首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Angiosperm families differ greatly from one another in species richness (S). Previous studies have attributed significant components of this variation to the influence of pollination mode (biotic/abiotic) and growth form (herbaceous/woody) on speciation rate, but these results suffer difficulties of interpretation because all the studies ignored the phylogenetic relationships among families. We use a molecular phylogeny of the angiosperm families to reanalyse correlations between S and family-level traits and use reconstructions of trait evolution to interpret the results. We confirm that pollination mode and growth form are correlated with S and show that the majority of changes in pollination mode involved a change from biotic to abiotic pollination with an associated fall in speciation rate. The majority of growth form changes involved the evolution of herbaceousness from woodiness with a correlated rise in speciation rate. We test the hypothesis of Ricklefs and Renner (1994) that “evolutionary flexibility” rather than other trait changes triggered increased speciation rates in some families, but find little support for the hypothesis.  相似文献   

2.
3.
There has been much progress in our understanding of the phylogeny and evolution of ticks, particularly hard ticks, in the past 5 years. Indeed, a consensus about the phylogeny of the hard ticks has emerged. Our current working hypothesis for the phylogeny of ticks is quite different to the working hypothesis of 5 years ago. So that the classification reflects our knowledge of ticks, several changes to the nomenclature of ticks are imminent. One subfamily, the Hyalomminae, will probably be sunk, yet another, the Bothriocrotoninae n. subfamily, will be created. Bothriocrotoninae n. subfamily, and Bothriocroton n. genus, are being created to house an early-diverging (‘basal’) lineage of endemic Australian ticks that used to be in the genus Aponomma (ticks of reptiles). There has been progress in our understanding of the subfamily Rhipicephalinae. The genus Rhipicephalus is almost certainly paraphyletic with respect to the genus Boophilus. Thus, the genus Boophilus will probably become a subgenus of Rhipicephalus. This change to the nomenclature, unlike other options, will keep the name Boophilus in common usage. Rhipicephalus (Boophilus) microplus may still called B. microplus, and Rhipicephalus (Boophilus) annulatus may still be called B. annulatus, but the nomenclature will have been changed to reflect our knowledge of the phylogeny and evolution of these ticks. New insights into the historical zoogeography of ticks will also be presented. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Separate independent hypotheses of the phylogenetic relationships among the Platyrrhini monkeys have been produced in a recent past, either based upon morphological or molecular data, but the results are generally conflicting and the phylogeny of the group still is debated. The high host specificity observed among primates and their oxyurid parasites allows to consider the result of a morphologically based cladistic analysis of the pinworms of the Platyrrhini as an estimate of the phylogeny of these monkeys. Using the matrix representation method this “parasite-tree” is combined, using parsimony analysis, with several conflicting molecular or morphological hypothesis of the phylogeny of the host group. The results are discussed with respect to previously published classification, or composite computations of the phylogeny, of the Neotropical monkeys. Comparison of different hypothesis makes apparent several stable groups: (i) the Callithrichidae +Saimiri,(ii) the Atelidae/Alouattidae, (iii) the Pitheciidae, and (iv) the Alouattidae/Atelidae + Pitheciidae. In addition, the parasite and the molecular trees support close relationships betweenCallimicoandCallithrix/Cebuella.The study also makes apparent that the parasite tree generally portrays the results of other studies, both when they are congruous and when they are conflicting. This is interpreted to be additional evidence for close coevolution between the Platyrrhini and their specific pinworms. Because, whatever the combination of data being considered no consensus can be found on the exact position ofAotusandCallicebus,and because it is likely that the earliest radiation of the Platyrrhini could be comparable to an evolutionary burst, which renders identification of homologous characters difficult, it is suggested that, possibly, not enough discriminating tracks of the evolutionary paths have been conserved to allow to resolve this uncertainty in the future.  相似文献   

5.
The monophyly of Tetragnathidae including the species composition of the family (e.g., Are Nephila and their relatives part of this lineage?), the phylogenetic relationships of its various lineages, and the exact placement of Tetragnathidae within Araneoidea have been three recalcitrant problems in spider systematics. Most studies on tetragnathid phylogeny have focused on morphological and behavioral data, but little molecular work has been published to date. To address these issues we combine previous morphological and behavioral data with novel molecular data including nuclear ribosomal RNA genes 18S and 28S, mitochondrial ribosomal RNA genes 12S and 16S and protein‐coding genes from the mitochondrion [cytochrome c oxidase subunit I (COI)] and from the nucleus (histone H3), totaling ca. 6.3 kb of sequence data per taxon. These data were analyzed using direct optimization and static homology using both parsimony and Bayesian methods. Our results indicate monophyly of Tetragnathidae, Tetragnathinae, Leucauginae, the “Nanometa clade” and the subfamily Metainae, which, with the exception of the later subfamily, received high nodal support. Morphological synapomorphies that support these clades are also discussed. The position of tetragnathids with respect to the rest of the araneoid spiders remains largely unresolved but tetragnathids and nephilids were never recovered as sister taxa. The combined dataset suggests that Nephilidae is sister to Araneidae; furthermore, the sister group of Nephila is the clade composed by Herennia plus Nephilengys and this pattern has clear implications for understanding the comparative biology of the group. Tetragnathidae is most likely sister to some members of the “reduced piriform clade” and nephilids constitute the most‐basal lineage of araneids.  相似文献   

6.
This review covers data on changing patterns of DNA methylation and the regulation of gene expression in mouse embryonic development. Global demethylation occurs from the eight-cell stage to the blastocyst stage in pre-implantation embryos, and global de novo methylation begins at implantation. We have used X-chromosome inactivation in female embryos as a model system to study specific CpG sites in the X-linked Pgk-1 and Gópd housekeeping genes and in the imprinted regulatory Xist gene to elucidate the role of methylation in the initiation and maintenance of differential gene activity. Methyl-ation of the X-linked housekeeping genes occurs very close in time to their inactivation, thus raising the question as to whether methylation could be causal to inactivation, as well as being involved in its maintenance. A methylation difference between sperm and eggs in the promoter region of the Xist gene, located at the X-chromosome inactivation centre, is correlated with imprinted preferential inactivation of the paternal X chromosome in extra-embryonic tissues. Based on our data, a picture of the inheritance of methylation imprints and speculation on the significance of the Xist imprint in development is presented. On a more general level, an hypothesis of evolution by “adaptive epige-netic/genetic inheritance” is considered. This proposes modification of germ line DNA in response to a change in environment and mutation at the site of modification (e.g., of methylated cytosine to thymine). Epigenetic inheritance could function to shift patterns of gene expression to buffer the evolving system against changes in environment. If the altered patterns of gene activity and inactivity persist, the modifications may become “fixed” as mutations; alternatively, previously silenced gene networks might be recruited into function, thus appearing as if they are “acquired characteristics.” An extension of this hypothesis is “foreign gene acquisition and sorting” (selection or silencing of gene function according to use). “Kidnapping” and sorting of foreign genes in this way could explain the observation that increased complexity in evolution is associated with more “junk” DNA. Adaptive epigenetic/genetic inheritance challenges the “central dogma” that information is unidirectional from the DNA to protein and the idea that Darwinian random mutation and selection are the sole mechanisms of evolution. © 1995 Wiley-Liss, Inc.  相似文献   

7.
Eleotris species (Teleostei: Eleotridae) are one of the most common fish in Indo‐Pacific estuaries and insular freshwater streams. In these rivers, they are a sit‐and‐wait predator. They have an amphidromous life cycle, that is adults grow, feed and reproduce in rivers, while larvae have a marine dispersal phase. Larvae recruit back to rivers and settle in stream habitats. Primary characters used to determine Eleotris species are the presence and the disposition of cephalic sensory papillae rows on the operculum and under the eyes as well as scale row numbers. The morphology of these cephalic sensory papillae is of particular importance in this predatory genus as it is generally correlated in fish to predation and feeding. In this paper, we have established a molecular phylogeny of the genus based on the 12 mitochondrial protein‐coding genes to discuss the relationship between Indo‐Pacific Eleotris species. There is a well‐supported dichotomy in the molecular phylogeny, and this separation into two main clades is also morphologically visible, as it reveals a difference in the arrangement of cephalic sensory papillae. Indeed, the phylogeny distinguishes the species with the “open” pattern of the operculum sensory papillae and the species with the “closed” one. This phylogeny thus reflects the morphology of the opercular papillae. The evolution of this character is discussed in terms of the adaptation of the Eleotris genus to life in tropical insular river systems.  相似文献   

8.
Introgression and incomplete lineage sorting (ILS) are two of the main sources of gene‐tree incongruence; both can confound the assessment of phylogenetic relationships among closely related species. The Triatoma phyllosoma species group is a clade of partially co‐distributed and cross‐fertile Chagas disease vectors. Despite previous efforts, the phylogeny of this group remains unresolved, largely because of substantial gene‐tree incongruence. Here, we sequentially address introgression and ILS to provide a robust phylogenetic hypothesis for the T. phyllosoma species group. To identify likely instances of introgression prior to molecular scrutiny, we assessed biogeographic data and information on fertility of inter‐specific crosses. We first derived a few explicit hybridization hypotheses by considering the degree of spatial overlap within each species pair. Then, we assessed the plausibility of these hypotheses in the light of each species pair's cross‐fertility. Using this contextual information, we evaluated mito‐nuclear (cyt b, ITS‐2) gene‐tree incongruence and found evidence suggesting introgression within two species pairs. Finally, we modeled ILS using a Bayesian multispecies coalescent approach and either (a) a “complete” dataset with all the specimens in our sample, or (b) a “filtered” dataset without putatively introgressed specimens. The “filtered tree” had higher posterior‐probability support, as well as more plausible topology and divergence times, than the “complete tree.” Detecting and filtering out introgression and modeling ILS allowed us to derive an improved phylogenetic hypothesis for the T. phyllosoma species group. Our results illustrate how biogeographic and ecological‐reproductive contextual information can help clarify the systematics and evolution of recently diverged taxa prone to introgression and ILS.  相似文献   

9.
Plasticity is often thought to accelerate trait evolution and speciation. For example, plasticity in birdsong may partially explain why clades of song learners are more diverse than related clades with innate song. This “song learning” hypothesis predicts that (1) differences in song traits evolve faster in song learners, and (2) behavioral discrimination against allopatric song (a proxy for premating reproductive isolation) evolves faster in song learners. We tested these predictions by analyzing acoustic traits and conducting playback experiments in allopatric Central American sister pairs of song learning oscines (N = 42) and nonlearning suboscines (N = 27). We found that nonlearners evolved mean acoustic differences slightly faster than did leaners, and that the mean evolutionary rate of song discrimination was 4.3 times faster in nonlearners than in learners. These unexpected results may be a consequence of significantly greater variability in song traits in song learners (by 54–79%) that requires song‐learning oscines to evolve greater absolute differences in song before achieving the same level of behavioral song discrimination as nonlearning suboscines. This points to “a downside of learning” for the evolution of species discrimination, and represents an important example of plasticity reducing the rate of evolution and diversification by increasing variability.  相似文献   

10.
In spite of the increasing popularity of cladistic methods in studies of primate systematics, few authors have investigated the effects of parallel evolution when such methods are applied to empirical data. To counter the effects of parallelism, cladistic techniques rely on the principle of evolutionary parsimony. When parsimony procedures are used to reconstruct the phylogeny of the Lemuridae, nine highly parsimonious phylogenies can be deduced. Further choice among these competing hypotheses of relationship is determined by the extent to which one embraces the parsimony principle. The phylogeny obtained by the most rigorous adherence to the parsimony principle is one which is wholly consistent with traditional evolutionary classifications of the Lemuridae. Moderate levels of parallelism can lead to the generation of several plausible, alternative phylogenetic hypotheses; less than 25% of the characters analyzed here need have evolved in parallel, yet they are largely responsible for the ambiguity of the nine different lemurid phylogenies. This suggests that phylogeny reconstructions based entirely on cladistic methods do not provide a suitable basis for the construction of classifications for groups such as the order Primates, where the degree of parallelism is likely to be quite high.  相似文献   

11.
Debevec, AH., Cardinal, S & Danforth, BN. Identifying the sister group to the bees: a molecular phylogeny of Aculeata with an emphasis on the superfamily Apoidea. —Zoologica Scripta, 41, 527–535. The hymenopteran superfamily Apoidea includes the bees (Anthophila) as well as four predatory wasp families (Heterogynaidae, Ampulicidae, Sphecidae and Crabronidae) collectively referred to as the “sphecoid” or “apoid” wasps. The most widely cited studies suggest that bees are sister to the wasp family Crabronidae, but alternative hypotheses have been proposed based on both morphological and molecular data. We combined DNA sequence data from previously published studies and newly generated data for four nuclear genes (28S, long‐wavelength rhodopsin, elongation factor‐1α and wingless) to identify the likely sister group to the bees. Analysis of our four‐gene data set by maximum likelihood and Bayesian methods indicates that bees most likely arise from within a paraphyletic Crabronidae. Possible sister groups to the bees include Philanthinae, Pemphredoninae or Philanthinae + Pemphredoninae. We used Bayesian methods to explore the robustness of our results. Bayes Factor tests strongly rejected the hypotheses of crabronid monophyly as well as placement of Heterogynaidae within Crabronidae. Our results were also stable to alternative rootings of the bees. These findings provide additional support for the hypothesis that bees arise from within Crabronidae, rather than being sister to Crabronidae, thus altering our understanding of bee ancestry and evolutionary history.  相似文献   

12.
A review of molecular markers used for Annelid phylogenetics   总被引:1,自引:0,他引:1  
Annelida, one of the most successful animal phyla, exhibitsan amazing variety of morphological forms. Disparity betweensome of the forms is so great that until molecular tools wereused, some annelid lineages (for example, echiurids and pogonophorans)were not commonly recognized as belonging to the group. Althoughit is easy to assign annelids to a given family, understandingthe deeper relationships within the group has been difficult.The main working hypothesis for annelid phylogeny is based onmorphological cladistic analysis. However, the recent work usingmolecular tools has caused a revision of our view of annelidevolutionary history. For example, Scolecida and Palpata appearnot to be natural groups, and the phylogenetic positions ofsome aberrant taxa (for example, Siboglinidae, Poeobius, Pisione)have been determined. Herein, we discuss some of the main molecularmarkers that have been used to elucidate annelid phylogeny andthe contribution that such work is making to our understanding.A table highlighting the molecular literature and the genesused is included.  相似文献   

13.
Ribosomal RNA sequences and cladistic analysis were used to infer a phylogeny for eight bryophyte taxa. Portions of the cytoplasmic large (26S-like) and small (18S-like) subunit ribosomal RNA genes were sequenced for three marchantioid liverworts (Asterella, Conocephalum, and Riccia), three mosses (Atrichum, Fissidens, and Plagiomnium), and two hornworts (Phaeoceros and Notothylas). Cladistic analysis of these data suggests that the hornworts are the sister group to the mosses, the mosses and hornworts form a clade that is sister to the tracheophytes, and the liverworts form a clade sister to the other land plants. These results differ from previous cladistic analyses based on morphology, ultrastructure, and biochemistry, wherein the mosses alone are sister group to the tracheophytes. We conclude that cladistic analysis of molecular data can provide an independent data set for the study of bryophyte phylogeny, but the differences between the molecular and morphological results are a topic for further investigation.  相似文献   

14.
The 24 members of the Euro-Asiatic genus Thymogethes are highly specialized pollen beetles associated as larvae with flowers of Lamiaceae Nepetoideae. All members of the genus were analysed in within the framework of an integrative taxonomy approach, which was aimed to reconstruct the phylogenetic relationships, as well as the possible pattern of evolution of their larval-host-plant association. Evidence from multiple molecular markers [COI; 16S; H3], combined with an estimation of divergence times using an average rate of 0.0177 substitutions/site/My among branches, placed the origin of the genus at a minimum of 9–10 Mya. This date of origin approximates the known evolution of the host plants in Euro-Mediterranean areas. Evidence from combined molecular and cladistic morphological analyses resulted in suitable agreement with the previously established morphology-based systematics of the genus, although members of the exilis species-group were split into three clades. The only disagreement between results of this new combined phylogeny and previous classification is in the exclusion of “Thymogethesgrenieri. This species is herein positioned outside the genus, based on molecular evidence. Our analysis depicts several Thymogethes species differentiating in the last few Mys, specifically those included in the T. lugubris species-group. Combined evidence from DNA, morphology and ancestral state parsimony reconstruction of larval-host-plant associations suggests that subtribe Menthinae likely represents the ancestral host plants, with a series of independent host shifts during the radiation of the clade, in association first with Menthinae and subsequently with Lavandulinae and Nepetinae. Steno-oligophagy is the most frequent (86%) condition, while strictly monophagous species are less numerous (14%).  相似文献   

15.
Giant morphological data matrices are increasingly common in cladistic analyses of vertebrate phylogeny, reporting numbers of characters never seen or expected before. However, the concern for size is usually not followed by an equivalent, if any, concern for character construction/selection criteria. Therefore, the question of whether quantity parallels quality for such influential works remains open. Here, we provide the largest compilation known to us of character construction methods and criteria, as derived from previous studies, and from our own de novo conceptualizations. Problematic character constructions inhibit the capacity of phylogenetic analyses to recover meaningful homology hypotheses and thus accurate clade structures. Upon a revision of two of the currently largest morphological datasets used to test squamate phylogeny, more than one‐third of the almost 1000 characters analysed were classified within at least one of our categories of “types” of characters that should be avoided in cladistic investigations. These characters were removed or recoded, and the data matrices re‐analysed, resulting in substantial changes in the sister group relationships for squamates, as compared to the original studies. Our results urge caution against certain types of character choices and constructions, also providing a methodological basis upon which problematic characters might be avoided.  相似文献   

16.
This paper studies the family‐level phylogenetic placement of the conflicting Tasmanian spider genus Acrobleps using both morphological and behavioral data. We also provide a formal taxonomic revision of Acrobleps, including information on its web architecture and natural history, as well as detailed morphological information for A. hygrophilus, its only species. Acrobleps hygrophilus lacks the typical mysmenid features. Furthermore A. hygrophilus does have all typical and diagnostic characteristics of Anapidae, except for the labral spur. We also discuss two noteworthy morphological features of Acrobleps: the pore bearing depressions of the carapace and the granulated cuticle of the spinnerets. Variation in the latter feature might provide a useful phylogenetic character. Based on the results of cladistic analyses we propose the transfer of Acrobleps from the Mysmenidae to its original placement within the Anapidae. We also propose a new lineage, informally labeled as the “clawless female clade”, which includes synaphrids, cyatholipids and “symphytognathoids.” The secondary absence of the female palpal claw provides support for the “clawless female clade.” We discuss the evolution of the orb web within anapids and other symphytognathoids based on the results of our cladistic analyses. The identical bi‐dimensional webs of the anapid Elanapis and of symphytognathids have evolved independently. Finally, we comment on the implications of one of our analyses regarding araneoid web evolution. We conclude that the taxon sample included in the previous orbicularian data matrix (modified and used in this study) is adequate to test the phylogenetic placement of Acrobleps in Anapidae but insufficient to significantly assess web evolution within Araneoidea. © The Willi Hennig Society 2007.  相似文献   

17.
The oldest unequivocal records of Dinosauria were unearthed from Late Triassic rocks (approximately 230 Ma) accumulated over extensional rift basins in southwestern Pangea. The better known of these are Herrerasaurus ischigualastensis, Pisanosaurus mertii, Eoraptor lunensis, and Panphagia protos from the Ischigualasto Formation, Argentina, and Staurikosaurus pricei and Saturnalia tupiniquim from the Santa Maria Formation, Brazil. No uncontroversial dinosaur body fossils are known from older strata, but the Middle Triassic origin of the lineage may be inferred from both the footprint record and its sister‐group relation to Ladinian basal dinosauromorphs. These include the typical Marasuchus lilloensis, more basal forms such as Lagerpeton and Dromomeron, as well as silesaurids: a possibly monophyletic group composed of Mid‐Late Triassic forms that may represent immediate sister taxa to dinosaurs. The first phylogenetic definition to fit the current understanding of Dinosauria as a node‐based taxon solely composed of mutually exclusive Saurischia and Ornithischia was given as “all descendants of the most recent common ancestor of birds and Triceratops”. Recent cladistic analyses of early dinosaurs agree that Pisanosaurus mertii is a basal ornithischian; that Herrerasaurus ischigualastensis and Staurikosaurus pricei belong in a monophyletic Herrerasauridae; that herrerasaurids, Eoraptor lunensis, and Guaibasaurus candelariensis are saurischians; that Saurischia includes two main groups, Sauropodomorpha and Theropoda; and that Saturnalia tupiniquim is a basal member of the sauropodomorph lineage. On the contrary, several aspects of basal dinosaur phylogeny remain controversial, including the position of herrerasaurids, E. lunensis, and G. candelariensis as basal theropods or basal saurischians, and the affinity and/or validity of more fragmentary taxa such as Agnosphitys cromhallensis, Alwalkeria maleriensis, Chindesaurus bryansmalli, Saltopus elginensis, and Spondylosoma absconditum. The identification of dinosaur apomorphies is jeopardized by the incompleteness of skeletal remains attributed to most basal dinosauromorphs, the skulls and forelimbs of which are particularly poorly known. Nonetheless, Dinosauria can be diagnosed by a suite of derived traits, most of which are related to the anatomy of the pelvic girdle and limb. Some of these are connected to the acquisition of a fully erect bipedal gait, which has been traditionally suggested to represent a key adaptation that allowed, or even promoted, dinosaur radiation during Late Triassic times. Yet, contrary to the classical “competitive” models, dinosaurs did not gradually replace other terrestrial tetrapods over the Late Triassic. In fact, the radiation of the group comprises at least three landmark moments, separated by controversial (Carnian‐Norian, Triassic‐Jurassic) extinction events. These are mainly characterized by early diversification in Carnian times, a Norian increase in diversity and (especially) abundance, and the occupation of new niches from the Early Jurassic onwards. Dinosaurs arose from fully bipedal ancestors, the diet of which may have been carnivorous or omnivorous. Whereas the oldest dinosaurs were geographically restricted to south Pangea, including rare ornithischians and more abundant basal members of the saurischian lineage, the group achieved a nearly global distribution by the latest Triassic, especially with the radiation of saurischian groups such as “prosauropods” and coelophysoids.  相似文献   

18.
Phylogenetic relationships in the Desmarestiales (Phaeophyceae) were inferred among the monotypic Arthrocladia (Arthrocladiaceae) and 27 isolates from Desmarestiaceae, representing 17 taxa of Desmarestia and the monotypic Antarctic genera Himantothallus and Phaeurus. Phaeurus and Arthrocladia were used as outgroups. Parsimony analyses of nuclear ribosomal DNA internal transcribed spacer (ITS1 and ITS2) sequences, in which gaps were both included and excluded, yielded well-resolved trees with a consistent general branching pattern. A parallel analysis of nine morphological and life-history characters and three ecological characters yielded a similar tree but provided little resolution in the terminal clades. The position of the monotypic Arthrocladia villosa within the Desmarestiales is consistent with monophyly for the order, but its position as the most primitive desmarestialean is not resolvable from the molecular data set. The basal position of Phaeurus, the Antarctic Desmarestia species, and Himantothallus is consistent with the hypothesis of a Southern Hemisphere origin for the family Desmarestiaceae. The more recent Northern Hemisphere “aculeata” clade evolved from an Antarctic ancestor. A “D. aculeata-like” species was ancestral to a lineage characterized by annual sporophytes with high sulfuric acid content, which radiated into many species, widely distributed in both hemispheres. Mapping of morphological and ecological characters onto the molecular tree confirm the informativeness of sulfuric acid-containing vacuoles and unilocular sporangial types. There is good congruence between phylogenetic tree topology and temperature impints in relation to biogeographic distribution, supporting the theory that temperature tolerance is a conservative trait.  相似文献   

19.
Phylogenetic studies of geographic range evolution are increasingly using statistical model selection methods to choose among variants of the dispersal‐extinction‐cladogenesis (DEC) model, especially between DEC and DEC+J, a variant that emphasizes “jump dispersal,” or founder‐event speciation, as a type of cladogenetic range inheritance scenario. Unfortunately, DEC+J is a poor model of founder‐event speciation, and statistical comparisons of its likelihood with DEC are inappropriate. DEC and DEC+J share a conceptual flaw: cladogenetic events of range inheritance at ancestral nodes, unlike anagenetic events of dispersal and local extinction along branches, are not modelled as being probabilistic with respect to time. Ignoring this probability factor artificially inflates the contribution of cladogenetic events to the likelihood, and leads to underestimates of anagenetic, time‐dependent range evolution. The flaw is exacerbated in DEC+J because not only is jump dispersal allowed, expanding the set of cladogenetic events, its probability relative to non‐jump events is assigned a free parameter, j, that when maximized precludes the possibility of non‐jump events at ancestral nodes. DEC+J thus parameterizes the mode of speciation, but like DEC, it does not parameterize the rate of speciation. This inconsistency has undesirable consequences, such as a greater tendency towards degenerate inferences in which the data are explained entirely by cladogenetic events (at which point branch lengths become irrelevant, with estimated anagenetic rates of 0). Inferences with DEC+J can in some cases depart dramatically from intuition, e.g. when highly unparsimonious numbers of jump dispersal events are required solely because j is maximized. Statistical comparison with DEC is inappropriate because a higher DEC+J likelihood does not reflect a more close approximation of the “true” model of range evolution, which surely must include time‐dependent processes; instead, it is simply due to more weight being allocated (via j) to jump dispersal events whose time‐dependent probabilities are ignored. In testing hypotheses about the geographic mode of speciation, jump dispersal can and should instead be modelled using existing frameworks for state‐dependent lineage diversification in continuous time, taking appropriate cautions against Type I errors associated with such methods. For simple inference of ancestral ranges on a fixed phylogeny, a DEC‐based model may be defensible if statistical model selection is not used to justify the choice, and it is understood that inferences about cladogenetic range inheritance lack any relation to time, normally a fundamental axis of evolutionary models.  相似文献   

20.
Chemosystematic investigations concerning the phylogeny of the collective genus Lacerta (Reptilia: Sauria: Lacertidae) Investigated the albumins from 31 species and subspecies of the genus Lacerta s.1. by means of the immunoloical techniue Micro-Complement-fixation. Dendrograms were computed by means of the ktch-MargJiash algorithm. Moreover the taxa of the Lacerta saxicola and the Lacerta danfordi comlexes were analyzed by electrophoresis concerning 14 genetic loci. The results were discussel together with karyological and genitalmorphological data so far known yielding the following relationships: Lacerta graeca shows a closer relationshi to the subgenus Podarcis as does the quite closely related species air L. dugesii and L. perspicikata. Lacerta Iaevis probabl is connected closely to Podarcis, too. Lacerta parva shows a closer relationship to the “small izards” than to the sub-genus Lacerta s. str. A clear decision concerning the position of the Lacerta danfordi complex according to chemosystematical data was not possible. It is isolated from the other species probably about as long as L. puma. Biochemical differences between its “species” are too small to confirm their taxonomical revalorisation by Eiselt and Schmidtler Within the Lacerta saxicola complex the investigated taxa show a close relationship. Lacerta praticola and L. derjugini were definitly assigned to this group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号