首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
RFLPs of cpDNA were investigated for seven species ofCrepidiastrum, of which three are endemic to the Bonin Islands. As an outgroup for rooting the tree,Paraixeris denticulata was also examined. Approximately 350 restriction sites were surveyed using 16 restriction enzymes. A total of 26 restriction site mutations were detected, and seven of them were phylogenetically informative. Wagner parsimony analysis resulted in four most parsimonious trees. In the tree obtained, the Bonin endemics are monophyletic with four mutations and a bootstrap value of 0.98 for the branch. This result agrees with that obtained from a previous electrophoretic analysis (Ito and Ono 1990), and supports the hypothesis that the three Bonin endemics have been evolved from a common ancestor. The Bonin endemics cluster together withC. lanceolatum, suggesting that the endemics andC. lanceolatum share a common ancestor, although the bootstrap probability is not very high (0.78) and thus other possibilities cannot be rejected.  相似文献   

3.
A detailed analysis of chloroplast DNA restriction fragment length variation was undertaken to reconstruct the maternal phylogeny of 18 taxa from both sections of the papilionoid tropical forage legume genusStylosanthes. Data were analysed by means of the computer program PAUP, using an heuristic search with Wagner parsimony. The resulting cladogram dividedStylosanthes into four separate clades, which comprised: (i) theS. guianensis complex and related species (i.e.S. gracilis, S. grandifolia andS. montevidensis); (ii)S. hispida, tetraploidS. hamata s. l.,S. sympodialis, S. humilis, S. leiocarpa, S. angustifolia and certain accesions ofS. scabra; (iii)S. calcicola, S. viscosa, diploidS. hamata s. str., andS. fruticosa, plus accessions ofS. scabra, S. capitata and one accession ofS. grandifolia; and (iv)S. macrocephala and other accessions ofS. capitata not included within clade 3. Results are generally congruent with previously established interspecific relationships and, moreover, enabled identification of putative maternal progenitors for four tetraploid taxa:S. humilis was identified as a likely maternal parent of bothS. sympodialis andS. hamata s. l.,S. viscosa as a maternal parent ofS. scabra, andS. macrocephala as a maternal parent ofS. capitata.  相似文献   

4.
Phylogenetic relationships among the nine species ofCrossostylis (Rhizophoraceae) were elucidated using cladistic analysis of restriction site variations of chloroplast DNA. As a result, this genus was found to comprise two pronounced monophyletic groups as follows:C. biflora, C. grandiflora, C. multiflora andC. sebertii; andC. cominsii, C. pachyantha, C. parksii, C. richii andC. seemannii. Moreover, the monophyly ofC. biflora, C. grandiflora andC. sebertii in the former group and the monophyly ofC. pachyantha, C. parksii, C. richii andC. seemannii in the latter group were also suggested. The molecular tree corresponded well with that inferred from morphological data and no discrepancy was recognized. Many of the floral morphological characters reflected lineage, but all seed coat characters were homoplasious. Evolutionary trends in some morphological characters were optimized on the cpDNA tree obtained. Species from New Caledonia and Polynesia were monophyletic, as were those from the Solomon Islands, Vanuatu and the Fiji Islands. All species endemic to the Fiji Islands made a cluster, and this suggests that speciation occurred from a single ancestral species on the Islands.  相似文献   

5.
Summary Three annual widespread species of Hordeum were investigated by the fragment pattern method on their chloroplast (cp) DNA. The species were H. glaucum, H. leporinum and H. murinum; H. vulgare was surveyed for comparison. Twelve restriction enzymes were used, nine recognizing 6 bp, one 5 bp and two 4 bp, thus, randomly surveyed, a total of 2,113 bp or 1.6% of the cp genome. Differences in patterns were found in three enzymes, HindIII, CfoI and MspI. CfoI characterizes H. glaucum from the other two species. HindIII and MspI revealed polymorphisms within species. These results confirm previous numerical taxonomic relationships among these three closely related species. Furthermore, cpDNA polymorphism in Hordeum is discussed in view of earlier reports on cpDNA polymorphism in H. vulgare. The taxonomic implications of cpDNA polymorphism are discussed after reviewing several articles using the fragment pattern method on cpDNA. The importance of using material from several populations representative of a species is stressed.  相似文献   

6.
RFLPs of cpDNA were examined for 18 species ofAster, six species ofKalimeris, two species ofMiyamayomena and one species and one variety ofHeteropappus from Japan, using 16 restriction endonucleases. Approximately 275 restriction sites were surveyed, and a total of 74 restriction site mutations was detected, and 31 of these were phylogenetically informative. Sixteen most parsimonious trees constructed from Wagner parsimony analysis indicated the polyphyly ofKalimeris andMiyamayomena sensu Kitamura;K. miqueliana belongs to a different clade from the remaining species ofKalimeris, and two species ofMiyamayomena did not make a single clade. This result suggests that the shortening or loss of pappus have happened parallelly in different evolutionary lineages. We must be careful to assess the pappus character in taxonomy and phylogeny, and it is desirable to examine their phylogenetic relationships using a molecular data.  相似文献   

7.
Chloroplast DNAs (cpDNAs) were analyzed in order to clarify the phylogenetic relationships among turfgrasses. Physical maps of cpDNAs from Agrostis stolonifera and Zoysia japonica, which are representative species of cool (C3 type) and warm (C4 type) season turfgrasses, respectively, were constructed with four restriction enzymes, i.e., PstI, SalI, SacI, and XhoI. The genome structures of these cpDNAs were found to be similar to each other in terms of genome size and gene orders, showing thereby a similarity to other grass cpDNAs. CpDNAs of 5 species of cool season turfgrasses and 6 species of warm season turfgrasses as well as four species of cereals, distributed among 14 genera of Gramineae, were digested with PstI, XhoI, and BamHI, and their restriction fragment patterns were compared. Their genome sizes were estimated to be 135–140 kbp. Each species showed characteristic RFLP patterns. On the basis of the frequency of commonly shared fragments, a dendrogram showing the phylogenetic relationships among their cpDNAs was constructed. This dendrogram shows that turfgrasses can be divided into three major groups; these correspond to the subfamilies. Cool and warm season turfgrasses are clearly distinguishable from each other, and the latter can be further classified into two subgroups that correspond to Eragrostoideae and Panicoideae. Our classification of turfgrasses and cereals by RFLP analysis of cpDNA agreed in principal with their conventional taxonomy, except for the location of Festuca and Lolium.Contribution no. 101 from the Kihara Institute for Biological Research, Yokohama City University, Yokohama 232, Japan  相似文献   

8.
The interrelationship of the ten species of the genusTyphonium and related genera in subtribe Arinae of the Araceae was inferred by chloroplast DNA restriction fragment analysis. A total of 42 site mutations were observed and 26 site mutations were shared by two or more species. A majority rule consensus tree was made by performing 100 bootstrap replicates using Wagner Parsimony. Two groups ofTyphonium were recognized significantly as monophyletic groups, i.e. 1)Typhonium larsenii andT. kunmingense, and 2)T. trilobatum, T. blumei andT. flagelliforme.  相似文献   

9.
Parsimony and maximum likelihood analyses of combinedtrnL (UAA) 5 exon —trnF (GAA) andrps4 exon cpDNA, and 18S nrDNA sequences of 60 arthrodontous moss taxa indicate strong support for the monophyly of a clade containing theSplachnineae, Orthotrichineae, and diplolepideous alternate sub-orders. A clade including theSplachnineae, Meesiaceae andLeptobryum (Bryaceae) is similarly well supported and forms the sister group to a clade comprising theOrthotrichineae and the other diplolepideous alternate mosses. Within this latter clade a number of well supported lineages are identified, but relationships among these remain poorly resolved. These analyses indicate that the Splachnaceous and Orthotrichaceous peristomes have been independently derived from an ancestral perfect bryoid peristome.  相似文献   

10.
Thirty-eight strains of 12Microsporum and 10Arthroderma (Nannizzia) species were investigated by analysis of mitochondrial DNA with 6 restriction enzymes, and classified into 13 genetic groups. The phylogenetic tree of the 13 groups thus established was constructed. On the tree,M. audouinii, M. langeronii, M. rivalieri, M. distortum, M. equinum, M. ferrugineum andA. otae comprise one genetic group and are suggested to be the same species.A. gypseum, A. fulvum, M. duboisii, M. ripariae, A. incurvatum, A. persicolor andA. obtusum are clustered on one of five boughs of the tree indicating their close relation.A. racemosum andA. cajetani are also closely related.  相似文献   

11.
Estimates of the phylogenetic relationships among cultivated and wildAllium species would benefit from identification of objective molecular characters. Restriction fragment length polymorphisms in the nuclear 45s ribosomal DNA (rDNA) were identified among two of five accessions of each of six cultivated Alliums. Restriction enzyme sites forBamHI,DraI,EcoRI,EcoRV,SacI, andXbaI were mapped. Different lengths of the rDNA repeat unit among the cultivated Alliums were due to sizes of the intergenic spacer. Nineteen polymorphic restriction enzyme sites were discovered and used to estimate phylogenetic relationships. Cladistic analyses based on Wagner parsimony were completed without an outgroup and resulted in two equally most parsimonious trees of 22 steps. A combined analysis of differences at RE sites in the ribosomal (19 characters) and chloroplast (15 characters) DNA generated a single most parsimonious tree of 39 steps. Single trichotomies were observed at 40 and 41 steps. Strict consensus of the three trees of 41 or fewer steps consisted of a lineage forA. tuberosum, a second forA. ampeloprasum andA. sativum, and a third forA. cepa, A. fistulosum, andA. schoenoprasum. Estimates of phylogenetic relationships based on variability at restriction enzyme sites in the rDNA and chloroplast DNA agree with the classification scheme ofTraub. Because of the predominance of autapomorphies, restriction enzyme analysis of the nuclear 45s rDNA is of limited use in estimating phylogenies amongAllium sections. However it is useful in the establishment of interspecific hybridity.  相似文献   

12.
Phylogenetic relationships among the nine species groups of the predominately Australian ant genus Myrmecia were inferred using 38 Myrmecia species and an outgroup using DNA sequences from two nuclear genes (622nt from 28S rRNA and 1907nt from the long-wave opsin gene). Nothomyrmecia macrops was selected as the most appropriate outgroup based on recent reliable studies showing monophyly of Myrmecia with Nothomyrmecia. The four species groups with an occipital carina (those of gulosa, nigrocincta, urens, and picta) were found to form a paraphyletic and basal assemblage out of which the five species groups lacking an occipital carina (those of aberrans, mandibularis, tepperi, cephalotes, and pilosula) arise as a strongly supported monophyletic assemblage. Monophyly was supported for four groups (those of gulosa, nigrocincta, picta, and mandibularis) but the situation is unclear for four others (those of urens, aberrans, tepperi, and pilosula). The aberrans group appears to be basal within the group lacking an occipital carina; a previous suggestion that it is the sister group to the rest of the genus is thus not supported.  相似文献   

13.
Summary RuBPCase, the enzyme responsible for carboxylation and oxidation of RuBP in a wide variety of photosynthetic organisms, is the major protein found in the chloroplast. Here we present the first evidence for direct expression in E. coli and B. subtilis of tobacco and Chlamydomonas ct-DNA sequences coding for the LS of RuBPCase as demonstrated by a simple in situ immunoassay.  相似文献   

14.
A maple tree genus,Acer is the largest genus in broad-leaved deciduous trees and contains about 200 species. A delimitation of the genus is clear but the intrageneric classification was controversial because of homoplasies in morphological characters. In this study, a phylogenetic relationship inAcer was inferred based on chloroplast DNA restriction site polymorphisms with 17 restriction endonucleases and previously proposed intrageneric classifications were evaluated. The phylogenetic tree showed that (1) sectionsArguta, Cissifolia, Lithocarpa, Macrantha, Palmata, Spicata, Tataricum, Trifoliata sensu Ogata (1967: Bull. Tokyo Univ. Forests 63: 89–206) were monophyletic groups respectively, (2) sectionsCampestria, Goniocarpa, Platanoidea sensu Ogata (1967) were polyphyletic respectively, and (3) sectionsDistyla andParviflora formed a sister group. An average of estimated nucleotide substitution rates of Acer chloroplast DNA was calculated as 7.9×10−11±1.4×10−11 nucleotide substitutions par site par year, which coincides well with previously reported rates of perennial plants. Divergence eras of eastern Asia and North American species in both sectionsSpicata andRubra were estimated to be late Miocene. In consideration with previous data, multiple migrations and disjunctions are likely to have formed the eastern Asian and North American disjunct distribution.  相似文献   

15.
Summary A physical map containing six restriction sites of the Nicotiana tabacum chloroplast genome, together with the BamHI maps of N. tabacum, N. otophora and N. knightiana, and the SmaI maps of N. acuminata, N. plumbaginifolia, N. langsdorffii, N. otophora, N. tabacum, N. tomentosiformis and N. knightiana was constructed. In Nicotiana chloroplast genomes, the most frequently observed variations are point mutations. Deletions are also detected. Most of the observed changes are confined to one area of the large single copy region, which is designated as the hot spot. Based on the evidence obtained from Nicotiana chloroplast genomes, an origin of the inverted repeats in this genus is proposed. We suggest that the inverted repeats represent a vestige of what were once two identical, complete chloroplast genomes joined together in a head-to-head and tail-to-tail fashion, and that deletions generated the current chloroplast genome organization.  相似文献   

16.
Allium subgenus Melanocrommyum (Alliaceae) from Eurasia comprises about 150 mostly diploid species adapted to arid conditions. The group is taxonomically complicated with different and contradictory taxonomic treatments, and was thought to include a considerable number of hybrid species, as the taxa show an admixture of assumed morphological key characters. We studied the phylogeny of the subgenus, covering all existing taxonomic groups and their entire geographic distribution. We analyzed sequences of the nuclear rDNA internal transcribed spacer region (ITS) for multiple individuals of more than 100 species. Phylogenetic analyses of cloned and directly sequenced PCR products confirmed the monophyly of the subgenus, while most sections were either para- or polyphyletic. The splits of the large sections are supported by differences in the anatomy of flower nectaries. ITS data (i) demand a new treatment at sectional level, (ii) do not support the hypotheses of frequent gene flow among species, (iii) indicate that multiple rapid radiations occurred within different monophyletic groups of the subgenus, and (iv) detected separately evolving lineages within three morphologically clearly defined species (cryptic species). In two cases these lineages were close relatives, while in Allium darwasicum they fall in quite different clades in the phylogenetic tree. Fingerprint markers show that this result is not due to ongoing introgression of rDNA (ITS capture) but that genome-wide differences between both lineages exist. Thus, we report one of the rare cases in plants where morphologically indistinguishable diploid species occurring in mixed populations are non-sister cryptic species.  相似文献   

17.
Summary Cytoplasmic-genic male-sterility systems are used to economically produce hybrid onion seed. Previous studies have indicated that the source of cytoplasmic male sterility discovered in 1925 by Jones (S-cytoplasm) may be an alien cytoplasm. Restriction enzyme analysis of the chloroplast DNA (cpDNA) revealed five polymorphisms between S and normal (N) fertile cytoplasms. S-cytoplasm was different from the Allium species closely related to the bulb onion, and cladistic estimates of phylogenies supported introduction from an unknown species. S-cytoplasm was identical for all polymorphisms in the cpDNA to Pran, a triploid viviparous onion. Pran shares morphological characteristics with Italian Red 13–53, the single plant source of S-cytoplasm. Densiometric scans of autoradiograms revealed that 12 of 31 open-pollinated populations of onion possessed S-cytoplasm and that introgression may have occurred since the discovery of S-cytoplasm.  相似文献   

18.
19.
RFLPs were studied in 13Juglans species to determine phylogenetic relationships inJuglans. Allele frequency data were used to generate genetic distance matrices and fragment data were used to generate genetic distances based upon shared-fragments and to perform parsimony analysis. Although similar cluster analyses result from analysing allelic and shared-fragment distance, the two types of distance values displayed variable correspondence with each other. Parsimony analysis produced a tree similar to distance data trees, but with additional phylogenetic resolution agreeing with previous systematic studies. All analyses indicate an ancient origin ofJ. regia, previously considered a recently derived species.  相似文献   

20.
Chloroplast DNA (cpDNA) restriction-site mutations in seven cultivated Prunus species were compared to establish the phylogenetic relationships among them. Mutations were detected in 3.2-kb and 2.1-kb amplified regions of variable cpDNA, cut with 21 and 10 restriction endonucleases, respectively, to reveal polymorphisms. Parsimony and cluster analyses were performed. The species pairs P. persica-P. dulcis, P. domestica-P. salicina, and P.cerasus-P. fruticosa were completely monophyletic. All of the species were grouped with conventional subgenus classifications. The subgenus Cerasus was the most diverged. Cerasus ancestors separated from the remainder of Prunus relatively early in the development of the genus. P. persica-P. dulcis, P. domestica-P. salicina and P. armeniaca formed a second monophyletic group. Prunophora species were less diverged than Amygdalus species. The results also suggest that the rate of mutation in Cerasus spp. chloroplast genomes is significantly greater than for the other subgenera sampled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号