首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inner stripe of the outer medullary collecting tubule is a major distal nephron segment in urinary acidification. To examine the mechanism of basolateral membrane H+/OH-/HCO3- transport in this segment, cell pH was measured microfluorometrically in the inner stripe of the rabbit outer medullary collecting tubule perfused in vitro using the pH-sensitive fluorescent dye, (2',7')-bis(carboxyethyl)-(5,6)-carboxyfluorescein. Decreasing peritubular pH from 7.4 to 6.8 (changing [HCO3-] from 25 to 5 mM) caused a cell acidification of 0.25 +/- 0.02 pH units, while a similar luminal change resulted in a smaller cell acidification of only 0.04 +/- 0.01 pH units. Total replacement of peritubular Cl- with gluconate caused cell pH to increase by 0.18 +/- 0.04 pH units, an effect inhibited by 100 microM peritubular DIDS and independent of Na+. Direct coupling between Cl- and base was suggested by the continued presence of peritubular Cl- removal-induced cell alkalinization under the condition of a cell voltage clamp (K(+)-valinomycin). In addition, 90% of basolateral membrane H+/OH-/HCO3- permeability was inhibited by complete removal of luminal and peritubular Cl-. Peritubular Cl(-)-induced cell pH changes were inhibited two-thirds by removal of exogenous CO2/HCO3- from the system. The apparent Km for peritubular Cl- determined in the presence of 25 mM luminal and peritubular [HCO3-] was 113.5 +/- 14.8 mM. These results demonstrate that the basolateral membrane of the inner stripe of the outer medullary collecting tubule possesses a stilbene-sensitive Cl-/HCO3- exchanger which mediates 90% of basolateral membrane H+/OH-/HCO3- permeability and may be regulated by physiologic Cl- concentrations.  相似文献   

2.
ABSTRACT: BACKGROUND: In Gallus gallus, eggshell formation takes place daily in the hen uterus and requires large amounts of the ionic precursors for calcium carbonate (CaCO3). Both elements (Ca2+, HCO3-) are supplied by the blood via trans-epithelial transport. Our aims were to identify genes coding for ion transporters that are upregulated in the uterine portion of the oviduct during eggshell calcification, compared to other tissues and other physiological states, and incorporate these proteins into a general model for mineral transfer across the tubular gland cells during eggshell formation. RESULTS: A total of 37 candidate ion transport genes were selected from our database of overexpressed uterine genes associated with eggshell calcification, and by analogy with mammalian transporters. Their uterine expression was compared by qRTPCR in the presence and absence of eggshell formation, and with relative expression levels in magnum (low Ca2+/HCO3- movement) and duodenum (high rates of Ca2+/HCO3- trans-epithelial transfer). We identified overexpression of eleven genes related to calcium movement: the TRPV6 Ca2+ channel (basolateral uptake of Ca2+), 28 kDa calbindin (intracellular Ca2+ buffering), the endoplasmic reticulum type 2 and 3 Ca2+ pumps (ER uptake), and the inositol trisphosphate receptors type 1, 2 and 3 (ER release). Ca2+ movement across the apical membrane likely involves membrane Ca2+ pumps and Ca2+/Na+ exchangers. Our data suggests that Na+ transport involved the SCNN1 channel and the Na+/Ca2+ exchangers SLC8A1, 3 for cell uptake, the Na+/K+ ATPase for cell output. K+ uptake resulted from the Na+/K+ ATPase, and its output from the K+ channels (KCNJ2, 15, 16 and KCNMA1).We propose that the HCO3- is mainly produced from CO2 by the carbonic anhydrase 2 (CA2) and that HCO3- is secreted through the HCO3-/Cl- exchanger SLC26A9. HCO3- synthesis and precipitation with Ca2+ produce two H+. Protons are absorbed via the membrane's Ca2+ pumps ATP2B1, 2 in the apical membrane and the vacuolar (H+)-atpases at the basolateral level. Our model incorporate Cl- ions which are absorbed by the HCO3-/Cl- exchanger SLC26A9 and by Cl- channels (CLCN2, CFTR) and might be extruded by Cl-/H+ exchanger (CLCN5), but also by Na+ K+ 2 Cl- and K+ Cl- cotransporters. CONCLUSIONS: Our Gallus gallus uterine model proposes a large list of ion transfer proteins supplying Ca2+ and HCO3- and maintaining cellular ionic homeostasis. This avian model should contribute towards understanding the mechanisms and regulation for ionic precursors of CaCO3, and provide insight in other species where epithelia transport large amount of calcium or bicarbonate.  相似文献   

3.
The molecular identity of the apical HCO3(-)-secreting transporter in gastric mucous cells remains unknown despite its essential role in preventing injury and ulcer by gastric acid. Here we report the identification of a Cl-/HCO3- exchanger that is located on apical membranes of gastric surface epithelial cells. RT-PCR studies of mouse gastrointestinal tract mRNAs demonstrated that this transporter, known as anion exchanger isoform 4 (AE4), is expressed in both stomach and duodenum. Northern blot analysis of RNA from purified stomach epithelial cells indicated that AE4 is expressed at higher levels in mucous cells than in parietal cells. Immunoblotting experiments identified AE4 as a approximately 110- to 120-kDa protein in membranes from stomach epithelium and apical membranes from duodenum. Immunocytochemical staining demonstrated that AE4 is expressed in apical membranes of surface cells in both mouse and rabbit stomach and duodenum. Functional studies in oocytes indicated that AE4 functions as a Cl-/HCO3- exchanger. These data show that AE4 is an apical Cl-/HCO3- exchanger in gastric mucous cells and duodenal villus cells. On the basis of its function and location, we propose that AE4 may play an important role in mucosal protection.  相似文献   

4.
A low-bicarbonate concentration and an acidic pH in the luminal fluid of the epididymis and vas deferens are important for sperm maturation. These factors help maintain mature sperm in an immotile but viable state during storage in the cauda epididymidis and vas deferens. Two proton extrusion mechanisms, an Na(+)/H(+) exchanger and an H(+)ATPase, have been proposed to be involved in this luminal acidification process. The Na(+)/H(+) exchanger has not yet been localized in situ, but we have reported that H(+)ATPase is expressed on the apical membrane of apical (or narrow) and clear cells of the epididymis. These cells are enriched in carbonic anhydrase II, indicating the involvement of bicarbonate in the acidification process and suggesting that the epididymis is a site of bicarbonate reabsorption. Previous unsuccessful attempts to localize the Cl/HCO(3) anion exchanger AE1 in rat epididymis did not investigate other anion exchanger (AE) isoforms. In this report, we used a recently described SDS antigen unmasking treatment to localize the Cl/HCO(3) exchanger AE2 in rat and mouse epididymis. AE2 is highly expressed in the initial segment, intermediate zone, and caput epididymidis, where it is located on the basolateral membrane of epithelial cells. The cauda epididymidis and vas deferens also contain basolateral AE2, but in lower amounts. The identity of the AE2 protein was further confirmed by the observation that basolateral AE2 expression was unaltered in the epididymis of AE1-knockout mice. Basolateral AE2 may participate in bicarbonate reabsorption and luminal acidification, and/or may be involved in intracellular pH homeostasis of epithelial cells of the male reproductive tract.  相似文献   

5.
We have investigated Cl- transport mechanism(s) located in the basolateral membranes of the frog skin epithelium and in particular activation of Cl-/HCO3- exchange following an alkaline load. We found that 87% of the total 36Cl uptake by the epithelial cells occurs across the basolateral membranes (JbCl-) and submitting the epithelium to an alkaline load (HCO3(-)-Ringer solution, pH 8.1) increased JbCl-. Intracellular Cl- activity (aiCl-), measured with ion-sensitive microelectrodes, increased when the Ringer solution bathing the basolateral membranes was changed from a Ringer solution equilibrated in air (pH 7.4) to one containing CO2/HCO3- (pH 7.4). pHi recovery following an alkaline load was dependent on Cl- since it did not occur in serosal Cl(-)-free media, indicating the presence of a Cl(-)-dependent regulatory mechanism. Acid loading of the epithelial cells (5% CO2, HCO3(-)-free Ringer) produced no change in JbCl- but stimulated an amiloride-sensitive 22Na uptake across the basolateral membranes of the epithelium, compatible with an activation of a Na+/H+ exchanger, previously described in this tissue. JbCl- was partially blocked by SITS (5 x 10(-4) mmol/I), niflumic acid (5 x 10(-5) mmol/I), furosemide or bumetanide. Simultaneous addition of furosemide and niflumic acid produced an inhibition of JbCl- which was not different with furosemide alone. Substitution of Na+ by choline had no effect on JbCl- and furosemide did not block the 22Na+ uptake, suggesting that JbCl- is not a Na(+)-dependent process (cotransport). We conclude that a significant Cl- permeability at the basolateral membranes of the epithelial cells is due to the presence of a Cl-/HCO3- exchanger which is essential for the recovery of pHi following an alkaline load.  相似文献   

6.
The basolateral Cl(-)/HCO(3)(-) exchanger in parietal cells plays an essential role in gastric acid secretion mediated via the apical gastric H(+)-K(+)-ATPase. Here, we report the identification of a new Cl(-)/HCO(3)(-) exchanger, which shows exclusive expression in mouse stomach and kidney, with expression in the stomach limited to the basolateral membrane of gastric parietal cells. Tissue distribution studies by RT-PCR and Northern hybridizations demonstrated the exclusive expression of this transporter, also known as SLC26A7, to stomach and kidney, with the stomach expression significantly more abundant. No expression was detected in the intestine. Cellular distribution studies by RT-PCR and Northern hybridizations demonstrated predominant localization of SLC26A7 in gastric parietal cells. Immunofluorescence labeling localized this exchanger exclusively to the basolateral membrane of gastric parietal cells, and functional studies in oocytes indicated that SLC26A7 is a DIDS-sensitive Cl(-)/HCO(3)(-) exchanger that is active in both acidic and alkaline pH(i). On the basis of its unique expression pattern and function, we propose that SLC26A7 is a basolateral Cl(-)/HCO(3)(-) exchanger in gastric parietal cells and plays a major role in gastric acid secretion.  相似文献   

7.
Active Na+ absorption across rumen epithelium comprises Na+/H+ exchange and a nonselective cation conductance (NSCC). Luminal chloride is able to stimulate Na+ absorption, which has been attributed to an interaction between Cl-/HCO3- and Na+/H+ exchangers. However, isolated rumen epithelial cells also express a Cl- conductance. We investigated whether Cl- has an additional effect on electrogenic Na+ absorption via NSCC. NSCC was estimated from short-circuit current (Isc) across epithelia of goat and sheep rumen in Ussing chambers. Epithelial surface pH (pHs) was measured with 5-N-hexadecanoyl-aminofluorescence. Membrane potentials were measured with microelelectrodes. Luminal, but not serosal, Cl- stimulated the Ca2+ and Mg2+ sensitive Isc. This effect was independent of the replacing anion (gluconate or acetate) and of the presence of bicarbonate. The mean pHs of rumen epithelium amounted to 7.47 +/- 0.03 in a low-Cl- solution. It was increased by 0.21 pH units when luminal Cl- was increased from 10 to 68 mM. Increasing mucosal pH from 7.5 to 8.0 also increased the Ca2+ and Mg2+ sensitive Isc and transepithelial conductance and reduced the fractional resistance of the apical membrane. Luminal Cl- depolarized the apical membrane of rumen epithelium. 5-Nitro-2-(3-phenylpropylamino)-benzoate reduced the divalent cation sensitive Isc, but only in low-Cl- solutions. The results show that luminal Cl- can increase the microclimate pH via apical Cl-/HCO3- or Cl-/OH- exchangers. Electrogenic Na+ absorption via NSCC increases with pH, explaining part of the Cl- effects on Na+ absorption. The data further show that the Cl- conductance of rumen epithelium must be located at the basolateral membrane.  相似文献   

8.
Within the past year, it has been established that the gene mutated in the human disorder congenital chloride diarrhea encodes a major Cl-/HCO3- exchanger at the apical membrane of gut epithelial cells. A major apical Na+/H+ exchanger has also been identified. New insight into metal ion absorption has been gained, and several new transporters without cognate diseases have been cloned.  相似文献   

9.
An open circuit kinetic model was developed to calculate the time course of proximal tubule cell pH, solute concentrations, and volume in response to induced perturbations in luminal or peritubular fluid composition. Solute fluxes were calculated from electrokinetic equations containing terms for known carrier saturabilities, allosteric dependences, and ion coupling ratios. Apical and basolateral membrane potentials were determined iteratively from the requirements of cell electroneutrality and equal opposing transcellular and paracellular currents. The model converged to membrane potentials accurate to 0.05% in one to four iterations. Model variables included cell concentrations of Na, K, HCO3, glucose, pH (uniform CO2), volume, and apical and basolateral membrane potentials. The basic model contained passive apical membrane transport of Na/H, Na/glucose, H and K, basolateral transport of Na/3HCO3, K, H, and glucose, and paracellular transport of Na, K, Cl, and HCO3; apical H and basolateral 3Na/2K-ATPases were present. Apical Na/H and basolateral K transport were regulated allosterically by pH. Apical Na/H transport, basolateral Na/3HCO3 transport, and the 3Na/2K-ATPase were saturable. Model parameters were chosen from data in the rat proximal tubule. Model predictions for the magnitude and time course of cell pH, Na, and membrane potential in response to rapid changes in apical and peritubular Na and HCO3 were in excellent agreement with experiment. In addition, the model requires that there exist an apical H-ATPase, basolateral Na/3HCO3 transport saturable with HCO3, and electroneutral basolateral K transport.  相似文献   

10.
The pancreatic duct secretes alkaline fluid that is rich in HCO3- and poor in Cl-. The molecular mechanisms that mediate ductal secretion and are responsible for the axial gradients of Cl- and HCO3- along the ductal tree are not well understood because H+ and HCO3- transport by duct cells have not been characterized or localized. To address these questions, we microdissected the intralobular, main, and common segments of the rat pancreatic duct. H+ and HCO3- transporters were characterized and localized by following intracellular pH while perfusing the bath and the lumen of the ducts. In intralobular ducts, Na(+)-dependent and amiloride-sensitive recovery from acid load in the absence of HCO3- was used to localize a Na+/H+ exchanger to the basolateral membrane (BLM). Modification of Cl- gradients across the luminal (LM) and BLM in the presence of HCO3- showed the presence of Cl- /HCO3- exchangers on both membranes of intralobular duct cells. Measurement of the effect of Cl- on one side of the membrane on the rate and extent of pHi changes caused by removal and addition of Cl- to the opposite side suggested that both exchangers are present in the same cell. In the presence of HCO3-, intralobular duct cells used three separate mechanisms to extrude H+: (a) BLM-located Na+/H+ exchange, (b) Na(+)-independent vacuolar-type H+ pump, and (c) BLM-located, Na(+)- dependent, amiloride-insensitive, and 4',4'-diisothiocyanatostilbene- 2,2'-disulfonic acid sensitive mechanism, possibly a Na(+)-dependent HCO3- transporter. The main and common segments of the duct displayed similar mechanisms and localization of H+ and HCO3- transporters to the extent studied in the present work. In addition to the transporters found in intralobular ducts, the main and common ducts showed Na+/H+ exchange activity in the LM. Three tests were used to exclude a significant luminal to basolateral Na+ leak as the cause for an apparent luminal Na+/H+ exchange in an HCO3- secreting cells: (a) addition of amiloride and removal of Na+ from the LM had a profound effect on Na+/H+ exchange activity on the BLM and vice versa; (b) inhibition of all transporters in the BLM by bathing the duct in the inert hydrocarbon Fluorinert FC-75 did not prevent cytosolic acidification caused by removal of luminal Na+; and (c) luminal Na+ did not activate the basolateral Na(+)-dependent HCO3- transporter. An Na(+)-independent, bafilomycin-sensitive H+ pumping activity was marginal in the absence of HCO3-.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Intracellular microelectrode techniques were employed to study the effect of cyclic AMP on apical membrane Cl-/HCO3- exchange and electrodiffusive HCO3- transport in Necturus gallbladder epithelium. Intracellular cAMP levels were raised by addition of either the phosphodiesterase inhibitor theophylline (3 X 10(-3) M) or the adenylate cyclase activator forskolin (10(-5) M) to the serosal bathing solution. Measurements of pH in a poorly buffered control mucosal solution upon stopping superfusion show acidification, owing to secretion of both H+ and HCO3-. When the same experiment is performed after addition of amiloride or removal of Na+ from the mucosal bathing medium, alkalinization is observed since H+ transport is either inhibited or reversed, whereas HCO3- secretion persists. The changes in pH in both amiloride or Na-free medium were significantly decreased in theophylline-treated tissues. Theophylline had no effect on the initial rates of fall of intracellular Cl- activity (aCli) upon reducing mucosal solution [Cl-] to either 10 or 0 mM, although membrane voltage and resistance measurements were consistent with stimulation of apical membrane electrodiffusive Cl- permeability. Estimates of the conductive flux, obtained by either reducing simultaneously mucosal [Cl-] and [HCO3-] or lowering [Cl-] alone in the presence of a blocker of anion exchange (diphenylamine-2-carboxylate), indicate that elevation of intracellular cAMP inhibited the anion exchanger by approximately 50%. Measurements of net Cl- uptake upon increasing mucosal Cl- from nominally zero to levels ranging from 2.5 to 100 mM suggest that the mechanism of inhibition is a decrease in Vmax. Consistent with these results, the rate of intracellular alkalinization upon reducing external Cl- was also inhibited significantly by theophylline. Reducing mucosal solution [HCO3-] from 10 to 1 mM under control conditions caused intracellular acidification and an increase in aCli. Theophylline inhibited both changes, by 62 and 32%, respectively. These data indicate that elevation of intracellular cAMP inhibits apical membrane anion (Cl-/HCO3-) exchange. Studies of the effects of rapid changes in mucosal [HCO3-] on membrane voltages and the apparent ratio of membrane resistances, both in the presence and in the absence of theophylline, with or without Cl- in the mucosal solution, do not support the hypothesis that cAMP produces a sizable increase in apical membrane electrodiffusive HCO3- permeability.  相似文献   

12.
Cl(-)-HCO3- exchange in rat renal basolateral membrane vesicles   总被引:1,自引:0,他引:1  
Pathways for HCO3- transport across the basolateral membrane were investigated using membrane vesicles isolated from rat renal cortex. The presence of Cl(-)-HCO3- exchange was assessed directly by 36Cl- tracer flux measurements and indirectly by determinations of acridine orange absorbance changes. Under 10% CO2/90% N2 the imposition of an outwardly directed HCO3- concentration gradient (pHo 6/pHi 7.5) stimulated Cl- uptake compared to Cl- uptake under 100% N2 in the presence of a pH gradient alone. Mediated exchange of Cl- for HCO3- was suggested by the HCO3- gradient-induced concentrative accumulation of intravesicular Cl-. Maneuvers designed to offset the development of ion-gradient-induced diffusion potentials had no significant effect on the magnitude of HCO3- gradient-driven Cl- uptake further suggesting chemical as opposed to electrical Cl(-)-HCO3- exchange coupling. Although basolateral membrane vesicle Cl- uptake was observed to be voltage sensitive, the DIDS insensitivity of the Cl- conductive pathway served to distinguish this mode of Cl- translocation from HCO3- gradient-driven Cl- uptake. No evidence for K+/Cl- cotransport was obtained. As determined by acridine orange absorbance measurements in the presence of an imposed pH gradient (pHo 7.5/pHi 6), a HCO3- dependent increase in the rate of intravesicular alkalinization was observed in response to an outwardly directed Cl- concentration gradient. The basolateral membrane vesicle origin of the observed Cl(-)-HCO3- exchange activity was verified by experiments performed with purified brush-border membrane vesicles. In contrast to our previous observations of the effect of Cl- on HCO3- gradient-driven Na+ uptake suggesting a basolateral membrane Na+-HCO3- for Cl- exchange mechanism, no effect of Na+ on Cl-HCO3- exchange was observed in the present study.  相似文献   

13.
The intracellular pH (pHi) of a rat parotid acinar preparation was monitored using the pH-sensitive fluorescent dye, 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein. Under resting (unstimulated) conditions both Na+/H+ exchange and CO2/HCO3- buffering contribute to the regulation of pHi. Muscarinic stimulation (carbachol) of the acini produced a gradual rise in pHi (approximately 0.1 unit by 10 min) possibly due to activation of the Na+/H+ exchanger. When the exchanger was blocked by amiloride or sodium removal, carbachol induced a dramatic (atropine inhibitable) decrease in pHi (approximately 0.4 pH unit with t1/2 approximately 0.5 min at 1 mM carbachol). The rate of this acidification was reduced by removal of exogenous HCO3- and by the carbonic anhydrase inhibitor methazolamide. Also, acini stimulated with carbachol in Cl- -free solutions showed a more pronounced acidification than in the corresponding Cl- -replete media. Taken together, these data indicate that the carbachol-induced acidification of rat parotid acinar cells unmasked by inhibition of the Na+/H+ exchanger is due to a rapid loss of intracellular HCO3-. Carbachol induced acidification was inhibited by the Cl- channel blocker diphenylamine 2-carboxylate but not by 4-acetomido-4'-isothiocyanostilbene-2,2'-disulfonic acid, an inhibitor of Cl-/HCO3- exchange. In addition, this acidification could not be sustained in Ca2+-free media and was totally blocked by chelation of intracellular Ca2+. Interpreted in terms of HCO3- loss, these results closely parallel the pattern of carbachol-induced Cl- release from this same preparation and indicate that HCO3- is secreted in response to muscarinic stimulation via the same or a very similar exit pathway, presumably an apical anion channel. Under normal physiological conditions the intracellular acidification resulting from HCO3- secretion is buffered by the Na+/H+ exchanger.  相似文献   

14.
The time course for development of polarized function and morphological distribution of pH regulatory mechanisms has been examined in a mouse mammary epithelial cell line (31EG4). Monolayers grown on permeable supports had tight junctions when grown 3-4 days in the presence of the lactogenic hormones dexamethasone (D, a synthetic glucocorticoid) and insulin (I), or in D, I, and prolactin (P), but there were no tight junctions in the absence of D. Microspectrofluorimetry of the pH- sensitive dye BCECF was used to measure pH (pHi) in cells mounted in a two-sided perfusion chamber to distinguish pH regulatory activity at the apical and basolateral membranes. Na/H exchange was assayed as the Na-dependent, amiloride-sensitive component of pHi recovery from an acid load induced by a pulse of NH3/NH4-containing solution. When monolayers were grown 3-4 d in the presence of P, D, and I, Na/H exchange was restricted to the basolateral membrane. In contrast, in the absence of P, Na/H exchange was present on both the apical and basolateral membranes. After 5-6 days, in the presence or absence of P, Na/H exchange was present only on the basolateral membrane. An antibody to the NHE-1 isoform of the Na/H exchanger was used to determine its morphological distribution. In all hormone conditions the antibody recognized a protein of approximately 110 kD (Western blot), and confocal immunofluorescence microscopy of this antibody and of an anti- ZO-1 (the marker of the tight junctions) antibody showed that the morphological distribution of the Na/H exchanger was similar to the functional distribution under all hormonal treatments. In addition, a putative Na/HCO3 cotransport system was monitored as a Na-dependent, amiloride-insensitive pHi recovery mechanisms that was inhibited by 200 microM H2DIDS. After treatment with D+I (but not with I alone) cotransport appeared exclusively on the basolateral membrane, and the polarized expression of this transporter was not altered by P. We conclude that when mammary cells are grown in D+I-containing media, the Na/H exchanger is expressed initially (i.e., after 3-4 d) on both the apical and basolateral membranes and later (5-6 d) on only the basolateral membrane. P (in the presence of D+I) selectively speeds this polarization, which is determined by polarized distribution of the exchanger to the apical and/or basal membrane and not by the activation and/or inactivation of transporters.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Ambroxol is often used as a mucolytic agent in various lung diseases. However, it is unclear how ambroxol acts on bronchial epithelial cells. To clarify the action of ambroxol, we studied the effects of ambroxol on the ion transport in human Calu-3 cells, a human submucosal serous cell line, measuring the transepithelial short-circuit current and conductance across monolayers of Calu-3 cells. Ambroxol of 100 microM diminished the terbutaline (a beta2-adrenergic agonist)-stimulated Cl-/HCO3(-)-dependent secretion without any decreases in the conductance of cystic fibrosis transmembrane conductance regulator (CFTR) channel locating on the apical membrane. On the other hand, under the basal (unstimulated) condition ambroxol increased the Cl(-)-dependent secretion with no significant change in the apical CFTR channel conductance and decreased the HCO3- secretion associated with a decrease in the apical CFTR channel conductance. Ambroxol had no major action on the epithelial Na+ channel (ENaC) or the ENaC-mediated Na+ absorption. These results indicate that in Calu-3 cells: (1) under the basal (unstimulated) condition ambroxol increases Cl- secretion by stimulating the entry step of Cl- and decreases HCO3- secretion by diminishing the activity of the CFTR channel and/or the Na+/HCO3(-)-dependent cotransporter, (2) under the adrenergic agonist-stimulated condition, ambroxol decreases Cl- secretion by acting on the Cl-/HCO3- exchanger, and (3) ambroxol has a more powerful action than the adrenergic agonist on the Cl-/HCO3- exchanger, leading fluid secretion to a moderately stimulated level from a hyper-stimulated level.  相似文献   

16.
Measurements of cytosolic pH (pHi) 36Cl fluxes and free cytosolic Ca2+ concentration ([Ca2+]i) were performed in the clonal osteosarcoma cell line UMR-106 to characterize the kinetic properties of Cl-/HCO3- (OH-) exchange and its regulation by pHi and [Ca2+]i. Suspending cells in Cl(-)-free medium resulted in rapid cytosolic alkalinization from pHi 7.05 to approximately 7.42. Subsequently, the cytosol acidified to pHi 7.31. Extracellular HCO3- increased the rate and extent of cytosolic alkalinization and prevented the secondary acidification. Suspending alkalinized and Cl(-)-depleted cells in Cl(-)-containing solutions resulted in cytosolic acidification. All these pHi changes were inhibited by 4',4',-diisothiocyano-2,2'-stilbene disulfonic acid (DIDS) and H2DIDS, and were not affected by manipulation of the membrane potential. The pattern of extracellular Cl- dependency of the exchange process suggests that Cl- ions interact with a single saturable external site and HCO3- (OH-) complete with Cl- for binding to this site. The dependencies of both net anion exchange and Cl- self-exchange fluxes on pHi did not follow simple saturation kinetics. These findings suggest that the anion exchanger is regulated by intracellular HCO3- (OH-). A rise in [Ca2+]i, whether induced by stimulation of protein kinase C-activated Ca2+ channels, Ca2+ ionophore, or depolarization of the plasma membrane, resulted in cytosolic acidification with subsequent recovery from acidification. The Ca2+-activated acidification required the presence of Cl- in the medium, could be blocked by DIDS, and H2DIDS and was independent of the membrane potential. The subsequent recovery from acidification was absolutely dependent on the initial acidification, required the presence of Na+ in the medium, and was blocked by amiloride. Activation of protein kinase C without a change in [Ca2+]i did not alter pHi. Likewise, in H2DIDS-treated cells and in the absence of Cl-, an increase in [Ca2+]i did not activate the Na+/H+ exchanger in UMR-106 cells. These findings indicate that an increase in [Ca2+]i was sufficient to activate the Cl-/HCO3- exchanger, which results in the acidification of the cytosol. The accumulated H+ in the cytosol activated the Na+/H+ exchanger. Kinetic analysis of the anion exchange showed that at saturating intracellular OH-, a [Ca2+]i increase did not modify the properties of the extracellular site. A rise in [Ca2+]i increased the apparent affinity for intracellular OH- (or HCO3-) of both net anion and Cl- self exchange. These results indicate that [Ca2+]i modifies the interaction of intracellular OH- (or HCO3-) with the proposed regulatory site of the anion exchanger in UMR-106 cells.  相似文献   

17.
Basal HCO(3)(-) secretion across the duodenum has been shown in several species to principally involve the activity of apical membrane Cl(-)/HCO(3)(-) exchanger(s). To investigate the identity of relevant anion exchanger(s), experiments were performed using wild-type (WT) mice and mice with gene-targeted deletion of the following Cl(-)/HCO(3)(-) exchangers localized to the apical membrane of murine duodenal villi: Slc26a3 [down-regulated in adenoma (DRA)], Slc26a6 [putative anion transporter 1 (PAT-1)], and Slc4a9 [anion exchanger 4 (AE4)]. RT-PCR of the isolated villous epithelium demonstrated PAT-1, DRA, and AE4 mRNA expression. Using the pH-sensitive dye BCECF, anion exchange rates were measured across the apical membrane of epithelial cells in the upper villus of the intact duodenal mucosa. Under basal conditions, Cl(-)/HCO(3)(-) exchange activity was reduced by 65-80% in the PAT-1(-) duodenum, 30-40% in the DRA(-) duodenum, and <5% in the AE4(-) duodenum compared with the WT duodenum. SO(4)(2-)/HCO(3)(-) exchange was eliminated in the PAT-1(-) duodenum but was not affected in the DRA(-) and AE4(-) duodenum relative to the WT duodenum. Intracellular pH (pH(i)) was reduced in the PAT-1(-) villous epithelium but increased to WT levels in the absence of CO(2)/HCO(3)(-) or during methazolamide treatment. Further experiments under physiological conditions indicated active pH(i) compensation in the PAT-1(-) villous epithelium by combined activities of Na(+)/H(+) exchanger 1 and Cl(-)-dependent transport processes at the basolateral membrane. We conclude that 1) PAT-1 is the major contributor to basal Cl(-)/HCO(3)(-) and SO(4)(2-)/HCO(3)(-) exchange across the apical membrane and 2) PAT-1 plays a role in pH(i) regulation in the upper villous epithelium of the murine duodenum.  相似文献   

18.
Epithelial Na(+) channel (ENaC)-mediated Na(+) absorption and BK channel-mediated K(+) secretion in the cortical collecting duct (CCD) are modulated by flow, the latter requiring an increase in intracellular Ca(2+) concentration ([Ca(2+)](i)), microtubule integrity, and exocytic insertion of preformed channels into the apical membrane. As axial flow modulates HCO(3)(-) reabsorption in the proximal tubule due to changes in both luminal Na(+)/H(+) exchanger 3 and H(+)-ATPase activity (Du Z, Yan Q, Duan Y, Weinbaum S, Weinstein AM, Wang T. Am J Physiol Renal Physiol 290: F289-F296, 2006), we sought to test the hypothesis that flow also regulates H(+)-ATPase activity in the CCD. H(+)-ATPase activity was assayed in individually identified cells in microperfused CCDs isolated from New Zealand White rabbits, loaded with the pH-sensitive dye BCECF, and then subjected to an acute intracellular acid load (NH(4)Cl prepulse technique). H(+)-ATPase activity was defined as the initial rate of bafilomycin-inhibitable cell pH (pH(i)) recovery in the absence of luminal K(+), bilateral Na(+), and CO(2)/HCO(3)(-), from a nadir pH of ~6.2. We found that 1) an increase in luminal flow rate from ~1 to 5 nl·min(-1)·mm(-1) stimulated H(+)-ATPase activity, 2) flow-stimulated H(+) pumping was Ca(2+) dependent and required microtubule integrity, and 3) basal and flow-stimulated pH(i) recovery was detected in cells that labeled with the apical principal cell marker rhodamine Dolichos biflorus agglutinin as well as cells that did not. We conclude that luminal flow modulates H(+)-ATPase activity in the rabbit CCD and that H(+)-ATPases therein are present in both principal and intercalated cells.  相似文献   

19.
Cl-/HCO3- exchange at the apical membrane of Necturus gallbladder   总被引:7,自引:5,他引:2       下载免费PDF全文
The hypothesis of Cl-/HCO3- exchange across the apical membrane of the epithelial cells of Necturus gallbladder was tested by means of measurements of extracellular pH (pHo), intracellular pH (pHi), and Cl- activity (alpha Cli) with ion-sensitive microelectrodes. Luminal pH changes were measured after stopping mucosal superfusion with a solution of low buffering power. Under control conditions, the luminal solution acidifies when superfusion is stopped. Shortly after addition of the Na+/H+ exchange inhibitor amiloride (10(-3) M) to the superfusate, alkalinization was observed. During prolonged (10 min) exposure to amiloride, no significant pHo change occurred. Shortly after amiloride removal, luminal acidification increased, returning to control rates in 10 min. The absence of Na+ in the superfusate (TMA+ substitution) caused changes in the same direction, but they were larger than those observed with amiloride. Removal of Cl- (cyclamate or sulfate substitution) caused a short-lived increase in the rate of luminal acidification, followed by a return to control values (10-30 min). Upon re-exposure to Cl-, there was a transient reduction of luminal acidification. The initial increase in acidification produced by Cl- removal was partially inhibited by SITS (0.5 mM). The pHi increased rapidly and reversibly when the Cl- concentration of the mucosal bathing solution was reduced to nominally 0 mM. The pHi changes were larger in 10 mM HCO3-Ringer's than in 1 mM HEPES-Ringer's, which suggests that HCO3- is transported in exchange for Cl-. In both HEPES- and HCO3-Ringer's, SITS inhibited the pHi changes. Finally, intracellular acidification or alkalinization (partial replacement of NaCl with sodium propionate or ammonium chloride, respectively) caused a reversible decrease or increase of alpha Cli. These results support the hypothesis of apical membrane Cl-/HCO3- exchange, which can be dissociated from Na+/H+ exchange and operates under control conditions. The coexistence at the apical membrane of Na+/H+ and Cl-/HCO3- antiports suggests that NaCl entry can occur through these transporters.  相似文献   

20.
The proximal duodenum is exposed to extreme elevations of P(CO(2)) because of the continuous mixture of secreted HCO(3)(-) with gastric acid. These elevations (up to 80 kPa) are likely to place the mucosal cells under severe acid stress. Furthermore, we hypothesized that, unlike most other cells, the principal source of CO(2) for duodenal epithelial cells is from the lumen. We hence examined the effect of elevated luminal P(CO(2)) on duodenal HCO(3)(-) secretion (DBS) in the rat. DBS was measured by the pH-stat method. For CO(2) challenge, the duodenum was superfused with a high Pco(2) solution. Intracellular pH (pH(i)) of duodenal epithelial cells was measured by ratio microfluorometry. CO(2) challenge, but not isohydric solutions, strongly increased DBS to approximately two times basal for up to 1 h. Preperfusion of the membrane-permeant carbonic anhydrase inhibitor methazolamide, or continuous exposure with indomethacin, fully inhibited CO(2)-augmented DBS. Dimethyl amiloride (0.1 mM), an inhibitor of the basolateral sodium-hydrogen exchanger 1, also inhibited CO(2)-augumented DBS, although S-3226, a specific inhibitor of apical sodium-hydrogen exchanger 3, did not. DIDS, an inhibitor of basolateral sodium-HCO(3)(-) cotransporter, also inhibited CO(2)-augemented DBS, as did the anion channel inhibitor 5-nitro-2-(3-phenylpropylamino) benzoic acid. CO(2) decreased epithelial cell pH(i), followed by an overshoot after removal of the CO(2) solution. We conclude that luminal CO(2) diffused in the duodenal epithelial cells and was converted to H(+) and HCO(3)(-) by carbonic anhydrase. H(+) initially exited the cell, followed by secretion of HCO(3)(-). Secretion was dependent on a functioning basolateral sodium/proton exchanger, a functioning basolateral HCO(3)(-) uptake mechanism, and submucosal prostaglandin generation and facilitated hydration of CO(2) into HCO(3)(-) and H(+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号