首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A proteomic analysis of a wild-type and of a phoB mutant showed that Vibrio cholerae expresses genes of two major regulons in response to phosphate starvation. The Pho regulon, expressed by the wild-type, allowed the cells to adapt to the new environment. Induction of the general stress regulon was mainly observed in the phoB mutant as a strategy to resist stress and survive. Some functions of the adaptative and survival responses play roles in the pathogenicity of the bacteria. Among the members of the Pho regulon, we found a porin described as an important factor for the intestinal colonisation. Other functions not obviously related to phosphate metabolism, expressed preferentially by the wild-type cells, have also been implicated in virulence. These findings might explain the lack of virulence of the phoB mutant. The Pho regulon picture of V. cholerae, however, will not be complete until minor members and membrane proteins are identified. Among the phosphate-starvation induced genes we have found 13 hypothetical ones and for some of them functions have been assigned. The majority of the genes identified here have not been described before, thus they could be used to expand the proteomic reference map of V. cholerae El Tor.  相似文献   

3.
The GntR family regulators are widely distributed in bacteria and play critical roles in metabolic processes and bacterial pathogenicity. In this study, we describe a GntR family protein encoded by PA4132 that we named MpaR (M vfR-mediated P QS and a nthranilate r egulator) for its regulation of Pseudomonas quinolone signal (PQS) production and anthranilate metabolism in Pseudomonas aeruginosa. The deletion of mpaR increased biofilm formation and reduced pyocyanin production. RNA sequencing analysis revealed that the mRNA levels of antABC encoding enzymes for the synthesis of catechol from anthranilate, a precursor of the PQS, were most affected by mpaR deletion. Data showed that MpaR directly activates the expression of mvfR, a master regulator of pqs system, and subsequently promotes PQS production. Accordingly, deletion of mpaR activates the expression of antABC genes, and thus, increases catechol production. We also demonstrated that MpaR represses the rhl quorum-sensing (QS) system, which has been shown to control antABC activity. These results suggested that MpaR function is integrated into the QS regulatory network. Moreover, mutation of mpaR promotes bacterial survival in a mouse model of acute pneumonia infection. Collectively, this study identified a novel regulator of pqs system, which coordinately controls anthranilate metabolism and bacterial virulence in P. aeruginosa.  相似文献   

4.
5.
6.
Listeria monocytogenes has emerged as a remarkably tractable pathogen to dissect basic aspects of cell biology, intracellular pathogenesis, and innate and acquired immunity. In order to maintain its intracellular lifestyle, L. monocytogenes has evolved a number of mechanisms to exploit host processes to grow and spread cell to cell without damaging the host cell. The pore-forming protein listeriolysin O mediates escape from host vacuoles and utilizes multiple fail-safe mechanisms to avoid causing toxicity to infected cells. Once in the cytosol, the L. monocytogenes ActA protein recruits host cell Arp2/3 complexes and enabled/vasodilator-stimulated phosphoprotein family members to mediate efficient actin-based motility, thereby propelling the bacteria into neighboring cells. Alteration in any of these processes dramatically reduces the ability of the bacteria to establish a productive infection in vivo.  相似文献   

7.
In the environment, bacteria show close association, such as interspecies interaction, with other bacteria as well as host organisms. The type VI secretion system (T6SS) in gram-negative bacteria is involved in bacterial competition or virulence. The plant pathogen Burkholderia glumae BGR1, causing bacterial panicle blight in rice, has four T6SS gene clusters. The presence of at least one T6SS gene cluster in an organism indicates its distinct role, like in the bacterial and eukaryotic cell targeting system. In this study, deletion mutants targeting four tssD genes, which encode the main component of T6SS needle formation, were constructed to functionally dissect the four T6SSs in B. glumae BGR1. We found that both T6SS group_4 and group_5, belonging to the eukaryotic targeting system, act independently as bacterial virulence factors toward host plants. In contrast, T6SS group_1 is involved in bacterial competition by exerting antibacterial effects. The ΔtssD1 mutant lost the antibacterial effect of T6SS group_1. The ΔtssD1 mutant showed similar virulence as the wild-type BGR1 in rice because the ΔtssD1 mutant, like the wild-type BGR1, still has key virulence factors such as toxin production towards rice. However, metagenomic analysis showed different bacterial communities in rice infected with the ΔtssD1 mutant compared to wild-type BGR1. In particular, the T6SS group_1 controls endophytic plant-associated bacteria such as Luteibacter and Dyella in rice plants and may have an advantage in competing with endophytic plant-associated bacteria for settlement inside rice plants in the environment. Thus, B. glumae BGR1 causes disease using T6SSs with functionally distinct roles.  相似文献   

8.
9.
10.
11.
12.
13.
14.
Two-component signal transduction systems (TCSTSs), consisting of a histidine kinase and a response regulator, play a critical role in regulating virulence gene expression in Gram-negative phytopathogenic bacteria Xanthomonas spp.. To date, 12 TCSTS genes have been identified, accounting for approximately 10% of the TCSTS genes in each genome that have been experimentally identified to be related to pathogenesis. These TCSTSs modulate the expression of a number of virulence factors through diverse molecular mechanisms such as interacting with DNA, protein-binding and involvement in second messenger metabolism, which generates a high level of regulatory versatility. Here we summarize the current knowledge in this field and discuss the emerging themes and remaining questions that are important in deciphering the signaling network of TCSTSs in Xanthomonas.  相似文献   

15.
Summary Treatment of Escherichia coli and Salmonella typhimurium cells with a low dose of hydrogen peroxide induces expression of a large number of genes, and confers resistance to oxidative stresses. The oxyR gene encodes a positive regulatory protein for a subset of these genes involved in the defense against oxidative damage. We cloned a DNA fragment that contains the E. coli oxyR region on a plasmid vector, and analyzed the nucleotide sequence of the gene. The amino acid sequence of OxyR protein, deduced from the nucleotide sequence, shows a high degree of homology to the sequences of a number of bacterial activator proteins including LysR, cysB, IlvY, MetR and NodD. The product of the oxyR gene identified by the maxicell procedure was a 34 kDa protein, which agrees with the size predicted from the nucleotide sequence of the gene.  相似文献   

16.
Microorganisms have evolved a complex signature of communication termed quorum sensing (QS), which is based on the exchange and sensing of low-molecular-weight signal compounds. The ability to communicate within the microbial population gives the advantage to coordinate a groups behaviour leading to a higher fitness in the environment. The polymorphic fungus Candida albicans is an opportunistic human pathogen able to regulate virulence traits through the production of at least two QS signal molecules: farnesol and tyrosol. The ability to adopt multiple morphotypes and form biofilms on infected surfaces are the most important pathogenic characteristics regulated by QS and are of clinical relevance. In fact, traditional antimicrobial approaches are often ineffective towards these characteristics. Moreover, the intimate association between C. albicans and other pathogens, such as Pseudomonas aeruginosa , increases the complexity of the infection system. This review outlines the current knowledge on fungal QS and fungal–bacterial interactions emphasizing on C. albicans . Further investigations need to concentrate on the molecular mechanisms and the genetic regulation of these phenomena in order to identify putative novel therapeutic options.  相似文献   

17.
The bacterial nucleoid: a highly organized and dynamic structure   总被引:1,自引:0,他引:1  
Recent advances in bacterial cell biology have revealed unanticipated structural and functional complexity, reminiscent of eukaryotic cells. Particular progress has been made in understanding the structure, replication, and segregation of the bacterial chromosome. It emerged that multiple mechanisms cooperate to establish a dynamic assembly of supercoiled domains, which are stacked in consecutive order to adopt a defined higher-level organization. The position of genetic loci on the chromosome is thereby linearly correlated with their position in the cell. SMC complexes and histone-like proteins continuously remodel the nucleoid to reconcile chromatin compaction with DNA replication and gene regulation. Moreover, active transport processes ensure the efficient segregation of sister chromosomes and the faithful restoration of nucleoid organization while DNA replication and condensation are in progress.  相似文献   

18.
AIMS: Bromoxynil degradation by soil micro-organisms has been shown to be co-oxidative in character. In this study, we investigate both the impact of the application of increasing bromoxynil concentrations on soil-derived bacterial communities and how these changes are reflected in the degradation of the compound. Our aim was to test the hypothesis that the addition of bromoxynil to a soil-derived bacterial community, and the availability of a readily utilizable carbon source would have an impact on bromoxynil degradation, and that would be reflected in the bacteria present in the soil community. METHODS AND RESULTS: Degradation of bromoxynil was observed in soil-derived communities containing 15 mg l(-1), but not 50 mg l(-1) of the compound, unless glucose was added. This suggests that the addition of carbon stimulates co-oxidative bromoxynil degradation by the members of the bacterial community. Measurable changes in the bacterial community indicated that the addition of bromoxynil led to deterministic selection on the bacterial population, i.e. the communities observed arise through the selection of specific micro-organisms that are best adapted to the conditions in the soil. The addition of bromoxynil was also shown to have a negative impact on the presence of alpha and gamma-proteobacteria in the soil community. CONCLUSION: Bromoxynil degradation is significantly inhibited in bacterial soil communities in the absence of readily accessible carbon. The application of bromoxynil appears to exert deterministic selection on the bacterial community. SIGNIFICANCE AND IMPACT OF THE STUDY: This study highlights the effects of increasing bromoxynil concentrations on a model bacterial population derived from soil. Soil communities show qualitative and quantitative differences to bromoxynil application depending on the availability of organic carbon. These findings might have implications for the persistence of bromoxynil in agricultural soils.  相似文献   

19.
Photorhabdus luminescens luxCDABE genes were integrated into E. coli K‐12 using a high copy number plasmid containing modified luxABCDE genes under the control of the powerful Lac promoter. This strain emitted 10 times higher bioluminescence (BL) than P. luminescens. BL production under different growth conditions was studied. In both bacterial strains, the increase in BL signal correlated with the increase in optical density (OD) in a rich growth medium. However, at the logarithmic growth phase, the BL signal was roughly constant. By contrast, in minimal growth media, there was no substantial growth and the BL/cell was approximately five times higher than in the rich medium. The dynamic measurement range of BL was 102–107 colony‐forming units (CFU) in E. coli and 103–107 CFU in P. luminescens. Because the decrease in the BL signal correlated with the decrease in CFU and OD, i.e. the number of bacterial cells killed, it proved to be very suitable for assessing the antibacterial effects of different antimicrobial agents. Unlike with plate counting, the kinetics of killing can be monitored on a real‐time basis using BL measurements. Complement activities in different samples can be estimated using only one serum dilution. The transformed E. coli strain appeared to be superior to P. luminescens in these applications because E. coli was complement sensitive, the detection limit of E. coli was one order lower and the BL‐producing system of P. luminescens appeared to be quite unstable. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号