首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous work from our laboratory has shown that heparin specifically induces the release of a pair of proteins of approximately 35,000 and 37,000 Da into the culture medium of vascular smooth muscle cells (SMC). In this report, we demonstrate that the previously identified 37,000-Da smooth muscle protein is composed of two protein species with very similar molecular weights based on migration patterns in SDS-polyacrylamide gels. The larger molecular weight species in this doublet has a similar molecular weight and shares antigenic determinants with major excreted protein (MEP), a lysosomal proteinase previously shown to be secreted by normal and transformed fibroblasts and epidermal cells. Antisera to MEP precipitated the higher molecular weight band from the doublet; preimmune serum was not reactive with the smooth muscle protein. Exposure of smooth muscle cells to heparin resulted in decreased amounts of immunoprecipitable protein released into the medium. Thus, it now appears that three proteins in the 35,000-38,000 molecular weight range are modulated by heparin, and that the largest of the heparin-modulated vascular SMC proteins has a similar molecular weight and is immunologically related to MEP. The release of MEP-like protein from SMC is decreased by heparin, while the remaining two heparin-modulated proteins are increased in the presence of heparin.  相似文献   

2.
The high molecular weight protein connectin (also called titin) in Japanese common squid (Todarodes pacificus) mantle muscle was identified by western blotting analysis with 3B9, the mouse anti-chicken skeletal muscle connectin monoclonal antibody. Similarly to vertebrate samples, there exists connectin in invertebrate squid mantle muscle, and the amino acid sequences are assumed to resemble those present in the A band of vertebrate connectin, judging by the specificity of 3B9. Moreover, the connectin in squid muscle migrated in this study as a closely spaced doublet of alpha and beta (titins 1 and 2). Between 5 and 7 h post-mortem, the SDS PAGE patterns of the squid sample indicated a change of the doublet bands into a single beta-connectin band. Simultaneously, the rheological properties of the squid muscle changed substantially. This degradation of alpha-connectin into beta-connectin in the muscle can explain the critical change that occurs during the post-mortem tenderization of squid muscle.  相似文献   

3.
Connectin content and its post-mortem changes in fish muscle   总被引:1,自引:0,他引:1  
Connectin was isolated from fish dorsal myofibrils by an SDS-gel filtration method and estimated to account for approximately 13% of the total myofibrillar proteins. There was no significant difference in the amount of connectin among seven fish species but rabbit skeletal myofibrils contained a slightly higher content (16%) of connectin. The high molecular weight connectins from carp and rabbit both showed a doublet band, consisting of bands 1 and 2, on SDS-polyacrylamide gel electrophoresis using a large-pore gel. However, rabbit band 1 (a component of the connectin doublet) was found to migrate more slowly than carp band 1. During post-mortem ageing of the muscles, it was observed that the band 1 component rapidly disappeared with a concomitant increase in band 2 component and then the band 2 component was transformed slowly into faster migrating components. These results suggest that post-mortem ageing has qualitatively similar effects on the submolecular compositions of carp and rabbit connectins. However, the apparent rate of disappearance of the band 1 component was considerably higher in carp muscle than that in rabbit muscle.  相似文献   

4.
A fibrillar protein complex, possessing ouabain-insensitive Ca2+-ATPase activity was isolated from human erythrocyte membranes by using a low ionic strength extraction procedure. Mg2+-ATPase activity was revealed upon addition of rabbit skeletal muscle actin, thus demonstrating the presence of a myosin-like protein in the crude extract of the erythrocyte membrane. Upon sodium dodecylsulfate gel electrophoresis, the extract showed mainly the doublet of subunit molecular weight bands of 230 000 and 210 000, and more than 10 faster moving bands. Gel filtration of the erythrocyte membrane extract on Sepharose 4B furnished 4 fractions. Fraction I, containing the doublet and 80 000, 60 000 and 46 000 subunit molecular weight bands was 5-fold purified with respect to Ca2+-ATPase activity, but was devoid of actin-activated Mg2+-ATPase activity. Fraction II, containing only the doublet, was devoid of Ca2+ and actin-activated Mg2+-ATPase activity. The 210 000 subunit molecular weight protein could be phosphorylated in the presence of Mg2+ in the crude extract and Fraction I but not in Fraction II.  相似文献   

5.
The photoaffinity label 8-azido[32P]adenosine 3':5'-monophosphate (8-azido-cyclic [32P]AMP) was used to analyze both the cAMP-binding component of the purified cAMP-dependent protein kinase, and the cAMP-binding proteins present in crude tissue extracts of bovine cardiac muscle. 8-Azido-cyclic [32P]AMP reacted specifically and in stoichiometric amounts with the cAMP-binding proteins of bovine cardiac muscle. Upon phosphorylation, the purified cAMP-binding protein from bovine cardiac muscle changed its electrophoretic mobility on sodium dodecyl sulfate-polyacrylamide gels from an apparent molecular weight of 54,000 to an apparent molecular weight of 56,000. In tissue extracts of bovine cardiac muscle, most of the 8-azido-cyclic [32P]AMP was incorporated into a protein band with an apparent molecular weight of 56,000 which shifted to 54,000 upon treatment with a phosphoprotein phosphatase. Thus a substantial amount of the cAMP-binding protein appeared to be in the phosphorylated form. Autoradiograms following sodium dodecyl sulfate-polyacrylamide gel electrophoresis of both the pure and impure cAMP-binding proteins labeled with 8-azido-cyclic [32P]AMP revealed another binding component with a molecular weight of 52,000 which incorporated 32P from [gamma-32P]ATP without changing its electrophoretic mobility. Limited proteolysis of the 56,000- and 52,000-dalton proteins labeled with 32P from either [gamma-32P]ATP.Mg2+ or 8-azido-cyclic [32P]AMP showed patterns indicating homology. On the other hand, peptide maps of the major 8-azido-cyclic [32P]AMP-labeled proteins from tissue extracts of bovine cardiac muscle (Mr = 56,000) and rabbit skeletal muscle (Mr = 48,000) displayed completely different patterns as expected for the cAMP-binding components of types II and I protein kinases. Both phospho- and dephospho-cAMP-binding components from the purified bovine cardiac muscle protein kinase were also resolved by isoelectric focusing on polyacrylamide slab gels containing 8 M urea. The phosphorylated forms labeled with 32P from either [gamma-32P]ATP or 8-azido-cyclic [32P]AMP migrated as a doublet with a pI of 5.35. The 8-azido-cyclic [32P]AMP-labeled dephosphorylated form also migrated as a doublet with a pI of 5.40. The phosphorylated and dephosphorylated cAMP-binding proteins migrated with molecular weights of 56,000 and 54,000, respectively, following a second dimension electrophoresis in sodium dodecyl sulfate. The lower molecular weight cAMP-binding component (Mr = 52,000) was also apparent in these gels. Similar experiments with the cAMP-binding proteins present in tissue extracts of bovine cardiac muscle indicate that they are predominantly in the phosphorylated form.  相似文献   

6.
We have identified dystrophin in highly purified sarcolemmal vesicles isolated from canine and bovine hearts using specific antibodies against the COOH-terminal region of the protein. Bovine cardiac sarcolemma contained a single immunoreactive protein band (Mr. approximately 400,000) whereas the canine cardiac membrane contained a doublet (Mr. approximately 420,000 and approximately 380,000). The higher molecular weight form of canine cardiac dystrophin was more abundant than the lower molecular weight form. These highly purified preparations of the sarcolemmal vesicles should provide a useful tool for structural and functional analysis of the interaction of dystrophin with the plasma membrane.  相似文献   

7.
A fibrillar protein complex, possessing ouabain-insensitive Ca2+-ATPase activity was isolated from human erythrocyte membranes by using a low ionic strength extraction procedure. Mg2+-ATPase activity was revealed upon addition of rabbit skeletal muscle actin, thus demonstrating the presence of a myosin-like protein in the crude extract of the erythrocyte membrane. Upon sodium dodecylsulfate gel electrophoresis, the extract showed mainly the doublet of subunit molecular weight bands of 230 000 and 210 000, and more than 10 faster moving hands. Gel filtration of the erythrocyte membrane extract on Sepharose 4B furnished 4 fractions. Fraction I, containing the doublet and 80 000, 60 000 and 46 000 subunit molecular weight bands was 5-fold purified with respect to Ca2+-ATPase activity, but was devoid of actin-activated Mg2+-ATPase activity. Fraction II, containing only the doublet, was devoid of Ca2+ and actin-activated Mg2+-ATPase activity. The 210 000 subunit molecular weight protein could be phosphorylated in the presence of Mg2+ in the crude extract and Fraction I but not in Fraction II.  相似文献   

8.
Dystrophin is a 427-kDa cytoskeletal protein, which occurs in scant amounts in vertebrate muscle and nerve cells. No previous references to dystrophin or associated proteins in invertebrates at the protein level have been found, while two recent studies investigated the presence of genes encoding proteins homologous to dystrophin in sea urchin and other invertebrates such as Drosophila melanogaster. In this study, the possible presence and distribution of dystrophin-like proteins were studied in different invertebrate muscle cell types and species through Western blot analysis and light and electron microscope immunohistochemistry using a panel of antibodies whose specificities have been determined in vertebrates. Crude protein extracts of leech Pontobdella muricata were analysed by Western blotting. The revealed protein band, with 140kDa molecular weight, was related to dystrophin, utrophin or dystrophin-related protein-2 (DRP2) according to the specificities of the antibodies used to detect them. The immunofluorescence study showed positive immunoreactions in obliquely striated muscle of this hyrudinean. The immunoelectron microscopy study confirmed specific immunogold labelling beneath the sarcolemma of muscle cells. We thus assume that this protein is an invertebrate dystrophin-like product that is referred to as IDLp140. The potential functions of this invertebrate dystrophin-like protein in invertebrate muscles are discussed relative to previous data in vertebrate tissues.  相似文献   

9.
Evidence is presented that the major protein components of the high molecular weight CNS myelin proteins designated as the Wolfgram protein doublet (W1 and W2) contain the enzyme 2',3'-cyclic nucleotide 3'-phosphodiesterase (EC 3.1.4.37, CNP). CNP is a basic hydrophobic protein containing about 830 to 840 amino acid residues. When electrophoresed on SDS polyacrylamide gels, CNP appears as a protein doublet, separated by a molecular weight difference of about 2500-3000 in bovine, human, rat, guinea pig, and rabbit. A similar protein doublet has been identified as the Wolfgram proteins W2 and W1 in myelin and in the chloroform-methanol-insoluble pellet obtained from myelin. Moreover, the relative Coomassie blue staining intensity of the CNP2 plus CNP1 protein doublet among the species examined was remarkably similar to that observed for electrophoresed myelin and chloroform-methanol-insoluble pellet derived from myelin. Antisera raised against purified bovine CNP recognized the W1 and W2 proteins isolated from bovine and human brain. The amino acid composition of pure bovine CNP is presented and compared with the compositions of several rat and bovine Wolfgram proteins obtained by other investigators. Our electrophoretic, compositional, and immunological data support the contention that the enzyme CNP is a major component of the Wolfgram protein doublet.  相似文献   

10.
Connectin is an elastic protein of vertebrate striated muscle, and consists of doublet components, alpha and beta (also called titins 1 and 2). In the present study, beta-connectin isolated in the native state was investigated in order to characterize its molecular size and shape. The molecular weight was approximately 2.1 X 10(6) (SDS gel electrophoresis) or 2.7 X 10(6) (sedimentation equilibrium). The sedimentation coefficient (SO20, w) was 17S in 0.1 M phosphate buffer, pH 7.0. The intrinsic viscosity measured in an Ostwald-type viscometer was 1.8 dl/g. However, the viscosity was greatly dependent on the velocity gradient, and at a very low velocity gradient of 0.0007 s-1, a solution of connectin (0.3 mg/ml) showed a viscosity value of 17,000 cp. Flow birefringence measurements suggested a length distribution ranging from 300 to 450 nm. Electron microscopic observations revealed that connectin is a long flexible filament and the peaks of frequency of length distribution were at 150, 300, 450, and 600 nm. It was tentatively assumed that the connectin molecule is 300-400 nm long and 34-38 nm wide. It is likely that beta-connectin is derived from alpha-connectin, which has an apparent molecular weight of 2.8 X 10(6).  相似文献   

11.
Insulin stimulates a novel Ser/Thr kinase, which phosphorylates microtubule associated protein-2 (MAP-2) in vitro. MAP kinase was studied in cell models of the principal insulin responsive tissues using analytical fast-protein liquid chromatography for partial purification of the enzyme. Stimulation of MAP kinase (1.3- to 2-fold) by insulin was readily detected in BC3H1 smooth and 23A2 skeletal muscle cells; 3T3-L1 adipocytes; and isolated rat hepatocytes and adipocytes. No phosphatase activity was detectable under the assay conditions used, proving that stimulation of a kinase, not inhibition of a phosphatase, is responsible for the increased incorporation of 32PO4 catalyzed by supernatants from insulin-treated 3T3-L1 cells. In H4 hepatoma cells, stimulation of MAP kinase was much less evident after gel filtration in comparison to the other cell types. The activated enzyme present in supernatants from insulin-treated cells migrated as a single peak of approximately 35 kDa apparent molecular mass (except in the case of isolated hepatocytes in which a shoulder was present). These results suggest that the insulin-stimulatable MAP kinase may be ubiquitous in insulin responsive cells.  相似文献   

12.
《The Journal of cell biology》1994,125(5):1109-1117
To understand mechanisms of regulation of dynein activity along and around the axoneme we further characterized the "dynein regulatory complex" (drc). The lack of some axonemal proteins, which together are referred to as drc, causes the suppression of flagellar paralysis of radial spoke and central pair mutants. The drc is also an adapter involved in the ATP-insensitive binding of I2 and I3 inner dynein arms to doublet microtubules. Evidence supporting these conclusions was obtained through analyses of five drc mutants: pf2, pf3, suppf3, suppf4, and suppf5. Axonemes from drc mutants lack part of I2 and I3 inner dynein arms as well as subsets of seven drc components (apparent molecular weight from 29,000 to 192,000). In the absence of ATP-Mg, dynein-depleted axonemes from the same mutants bind I2 and I3 inner arms at both ATP-sensitive and -insensitive sites. At ATP-insensitive sites, they bind I2 and I3 inner arms to an extent that depends on the drc defect. This evidence suggested to us that the drc forms one binding site for the I2 and I3 inner arms on the A part of doublet microtubules.  相似文献   

13.
A rabbit liver cAMP-independent glycogen synthase kinase has been purified 4500-fold to a specific activity of 2.23 mumol of 32P incorporated per min per mg of protein using ion exchange chromatography on DEAE-Sephacel and phosphocellulose, gel filtration chromatography on Sepharose 6B, and affinity chromatography on calmodulin-Sepharose. This synthase kinase, which was completely dependent on the presence of calmodulin (apparent K0.5 = 0.1 microM) and calcium for activity, also catalyzed the phosphorylation of purified smooth muscle myosin light chain but not of smooth muscle myosin. Using 0.5 mM ATP, a maximal rate of phosphorylation of glycogen synthase was achieved in the presence of 10 mM magnesium acetate with a pH optimum of 7.8. Gel filtration experiments indicated a Stokes radius of about 70 A and sucrose density gradient centrifugation data gave a sedimentation coefficient of 10.6 S. A molecular weight of approximately 300,000 was calculated. A definitive subunit structure was not determined, but major bands observed after polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate corresponded to a doublet at 50,000 to 53,000. The calmodulin-dependent glycogen synthase kinase incorporated about 1 mol of 32P per mol of synthase subunit into sites 2 and 1b associated with a decrease in the synthase activity ratio from 0.8 to about 0.4. The calmodulin-dependent glycogen synthase kinase may mediate the effects of alpha-adrenergic agonists, vasopressin, and/or angiotensin II on glycogen synthase in liver.  相似文献   

14.
V V Klimov  E Dolan  B Ke 《Biofizika》1981,26(5):802-808
Photoreduction of the intermediary electron acceptor, pheophytin (Ph), in photosystem-2 (PS-2) reaction centers of spinach chloroplasts or subchloroplast particles (TSF-II and TSF-IIa) at 220 K and Eh approximately -450 mV produces a narrow ESR signal of Ph. (g = 2.0033; delta H approximately 13 G) and a "doublet" centered at g = 2.00 with a splitting of 52 G at 7 K. The doublet (but not the narrow signal) is eliminated after extraction of lyophylized TSF-II with hexane, containing 0.1-0.2% methanol, or after extraction of Fe with LiClO4 and o-phenantroline, and the signal is restored by reconstitution with plastoquinone-A (PQ) or Fe++, respectively. The Fe removal results also in the development of a photoinduced ESR signal of PQ. (g approximately 2.0044; delta H approximately 9.2 G). The conclusion is made that the primary electron acceptor, Q, is in fact a complex PQ-Fe++ and that the exchange interaction of Ph. with PQ. -Fe++ is responsible for the ESR doublet. Photoreduction of Ph in TSF-IIa is accompanied by the 3-fold decrease in the formation of carotenoid triplet state (measured by the characteristic flash-induced absorbance changes) which is suggested to be a result of charge recombination in the pair [P680+ .PH.].  相似文献   

15.
This study was conducted to optimize the expression of human CB2 cannabinoid receptors in methylotrophic yeast Pichia pastoris (P. pastoris). Two major species of expressed CB2 proteins were seen on Western blot, i.e., a 42 kDa band which matches the calculated molecular weight for tagged CB2, and a 52/55 kDa doublet. Treatment of membranes with N-glycosidase F or inclusion of tunicamycin in the culture medium during induction resulted in the disappearance of the 55 kDa, but not the 52 kDa band, suggesting that the 3 kDa extra in the 55 kDa band is due to N-glycosylation, but the 10 kDa extra in the 52 kDa band is not due to N-glycosylation. Anti-FLAG M1 antibody had a much higher preference for the 42 kDa band over the 52/55 kDa doublet, and a 10 kDa fragment recognized by anti-FLAG M2 antibody was generated by CNBr digestion of the 52/55 doublet. These data strongly support the hypothesis that the 10 kDa increase in molecular weight was due to unprocessed alpha-factor sequence. This conclusion was further validated by finding several peptide sequences for alpha-factor fragments at the N-terminal of the CB2 receptor using pepsin/chymotrypsin digestion and LC/MS/MS approaches. Importantly, unprocessed alpha-factor was found to be associated with poor ligand binding. In addition, controlling the level of CB2 protein expression was found to be critical for minimizing the presence of unprocessed alpha-factor sequence. The information gained from this study should aid the proper expression of not only CB2 receptor but also other members of the GPCR family in P. pastoris.  相似文献   

16.
We use a highly specific and sensitive antibody to further characterize the distribution of dystrophin in skeletal, cardiac, and smooth muscle. No evidence for localization other than at the cell surface is apparent in skeletal muscle and no 427-kD dystrophin labeling was detected in sciatic nerve. An elevated concentration of dystrophin appears at the myotendinous junction and the neuromuscular junction, labeling in the latter being more intense specifically in the troughs of the synaptic folds. In cardiac muscle the distribution of dystrophin is limited to the surface plasma membrane but is notably absent from the membrane that overlays adherens junctions of the intercalated disks. In smooth muscle, the plasma membrane labeling is considerably less abundant than in cardiac or skeletal muscle and is found in areas of membrane underlain by membranous vesicles. As in cardiac muscle, smooth muscle dystrophin seems to be excluded from membrane above densities that mark adherens junctions. Dystrophin appears as a doublet on Western blots of skeletal and cardiac muscle, and as a single band of lower abundance in smooth muscle that corresponds most closely in molecular weight to the upper band of the striated muscle doublet. The lower band of the doublet in striated muscle appears to lack a portion of the carboxyl terminus and may represent a dystrophin isoform. Isoform differences and the presence of dystrophin on different specialized membrane surfaces imply multiple functional roles for the dystrophin protein.  相似文献   

17.
Abnormal vascular smooth muscle cells proliferation is the pathophysiological basis of cardiovascular diseases, such as hypertension, atherosclerosis, and restenosis after angioplasty. Angiotensin II can induce abnormal proliferation of vascular smooth muscle cells, but the molecular mechanisms of this process remain unclear. Here, we explored the role and molecular mechanism of monocyte chemotactic protein-1, which mediated angiotensin II-induced proliferation of rat aortic smooth muscle cells. 1,000 nM angiotensin II could stimulate rat aortic smooth muscle cells' proliferation by angiotensin II type 1 receptor (AT(1)R). Simultaneously, angiotensin II increased monocyte chemotactic protein-1 expression and secretion in a dose-and time-dependent manner through activation of its receptor AT(1)R. Then, monocyte chemotactic protein-1 contributed to angiotensin II-induced cells proliferation by CCR2. Furthermore, we found that intracellular ERK and JNK signaling molecules were implicated in angiotensin II-stimulated monocyte chemotactic protein-1 expression and proliferation mediated by monocyte chemotactic protein-1. These results contribute to a better understanding effect on angiotensin II-induced proliferation of rat smooth muscle cells.  相似文献   

18.
Biosynthesis and modification of Golgi mannosidase II in HeLa and 3T3 cells   总被引:28,自引:0,他引:28  
The biosynthesis and post-translational modification of mannosidase II, an enzyme required in the maturation of asparagine-linked oligosaccharides in the Golgi complex, has been investigated. Antibody raised against this enzyme purified from rat liver Golgi membranes was used to immunoprecipitate mannosidase II from rat liver, 3T3 cells, or HeLa cells. Mannosidase II immunoprecipitated from rat liver Golgi membranes, when analyzed by polyacrylamide gel electrophoresis, migrated with an apparent molecular weight of approximately 124,000. In contrast, the enzyme purified from rat liver Golgi membranes was shown to contain both the 124,000-dalton component and a 110,000-dalton polypeptide believed to result from degradation of intact mannosidase II during purification. Mannosidase II from 3T3 and HeLa cells migrated on polyacrylamide gels with apparent molecular weights of approximately 124,000 and 134,000-136,000, respectively. When immunoprecipitated from radiolabeled cultures, mannosidase II from both cell types was similar in the following respects: (a) the initial synthesis product had an apparent molecular weight of approximately 124,000; (b) in cultures treated with tunicamycin the initial synthesis product had an apparent molecular weight of approximately 117,000; (c) endoglycosidase H digestion of the initial synthesis product gave an apparent molecular weight similar to the tunicamycin-induced polypeptide; (d) the mature enzyme was mostly (HeLa) or entirely (3T3) resistant to digestion by endoglycosidase H. Loss of [35S]methionine from intracellular mannosidase II occurred with a half-life of approximately 20 h; there was no appreciable accumulation of labeled immuno-reactive material in the medium. HeLa mannosidase II, but not the 3T3 enzyme, was additionally modified 1-3 h after synthesis, the initial synthesis product being converted to a doublet with an apparent molecular weight of approximately 134,000-136,000. Evidence is presented that this mobility shift may result from O-glycosylation. Mannosidase II from both cell types could be labeled with [32P]phosphate or [35S]sulfate. The latter is apparently attached to oligosaccharide as indicated by inhibition of labeling by tunicamycin; the former was shown with the HeLa enzyme to be present as serine phosphate moieties. In addition, [3H]palmitate could be incorporated into the enzyme in 3T3 cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
1. Starvation of rats for 40 hr decreased the body weight, liver weight and blood glucose concentration. The hepatic and skeletal muscle glycogen concentrations were decreased by 95% (from 410 mumol/g tissue to 16 mumol/g tissue) and 55% (from 40 mumol/g tissue to 18.5 mumol/g tissue), respectively. 2. Fine structural analysis of glycogen purified from the liver and skeletal muscle of starved rats suggested that the glycogenolysis included a lysosomal component, in addition to the conventional phosphorolytic pathway. In support of this the hepatic acid alpha-glucosidase activity increased 1.8-fold following starvation. 3. Refeeding resulted in liver glycogen synthesis at a linear rate of 40 mumol/g tissue per hr over the first 13 hr of refeeding. The hepatic glycogen store were replenished by 8 hr of refeeding, but synthesis continued and the hepatic glycogen content peaked at 24 hr (approximately 670 mumol/g tissue). 4. Refeeding resulted in skeletal muscle glycogen synthesis at an initial rate of 40 mumol/g tissue per hr. The muscle glycogen store was replenished by 30 min of refeeding, but synthesis continued and the glycogen content peaked at 13 hr (approximately 50 mumol/g tissue). 5. Both liver and skeletal muscle glycogen synthesis were inhomogeneous with respect to molecular size; high molecular weight glycogen was initially synthesised at a faster rate than low molecular weight glycogen. These observations support suggestions that there is more than a single site of glycogen synthesis.  相似文献   

20.
J M Stadel  R Rebar  S T Crooke 《Biochemistry》1987,26(18):5861-5866
Preincubation of turkey erythrocytes with isoproterenol is associated with (1) 50-60% attenuation of agonist-stimulated adenylate cyclase activity, (2) altered mobility of the beta-adrenergic receptor on sodium dodecyl sulfate-polyacrylamide gels, and (3) increased phosphorylation of the beta-adrenergic receptor. Using a low-cross-linked polyacrylamide gel, the beta-adrenergic receptor protein from isoproterenol-desensitized cells, labeled with 32P or with the photoaffinity label 125I-(p-azidobenzyl)carazolol, can be resolved into a doublet (Mr congruent to 37,000 and Mr congruent to 41,000) as compared to a single Mr congruent to 37,000 beta-adrenergic receptor protein from control erythrocytes. The appearance of the doublet was dependent on the concentration of agonist used to desensitize the cells. Incubation of erythrocytes with dibutyryl-cAMP did not promote formation of the doublet but decreased agonist-stimulated adenylate cyclase activity 40-50%. Limited-digestion peptide maps of 32P-labeled beta-adrenergic receptors using papain revealed a unique phosphopeptide in the larger molecular weight band (Mr congruent to 41,000) of the doublet from the agonist-desensitized preparation that was absent in the peptide maps of the smaller band (Mr congruent to 37,000), as well as control or dibutyryl-cAMP-desensitized receptor. These data provide evidence that maximal agonist-induced desensitization of adenylate cyclase coupled beta-adrenergic receptors in turkey erythrocytes occurs by a two-step mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号