首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism via which pneumolysin (PLY), a toxin and major virulence factor of the bacterium Streptococcus pneumoniae, binds to its putative receptor, cholesterol, is still poorly understood. We present results from a series of biophysical studies that shed light on the interaction of PLY with cholesterol in solution and in lipid bilayers. PLY lyses cells whose walls contain cholesterol. Using standard hemolytic assays we have demonstrated that the hemolytic activity of PLY is inhibited by cholesterol, partially by ergosterol but not by lanosterol and that the functional stoichiometry of the cholesterol-PLY complex is 1:1. Tryptophan (Trp) fluorescence data recorded during PLY-cholesterol titration studies confirm this ratio, reveal a significant blue shift in the Trp fluorescence peak with increasing cholesterol concentrations indicative of increasing nonpolarity in the Trp environment, consistent with cholesterol binding by the tryptophans, and provide a measure of the affinity of cholesterol binding: K(d) = 400 +/- 100 nM. Finally, we have performed specular neutron reflectivity studies to observe the effect of PLY upon lipid bilayer structure.  相似文献   

2.
Carbon monoxide binding with both cholesterol-free (low-spin) and cholesterol-bound (high-spin) reduced forms of purified cytochrome P-450scc has been investigated by rapid-scan and stopped-flow spectrometry. CO binding occurs within 150 ms at 25 degrees C for both forms of P-450scc, with a typical absorption maximum at 450 nm. Isosbestic points occur at the following wavelengths: between reduced-CO and reduced cholesterol-free P-450scc at 434 and 471 nm; between reduced-CO and reduced cholesterol-bound P-450scc at 433 and 469 nm. Both the 'on' (k1) and 'off' rate constants (k-1) are found to be independent of pH between pH 5 and 9. The mean values of k1 for cholesterol-free (1.8 +/- 0.2) X 10(5) M-1 X s-1) and cholesterol-bound [1.9 +/- 0.1) X 10(5) M-1 X s-1) P-450scc are almost identical, while the mean value of k-1 for the former [2.3 +/- 0.3) X 10 s-1) is about double that of the latter [1.2 +/- 0.1) X 10 s-1). This suggests the instability of the reduced-CO complex in the absence of cholesterol.  相似文献   

3.
Compartmentation of ATP within renal proximal tubular cells   总被引:2,自引:0,他引:2  
Temperature-dependent spin changes of the heme iron atom on cytochrome P-450scc were studied by optical absorption and circular dichroism measurements. The optical absorption and circular dichroism spectra of cholesterol-free cytochrome P-450scc did not change between 10 and 26 degrees C. In contrast, the absorbance at 390 nm and the ellipticity at 330 nm of cholesterol-bound cytochrome P-450scc decreased upon temperature elevation, and the absorbance at 424 nm correspondingly increased. These spectral changes were reversible in respect of temperature. The far-ultraviolet circular dichroism spectra of both cholesterol-bound and -free cytochrome P-450scc were not affected by temperature. In addition, bound cholesterol molecule is not released from the cytochrome molecule by increasing temperature. From these results, we propose that temperature modulates specific interactions between the heme protein and bound cholesterol rather than the gross secondary structural changes of the protein.  相似文献   

4.
Streptococcus pneumoniae produces the pore-forming toxin pneumolysin (PLY), which is a member of the cholesterol-dependent cytolysin (CDC) family of toxins. The CDCs recognize and bind the 3β-hydroxyl group of cholesterol at the cell surface, which initiates membrane pore formation. The cholesterol transport lipoproteins, which carry cholesterol in their outer monolayer, are potential off-pathway binding targets for the CDCs and are present at significant levels in the serum and the interstitial spaces of cells. Herein we show that cholesterol carried specifically by the ApoB-100-containing lipoprotein particles (CH-ApoB-100) in the mouse, but not that carried by human or guinea pig particles, is a potent inhibitor of the PLY pore-forming mechanism. Cholesterol present in the outer monolayer of mouse ApoB-100 particles is recognized and bound by PLY, which stimulates premature assembly of the PLY oligomeric complex thereby inactivating PLY. These studies further suggest that the vast difference in the inhibitory capacity of mouse CH-ApoB-100 and that of the human and the guinea pig is due to differences in the presentation of cholesterol in the outer monolayer of their ApoB-100 particles. Therefore mouse CH-ApoB-100 represents a significant innate CDC inhibitor that is absent in humans, which may underestimate the contribution of CDCs to human disease when utilizing mouse models of disease.  相似文献   

5.
The cytolytic mechanism of cholesterol-dependent cytolysins (CDCs) requires the presence of cholesterol in the target cell membrane. Membrane cholesterol was thought to serve as the common receptor for these toxins, but not all CDCs require cholesterol for binding. One member of this toxin family, pneumolysin (PLY) is a major virulence factor of Streptococcus pneumoniae, and the mechanism via which PLY binds to its putative receptor or cholesterol on the cell membrane is still poorly understood. Here, we demonstrated that PLY interacted with carbohydrate moiety and cholesterol as a component of the cell membrane, using the inhibitory effect of hemolytic activity. The hemolytic activity of PLY was inhibited by cholesterol-MβCD, which is in a 3β configuration at the C3-hydroxy group, but is not in a 3α-configuration. In the interaction between PLY and carbohydrate moiety, the mannose showed a dose-dependent increase in the inhibition of PLY hemolytic activity. The binding ability of mannose with truncated PLYs, as determined by the pull-down assay, showed that mannose might favor binding to domain 4 rather than domains 1–3. These studies provide a new model for the mechanism of cellular recognition by PLY, as well as a foundation for future investigations into whether non-sterol molecules can serve as receptors for other members of the CDC family of toxins.  相似文献   

6.
Pneumolysin (PLY), an important virulence factor of Streptococcus pneumoniae, is one of the members of thiol-activated cytolysins (TACYs) consisting of four domains. TACYs commonly bind to membrane cholesterol and oligomerize to form transmembrane pore. We have constructed full-length and various truncated PLYs to study the role of domains of PLY in the cytolytic activity. Full-length PLY had binding ability to both cell membrane and immobilized cholesterol. A truncated PLY which comprised only domain 4 molecule, the C-terminal domain of PLY, sustained the binding ability to cell membrane and cholesterol, whereas domain 1-3 molecule had no binding ability to them. Furthermore, the domain 4 molecule inhibited both the membrane binding and the hemolytic activity of full-length PLY. Accordingly, the present results provided the direct evidence that domain 4 was essential for the initial binding to membrane cholesterol and the interaction led to the subsequent membrane damage process.  相似文献   

7.
Pneumolysin (PLY), an important protein virulence factor of the human bacterial pathogen Streptococcus pneumoniae, could be a candidate for inclusion in a new anti-streptococcal vaccine. PLY solution species from monomer via multimeric intermediates to ring-shaped oligomers were studied with time-dependent sedimentation velocity in the analytical ultracentrifuge (AUC). Hydrodynamic bead modeling was used to interpret the data obtained. PLY remained mostly monomeric in solution; intermediate PLY multimers were detected in small quantities. Current understanding of PLY molecular mechanism is guided by a model built on the basis of its homology with perfringolysin O (PFO) for which there is an atomic structure. PFO, a virulence factor of the organism Clostridium perfringens, has almost the same molecular mass as PLY and shares 48% sequence identity and 60% sequence similarity with PLY. We report a comparative low-resolution structural study of PLY and PFO using AUC and small-angle x-ray scattering (SAXS). AUC data demonstrate that both proteins in solution are mostly monodisperse but PLY is a monomer whereas PFO is mostly dimeric. Ab initio dummy atom and dummy residue models for PFO and PLY were restored from the distance distribution function derived from experimental small-angle x-ray scattering curves. In solution, PLY is elongated, consistent with the shape predicted by its high-resolution homology model. The PFO dimer is also an elongated particle whose shape and volume are consistent with a staggered antiparallel dimer.  相似文献   

8.
Cholesterol is a major lipid component of the plasma membrane in animal cells. In addition to its structural requirement, cholesterol is essential in cell proliferation and other cell processes. The aim of the present study was to elucidate the stringency of the requirement for cholesterol as a regulator of proliferation and cell cycle progression, compared with other sterols of the cholesterol biosynthesis pathway. Human promyelocytic HL-60 cells were cultured in cholesterol-free medium and treated with different distal inhibitors of cholesterol biosynthesis (zaragozic acid, SKF 104976, SR 31747, BM 15766, and AY 9944), which allow the synthesis of isoprenoid derivatives and different sets of sterol intermediates, but not cholesterol. The results showed that only the inhibition of sterol Delta7-reductase was compatible with cell proliferation. Blocking cholesterol biosynthesis upstream of this enzyme resulted in the inhibition of cell proliferation and cell cycle arrest selectively in G2/M phase.  相似文献   

9.
To infect target cells, HIV-1 employs a virally encoded transmembrane protein (gp41) to fuse its viral envelope with the target cell plasma membrane. We describe the gp41 ectodomain as comprised of N- and C-terminal subdomains, each containing a heptad repeat as well as a fusogenic region, whose organization is mirrored by the intervening loop region. Recent evidence indicates that the gp41 directed fusion reaction proceeds to initial pore formation prior to gp41 folding into its low energy hairpin conformation. This implies that exposed regions of the gp41 ectodomain are responsible for the bulk of the fusion work, probably through direct protein-membrane interactions. Prevalent fusion models contend that the gp41 ectodomain initially interacts with the target cell surface through its highly hydrophobic N terminus, which is believed to insert into the target membrane, thereby linking the virus to the target cell. This arrangement allows the N-terminal subdomain to interact with the target cell surface, whereas the C-terminal subdomain remains proximal to the virion, allowing interaction with the viral envelope. The composition of the viral envelope and the target cell surface differ due to the virus budding from raft microdomains. We show here that constructs corresponding to the C-terminal subdomain specifically destabilize ordered and cholesterol rich membranes (33 molar %), whereas the N-terminal subdomain is more effective in fusing both unordered cholesterol-free membranes and those containing lower amounts of cholesterol (10 molar %). Moreover we show that, in the context of the C-terminal subdomain, the heptad repeat contributes helical structure, which may describe the enhanced inhibitory effect of the C-terminal subdomain relative to the C-terminal heptad repeat (C34) alone. Our results are discussed in light of recent findings that showcase the role of exposed gp41 regions in effecting membrane fusion.  相似文献   

10.
NS-1 mouse myeloma cells, a cholesterol auxotrophic cell line with a lesion in the cholesterol biosynthetic pathway at the demethylation of lanosterol to C-29 sterol, were depleted of cholesterol by incubation in cholesterol-free medium for 24 to 48 h. The low-density lipoprotein receptor activities in untreated and in cholesterol-depleted cells were then compared. The cholesterol-depleted NS-1 cells consistently exhibited a 75 to 90% reduction in receptor-mediated low-density lipoprotein binding compared to untreated cells. The decline of the low-density lipoprotein binding of cholesterol-free medium-incubated NS-1 cells was prevented by addition of free cholesterol or its biosynthetic intermediate, demosterol, to the medium. The addition of lanosterol, an intermediate upstream to the lesion site in the cholesterol biosynthetic pathway, was completely ineffective. The results indicate that proper membrane cholesterol content is necessary for the maintenance of normal low-density lipoprotein receptor function in NS-1 cells.  相似文献   

11.
A pectate lyase gene (pelY) from Yersinia pseudotuberculosis was cloned in Escherichia coli DH-5 alpha. The gene was expressed in either orientation in pUC plasmids, indicating that the insert DNA carried a Y. pseudotuberculosis promoter which functioned in E. coli. However, when cloned in the orientation which placed the coding region downstream of the vector lac promoter, expression of pelY was nine times higher than it was in the opposite orientation and the growth of E. coli cells was inhibited. Nucleotide sequence analysis of the pelY gene disclosed an open reading frame of 1,623 base pairs (PLY). The peptide sequence at the amino-terminal end of the protein contains a typical signal peptide sequence, consistent with the observation that the mature PLY protein accumulated largely in the periplasmic space of E. coli. The pI of PLY produced in E. coli cells was 4.5, and its activity was inhibited 90% or more by EDTA. The enzyme macerated cucumber tissue about 1,000 times less efficiently than did PLe from Erwinia chrysanthemi EC16. The pelY gene has no sequence similarity to the pel genes thus far sequenced from Erwinia spp.  相似文献   

12.
Streptococcus pneumoniae (pneumococcus), the causative agent of several human diseases, possesses numerous virulence factors associated with pneumococcal infection and pathogenesis. Pneumolysin (PLY), an important virulence factor, is a member of the cholesterol‐dependent cytolysin family and has cytolytic activity. Sortase A (SrtA), another crucial pneumococcal virulence determinate, contributes greatly to the anchoring of many virulence‐associated surface proteins to the cell wall. In this study, epigallocatechin gallate (EGCG), a natural compound with little known antipneumococcal activity, was shown to directly inhibit PLY‐mediated haemolysis and cytolysis by blocking the oligomerization of PLY and simultaneously reduce the peptidase activity of SrtA. The biofilm formation, production of neuraminidase A (NanA, the pneumococcal surface protein anchored by SrtA), and bacterial adhesion to human epithelial cells (Hep2) were inhibited effectively when S. pneumoniae D39 was cocultured with EGCG. The results from molecular dynamics simulations and mutational analysis confirmed the interaction of EGCG with PLY and SrtA, and EGCG binds to Glu277, Tyr358, and Arg359 in PLY and Thr169, Lys171, and Phe239 in SrtA. In vivo studies further demonstrated that EGCG protected mice against S. pneumoniae pneumonia. Our results imply that EGCG is an effective inhibitor of both PLY and SrtA and that an antivirulence strategy that directly targets PLY and SrtA using EGCG is a promising therapeutic option for S. pneumoniae pneumonia.  相似文献   

13.
Protein-mediated cholesterol trafficking is central to maintaining cholesterol homeostasis in cells. START (Steroidogenic acute regulatory protein-related lipid transfer) domains constitute a sterol and lipid binding motif and the START domain protein StARD4 typifies a small family of mammalian sterol transport proteins. StARD4 consists of a single START domain and has been reported to act as a general cholesterol transporter in cells. However, the structural basis of cholesterol uptake and transport is not well understood and no cholesterol-bound START domain structures have been reported. We have undertaken the study of cholesterol binding and transport by StARD4 using solution state NMR spectroscopy. To this end, we report nearly complete 1H, 15N, and 13C backbone resonance assignments of an inactive but well behaved mutant (L124D) of StARD4.  相似文献   

14.
The patented cell line from the cabbage looperTrichoplusia ni(High Five from Invitrogen) was found to grow readily under cholesterol-free (CF) culture conditions. Cellular cholesterol became undetectable by CF passage 4, while growth rate and overall cell morphology remained unaffected for at least 59 CF passages. The Golgi apparatus in CF cells was significantly smaller than in control cells, and the CF cells also concentrated a ceramide-based fluorescent Golgi marker to a greater extent, but endoplasmic reticulum morphology appeared unaffected. Two proteins were expressed in High Five cells from recombinant baculoviruses under CF and control conditions: the vesicular stomatitis virus (VSV) fusion glycoprotein G and the influenza virus ion channel M2. Both proteins were expressed in comparable amounts in CF and control cells. Both were properly assembled and transported to the plasma membrane in CF cells, indicating the presence of functional Golgi. Wild-type G protein expression resulted in extensive syncytia formation in both CF and control cells, showing that cholesterol is not required for VSV fusion. However, a mutant G protein lacking six transmembrane domain residues was inactive in both CF and control cells. Influenza M2 protein was functional in control cells, as indicated by its amantadine-inhibitable cytotoxicity, but cytotoxicity was absent in CF cells expressing this protein, indicating a cholesterol-dependence for the cytotoxic action of this protein. CF and control cells were both infectible with VSV. However, infected cell centers were modestly decreased (ca. 3.5-fold) in CF cells. CF cells offer a convenient and novel approach to the study of specific cholesterol functions.  相似文献   

15.
Spin-label signals are reduced when the nitroxide is present in a lipoxidase reaction mixture. This spin reduction can be used as an assay for enzyme activity in turbid systems where the conventional uv assay cannot be used. Data taken with the spin-reduction assay show that phospholipid preparations containing cholesterol are more resistant to oxidation by lipoxidase than are cholesterol-free preparations.  相似文献   

16.
A protocol has been developed for isolating cholesterol ester-deficient cells from the Chinese hamster ovary cell clone 25-RA. This cell line previously was shown to be partially resistant to suppression of cholesterogenic enzyme activities by 25-hydroxycholesterol and to accumulate a large amount of intracellular cholesterol ester when grown in medium containing 10% fetal calf serum (Chang, T. Y., and Limanek, J. S. (1980) J. Biol. Chem. 255, 7787-7795). The higher cholesterol ester content of 25-RA is due to an increase in the rate of cholesterol biosynthesis and low density lipoprotein receptor activity compared to wild-type Chinese hamster ovary cells, and not due to an abnormal acyl-CoA:cholesterol acyltransferase enzyme. The procedure to isolate cholesterol ester-deficient mutants utilizes amphotericin B, a polyene antibiotic known to bind to cholesterol and to form pore complexes in membranes. After incubation in cholesterol-free medium plus an inhibitor of endogenous cholesterol biosynthesis, 25-RA cells were found to be 50-500 times more sensitive to amphotericin B killing than were mutant cells containing reduced amounts of cholesterol ester. Twelve amphotericin B-resistant mutants were isolated which retained the 25-hydroxycholesterol-resistant phenotype. These mutants did not exhibit the perinuclear lipid droplets characteristic of 25-RA cells, and lipid analysis revealed a large (up to 40-fold) reduction in cellular cholesterol ester. The acyl-CoA:cholesterol acyltransferase activities of these cholesterol ester-deficient mutants were markedly lower than 25-RA when assayed in intact cells or in an in vitro reconstitution assay. The tightest mutant characterized, AC29, was found to have less than 1% of the parental acyl-CoA:cholesterol acyltransferase activity. These mutants all have reduced rates of sterol synthesis and lower low density lipoprotein receptor activity compared to 25-RA, probably as a consequence of their reduced enzyme activities. Cell fusion experiments revealed that the phenotypes of all the mutants examined are not dominant and that the mutants all belong to the same complementation group. We conclude that these mutants contain a lesion in the gene encoding acyl-CoA:cholesterol acyltransferase or in a gene encoding a factor needed for enzyme production.  相似文献   

17.
M Tsubaki  A Hiwatashi  Y Ichikawa 《Biochemistry》1986,25(12):3563-3569
The effects of cholesterol and adrenodoxin binding on resonance Raman spectra of cytochrome P-450scc in both oxidized and CO-reduced states were examined. Upon cholesterol binding, oxidized cytochrome P-450scc showed a significant shift of spin equilibrium from low-spin to high-spin state. Addition of adrenodoxin caused a complete conversion of cholesterol-bound oxidized cytochrome P-450scc to a pure high-spin state that was considered to be in the hexacoordinated state judged by the v10 mode at 1620 cm-1 and v3 mode around 1485 cm-1. Cholesterol in substrate binding site may oppose a linear and perpendicular binding of carbon monoxide to the reduced heme iron, leading to the distorted Fe-C-O linkage. This is based on the following observations: (1) an increase of the Fe-CO stretching frequency to 483 from 477 cm-1 upon addition of cholesterol; (2) an enhanced photodissociability of bound carbon monoxide of CO complex of cytochrome P-450scc in the presence of cholesterol. As another aspect of the effect of cholesterol on the CO complex form of cytochrome P-450scc, the enhanced stability of the native form ("P-450" form) was observed. There was no additional effect of reduced adrenodoxin on the Raman spectra of the CO-reduced form of cytochrome P-450scc.  相似文献   

18.
Members of the Hedgehog (Hh) family of secreted signaling proteins function as potent short-range organizers in animal development. Their range of action is limited by a C-terminal cholesterol tether and the upregulation of Patched (Ptc) receptor levels. Here we identify a novel segment-polarity gene in Drosophila, dispatched (disp), and demonstrate that its product is required in sending cells for normal Hh function. In the absence of Disp, cholesterol-modified but not cholesterol-free Hh is retained in these cells, indicating that Disp functions to release cholesterol-anchored Hh. Despite their opposite roles, Disp and Ptc share structural homology in the form of a sterol-sensing domain, suggesting that release and sequestration of cholesterol-modified Hh may be based on related molecular pathways.  相似文献   

19.
20.
Nasopharyngeal colonization by Streptococcus pneumoniae is an important initial step for the subsequent development of pneumococcal infections. Pneumococci have many virulence factors that play a role in colonization. Pneumolysin (PLY), a pivotal pneumococcal virulence factor for invasive disease, causes severe tissue damage and inflammation with disruption of epithelial tight junctions. In this study, we evaluated the role of PLY in nasal colonization of S. pneumoniae using a mouse colonization model. A reduction of numbers of PLY-deficient pneumococci recovered from nasal tissue, as well as nasal wash, was observed at days 1 and 2 post-intranasal challenges, but not later. The findings strongly support an important role for PLY in the initial establishment nasal colonization. PLY-dependent invasion of local nasal mucosa may be required to establish nasal colonization with S. pneumoniae. The data help provide a rationale to explain why an organism that exists as an asymptomatic colonizer has evolved virulence factors that enable it to occasionally invade and kill its hosts. Thus, the same pneumococcal virulence factor, PLY that can contribute to killing the host, may also play a role early in the establishment of nasopharynx carriage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号