ ring. We also analyzed FtsZ localization patterns in transgenic plants in which plastid division was blocked by altered expression of the division site-determining factor AtMinD. Our results indicate that MinD and ARC6 act in opposite directions: ARC6 promotes and MinD inhibits FtsZ filament formation in the chloroplast.  相似文献   

15.
FtsZ is a prokaryotic tubulin homologue that polymerizes into a dynamic ring during cell division. GTP binding and hydrolysis provide the energy for FtsZ dynamics. However, the precise role of hydrolysis in polymer assembly and turnover is not understood, limiting our understanding of how FtsZ functions in the cell. Here we investigate GTP hydrolysis during the FtsZ polymerization cycle using several complementary approaches that avoid technical caveats of previous studies. We find that at steady state approximately 80% of FtsZ polymer subunits are bound to GTP. In addition, we use pre-steady-state, single turnover assays to directly measure the rate of hydrolysis. Hydrolysis was found to occur at approximately 8/min and to be a rate-limiting step in GTP turnover; phosphate release rapidly followed. These results clarify previously conflicting results in the literature and suggest that pure FtsZ polymers, unlike microtubules, may not be able to undergo dynamic instability or to store energy in the polymer for force production.  相似文献   

16.
Using immunofluorescence microscopy, we have examined the dependency of localization among three Bacillus subtilis division proteins, FtsZ, DivIB, and DivIC, to the division site. DivIC is required for DivIB localization. However, DivIC localization is dependent on DivIB only at high growth temperatures, at which DivIB is essential for division. FtsZ localization is required for septal recruitment of DivIB and DivIC, but FtsZ can be recruited independently of DivIB. These localization studies suggest a more specific role for DivIB in division, involving interaction with DivIC.  相似文献   

17.
Cytokinesis in bacteria is mediated by a macromolecular machine known as the divisome, consisting of an assembly of FtsZ polymers around the cylindrical axis of the cell and the downstream regulators of division that are subsequently recruited to it. FtsZ polymerizes into filaments in a GTP-dependent manner, similarly to its eukaryotic structural homolog tubulin. The initial placement of the FtsZ polymerization site is tightly regulated by multiple mechanisms, as are the subsequent polymer reshaping and force generation that separate the two daughter cells from each other. New factors have been recently discovered that contribute to this regulation, notably affecting FtsZ polymer shaping, and modulating FtsZ polymerization in response to the metabolic or redox state of the cell.  相似文献   

18.
Santra MK  Dasgupta D  Panda D 《Proteins》2005,61(4):1101-1110
The assembly and bundling of FtsZ protofilaments play an important role during bacterial cell division. Deuterium oxide (D2O) is known to have strong stabilization effects on the assembly dynamics of several proteins including tubulin, a homologue of FtsZ. Here, we found that D2O enhanced the light-scattering intensity of the assembly reaction, increased sedimentable polymer mass, and induced bundling of FtsZ protofilaments. D2O also increased the stability of FtsZ polymers under challenged GTP conditions and suppressed dilution-induced disassembly of protofilaments. D2O enhances the assembly parameters of FtsZ and microtubules albeit differently. For example, D2O induced bundling of FtsZ protofilaments, whereas it did not induce bundling of microtubules in vitro. In addition, D2O strongly suppressed the GTP hydrolysis rate of microtubules, but it had no effect on the initial rate of GTP hydrolysis of the FtsZ assembly. D2O (80%) also increased the helical content of FtsZ by 25% compared to the helical content of FtsZ in aqueous buffer. D2O was shown to reduce the binding of 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (bis-ANS) to tubulin. In contrast, we found that D2O strongly enhanced the binding of bis-ANS to FtsZ. The results indicated that D2O promotes assembly and bundling of FtsZ protofilaments by increasing hydrophobic interactions between the protofilaments. The results also suggest that the phosphate release rather than the on-site GTP hydrolysis is the rate-limiting step of the GTP turnover reaction.  相似文献   

19.
Cell division in bacteria is facilitated by a polymeric ring structure, the Z ring, composed of tubulin-like FtsZ protofilaments. Recently it has been shown that in Bacillus subtilis , the Z ring forms through the cell cycle-mediated remodelling of a helical FtsZ polymer. To investigate how this occurs in vivo , we have exploited a unique temperature-sensitive strain of B. subtilis expressing the mutant protein FtsZ(Ts1). FtsZ(Ts1) is unable to complete Z ring assembly at 49°C, becoming trapped at an intermediate stage in the helix-to-ring progression. To determine why this is the case, we used a combination of methods to identify the specific defect of the FtsZ(Ts1) protein in vivo . Our results indicate that while FtsZ(Ts1) is able to polymerize normally into protofilaments, it is defective in the ability to support lateral associations between these filaments at high temperatures. This strongly suggests that lateral FtsZ association plays a crucial role in the polymer transitions that lead to the formation of the Z ring in the cell. In addition, we show that the FtsZ-binding protein ZapA, when overproduced, can rescue the FtsZ(Ts1) defect in vivo . This suggests that ZapA functions to promote the helix-to-ring transition of FtsZ by stimulating lateral FtsZ association.  相似文献   

20.
The assembly of FtsZ plays a major role in bacterial cell division, and it is thought that the assembly dynamics of FtsZ is a finely regulated process. Here, we show that ruthenium red is able to modulate FtsZ assembly in vitro. In contrast to the inhibitory effects of ruthenium red on microtubule polymerization, we found that a substoichiometric concentration of ruthenium red strongly increased the light-scattering signal of FtsZ assembly. Further, sedimentable polymer mass was increased by 1.5- and 2-fold in the presence of 2 and 10 microm ruthenium red, respectively. In addition, ruthenium red strongly reduced the GTPase activity and prevented dilution-induced disassembly of FtsZ polymers. Electron microscopic analysis showed that 4-10 microm of ruthenium red produced thick bundles of FtsZ polymers. The significant increase in the light-scattering signal and pelletable polymer mass in the presence of ruthenium red seemed to be due to the bundling of FtsZ protofilaments into larger polymers rather than the actual increase in the level of polymeric FtsZ. Furthermore, ruthenium red was found to copolymerize with FtsZ, and the copolymerization of substoichiometric amounts of ruthenium red with FtsZ polymers promoted cooperative assembly of FtsZ that produced large bundles. Calcium inhibited the binding of ruthenium red to FtsZ. However, a concentration of calcium 1000-fold higher than that of ruthenium red was required to produce similar effects on FtsZ assembly. Ruthenium red strongly modulated FtsZ polymerization, suggesting the presence of an important regulatory site on FtsZ and suggesting that a natural ligand, which mimics the action of ruthenium red, may regulate the assembly of FtsZ in bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号