首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monocyte-mediated augmentation of human natural cell-mediated cytotoxicity   总被引:1,自引:0,他引:1  
Normal human monocytes can significantly and rapidly augment natural cell-mediated cytotoxicity (NCMC) against K562 target cells. Approximately 50% augmentation was observed after direct mixture of monocytes with autologous null cells in the 4-hr chromium-release assay. This effect was dependent on the number of monocytes, and B cells and granulocytes were not effective. Coculture of null cells with monocytes and subsequent recovery of null cells for use as effector cells also produced significantly elevated cytolytic activity. This effect was dependent upon the number of monocytes, the length of time of coculture, and the cell donor. Augmentation of NK activity was rapid and observed after 0.5-12 hr of coculture, but suppression was observed after 36 hr; augmentation was observed with high monocyte:null cell (1:1, 1:2) ratios, and no effect was generally observed with lower ratios (1:8). At the single-cell level, the augmentation was associated with an increase in the proportion of target-binding cells which were lytically active. The augmentation of NK activity by monocytes required close cellular proximity, was mediated by a factor which was active or induced only in close proximity of the effector and producer cells, and/or was mediated by a soluble factor with a molecular weight greater than 50,000. This new demonstration that monocytes can augment as well as suppress NCMC may represent another avenue by which NK cell activity may be modulated in vivo.  相似文献   

2.
As earlier data suggested the importance of lipoxygenase activation for expression of human NK cell cytotoxicity, four different lipoxygenase inhibitors were tested for suppression of natural killer (NK) cell lysis. All inhibitors were found active at nontoxic concentrations with 50% inhibition at approximately 15 microM for nordihydroguaiaretic acid (NDGA). NK cell lysis could be reconstituted to NDGA-suppressed cells with leukotriene B4 (LTB4), the all-trans isomers 6-trans-LTB4 and 12-epi-6-trans-LTB4, and 20-COOH-LTB4. LTB4 reconstitution was best in the concentration range 1-100 pM and near control levels at both higher and lower concentrations. Herpesvirus Ateles-transformed killer T cells could also be inhibited by NDGA. These data indicate that lipoxygenase activity is required for human NK cell lysis and that several different LTB4-related products can restore NK activity in inhibited cells; they also suggest that the lipoxygenase pathway is present in the killer cell population.  相似文献   

3.
 The combination of CD16/CD30 bispecific monoclonal antibodies (bi-mAb) and unstimulated human resting natural killer (NK) cells can cure about 50% of mice with severe combined immunodeficiency (SCID) bearing subcutaneously growing established Hodgkin’s lymphoma. As interleukin-2 (IL-2) and IL-12 have been shown to increase NK cell activity, we tested the capacity of these cytokines to increase bi-mAb-mediated NK cell cytotoxicity against two types of human tumors (Hodgkin’s disease and colorectal carcinoma). Unstimulated NK cells needed a three- to five-times higher antibody concentration than cytokine-stimulated NK cells to exert similar levels of bi-mAb-mediated cytotoxicity. The augmented tumor cell lysis was achieved with IL-12 at considerably lower concentrations than with IL-2 and was associated with a significantly increased bi-mAb-mediated intracellular Ca2+ mobilization. The efficiency of IL-12 in this setting together with its low toxicity make it the ideal candidate for a combination therapy with NK-cell-activating bi-mAb in human tumors that are resistant to standard treatment. Received: 26 July 1995 / Accepted: 16 November 1995  相似文献   

4.
Depression of murine natural killer cell cytotoxicity by isobutyl nitrite   总被引:2,自引:0,他引:2  
Summary We have investigated the effect of isobutyl nitrite on murine NK-cell antitumor-directed cytotoxicity. This agent has been suggested as one of the factors underlying immunodeficiency syndrome (AIDS) in man. We demonstrated that two injections, each of 0.25 ml isobutyl nitrite, resulted in significant depression of endogenous splenic and peripheral blood natural killer (NK) cell cytotoxicity against T-cell lymphoma, YAC-1. In addition to endogenous NK cells, activity of pyrimidinol-activated NK cells was also substantially depressed by this agent. The latter observation is of the utmost importance, since it suggests that the attempt to augment NK-cell activity (to promote resistance to infections and malignancies) could fail in patients with AIDS who are isobutyl nitrite users. Isobutyl nitrite was NK-cell-suppressive not only after in vivo administration but, most importantly, also after inhalation. This indicates that isobutyl nitrite, via its NK-cell suppressive effect, could contribute to immunodeficiency in AIDS. Studies on the mechanism of NK-cell depression by isobutyl nitrite demonstrated that the NK-cell tumor-binding properties as well as NK-cell cytotoxic potential were substantially depressed. Mixing experiments failed to reveal any regulation by suppressor cell activities. The results of these studies clearly indicate that isobutyl nitrite is an immunosuppressive agent and that its use should be avoided. Abbreviations used: NK, natural killer; S-RPMI 1640, supplemented tissue culture medium 1640; HEPES, N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid; TBC, tumor-binding cells; C-TBC, cytotoxic tumor-binding cells; AIPP, 2-amino-5-iodo-6-phenyl-4 pyrimidinol; LU, lytic units; T:E, target-to-effector; AIDS, acquired immunodeficiency syndrome  相似文献   

5.
6.
Thermal stresses reduce natural killer cell cytotoxicity   总被引:2,自引:0,他引:2  
  相似文献   

7.
Addition of serotonin to mixtures of target cells and natural killer (NK)-enriched human mononuclear cells (MNC) in a 4-hr 51Cr-release assay strongly augmented NK cell cytotoxicity (NKCC) vs K562, Chang, or Molt-4 target cells. The effect was dose dependent at serotonin concentrations of 10(-4) to 10(-7) M, expressed at several effector to target cell ratios, and required the presence of accessory monocytes. A 5-HT1-specific receptor agonist, 8-OH-DPAT, mimicked the enhancing properties of serotonin with similar potency. Equimolar concentrations of the mixed 5-HT1/5-HT2 receptor antagonist cyproheptadine, but not the 5-HT2-specific antagonist ketanserin, completely blocked the serotonin-induced NKCC enhancement. Monocyte/NK cell mixtures incubated with serotonin for 1 hr produced a soluble factor that could enhance the cytotoxicity of autologous, NK-enriched cells depleted of monocytes, which did not respond to serotonin alone. The factor displayed no IFN or IL 2 activity as judged by the lack of antiviral activity and inability to support the growth of an IL 2-dependent cell line. In the presence of monocytes, serotonin (10(-5) M) was considerably more effective than human IFN-alpha or IFN-gamma at optimal concentrations and was about equally effective as IL 2 at a final concentration of 50 U/ml in a short-term NK assay. The potency and efficacy for serotonin were similar to that earlier reported for histamine in monocyte-containing effector cells. The NKCC-enhancing effect of serotonin was additive to that induced by IFN-alpha, IFN-gamma, or IL 2, but not to histamine. The presented data suggest an earlier unrecognized, serotonin receptor-mediated regulation of human NK cells.  相似文献   

8.
Previous work has shown that normal human monocytes can augment natural killer (NK) cell activity both when mixed with enriched null cells in the assay and when precultured with enriched null cells and removed prior to testing. The data presented here show that a 4-hr preculture period is superior to slightly longer periods (10-12 hr) for demonstrating the augmentation. The role of cytokines in the monocyte effect was then investigated using a variety of antibody and recombinant reagents. Both monoclonal and rabbit polyclonal antibodies to IL-1 and IL-2 inhibited the monocyte effect, whereas antibodies against IFN-alpha and IFN-gamma from both sources had no effect. Of these cytokines, only IL-1 could be demonstrated (using a sensitive IL-1-dependent-IL-2 synthesis assay) in the supernatants of 4-hr cultures of monocytes plus null cells or null cells only. The ability to detect IL-1 was specifically inhibited by rabbit antibody to human IL-1 at 1:20 and 1:200 dilutions, but only the greater concentration inhibited the monocyte effect on NK activity. In contrast, the detection of soluble IL-1 was not inhibited by including monoclonal anti-IL-1 (1:20 dilution) in the 4-hr culture, although the same reagent abrogated the monocyte effect under these conditions. Recombinant IL-1 (up to 100 units/ml) did not augment NK activity either when added to the assay or when precultured for 4 hr with enriched null cells, whereas either recombinant IL-2 or monocytes were effective under these conditions. These results provide the first evidence for a cellular, and potentially physiologic, basis for the regulation of NK activity by IL-1 and IL-2, which had been previously known to act at pharmacologic levels in vitro.  相似文献   

9.
The activation of human natural killer (NK) cell cytotoxicity by interleukin 2 (IL-2) is well established, although the biochemical mechanisms of this stimulation have not yet been fully delineated. Earlier, we reported that treatment of NK cells with an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase such as compactin or lovastatin significantly abrogates the in vitro killing of a susceptible human erythroleukemic cell line and that this inhibition can be completely reversed by 2 hr of exposure to mevalonate (J. Cell. Physiology 139:550-557, 1989). We report here that 24 hr of treatment with IL-2 also reverses lovastatin inhibition of NK cell function. In addition to natural cytotoxicity, IL-2 also restores chemotactic and antibody dependent cellular cytotoxicity functions to lovastatin-treated cells. IL-2 does not stimulate proliferation of these cells during this time period, nor does it affect the phenotypic composition of the NK cell preparations. Although IL-2 was able to reverse the lovastatin-mediated inhibition of every cell function we examined, it had no effect on the inhibition of cholesterol biosynthesis as measured by [3H]acetate incorporation into non-saponifiable lipids, nor did it stimulate HMG CoA reductase activity. These findings support the hypothesis that there is a non-sterol isoprenoid product which is required for NK cell cytotoxicity and chemotaxis. In addition, the data suggest that IL-2 stimulation of NK cells proceeds by an isoprenoid-independent pathway.  相似文献   

10.
The present investigation demonstrates that leukoregulin, a cytokine secreted by natural killer (NK) lymphocytes up-regulates the sensitivity of tumor cells to lymphokine-activated killer (LAK) cell cytotoxicity. It has been previously established that leukoregulin increases the sensitivity of sarcoma, carcinoma and leukemia cells to natural killer (NK) cell cytotoxicity. Tumor cells were treated with leukoregulin for 1 h at 37 degrees C and tested for sensitivity to NK and LAK cytotoxicity in a 4-h chromium-release assay. NK-resistant Daudi, QGU and C4-1 human cervical carcinoma cells became sensitive to NK cytotoxicity after leukoregulin treatment, and their sensitivity to LAK was increased two- to sixfold. Y-79 retinoblastoma cells, which are moderately sensitive to NK and very sensitive to LAK, became increasingly sensitive (two- to four-fold) to both NK and LAK cell cytotoxicity. Recombinant granulocyte-macrophage colony-stimulating factor (GM-CSF), recombinant interleukin-1 (alpha and beta), recombinant interferon gamma, recombinant tumor necrosis factor or combinations of the latter two failed to up-regulate tumor cell sensitivity to NK and LAK cell cytotoxicity. However, treatment with recombinant interferon gamma for 16-18 h, GM-CSF and interleukin-1 beta for 1 h induced a state of target cell resistance to both NK and LAK cell cytotoxicity. Leukoregulin may have an important physiological function in modulating NK and LAK cell cytotoxicity by increasing the sensitivity of target cells to these natural cellular immunocytotoxicity mechanisms.  相似文献   

11.
The characteristics of the effector cells and monocytes, and conditions required for the monocyte-mediated augmentation of human natural killer (NK) cell activity were investigated. Enriched null cell populations were further fractionated by Percoll centrifugation and used as effector cells. The LGL-enriched fraction was less susceptible than either the unfractionated cells or the other Percoll fractions to the monocyte augmentation when mixed with monocytes in the chromium-release assay and when precultured with monocytes for 12 hr, retrieved by carbonyl iron treatment, and tested for NK activity against K562. This differential susceptibility was reflected at the single cell level. The LGL-enriched Percoll fraction did not display the increase in target-binding cells with lytic activity that was exhibited by the other effector cell preparations after culture with monocytes. No differences in Leu-7 and Leu-11 phenotypes were detected between enriched null cells that had been cultured with and without monocytes for 12 hr. At the monocyte level, it was shown that pretreatment of the monocytes with LPS did not alter their NK-augmenting activity appreciably. Glutaraldehyde-fixed monocytes were not effective, and actinomycin D-treated monocytes were less effective than untreated or irradiated monocytes when mixed with enriched null cells in the assay. Actinomycin D-treated monocytes did not augment and possibly suppressed NK activity tested after 12-hr culture, and irradiated monocytes were less effective for augmenting NK activity than untreated cells. Monocyte-mediated augmentation could be detected when the medium used for null cell-monocyte coculture was supplemented with a) different lots of fetal bovine serum, b) human AB serum, c) autologous serum, or d) no serum. Polymyxin B and indomethacin did not alter the monocyte effect. Finally, the monocyte-mediated augmentation of human NK was not MHC restricted, since allogeneic combinations were also effective. These results suggest that 1) lymphocytes other than LGL participate in the monocyte-mediated augmentation of NK activity, 2) the augmentation is probably activational rather than maturational, 3) the monocytes must be viable to be effective when mixed with null cells during the assay, 4) de novo RNA and/or protein synthesis by the monocytes is required for the monocytes to induce augmented activity in null cells after 12-hr coculture, 5) prostaglandin synthesis and endotoxin are probably not involved in the augmentation, 6) the phenomenon is not MHC restricted, and 7) monocytes may express augmentative and suppressive activities concurrently.  相似文献   

12.
Because previous work has suggested that NK cells may be important in host resistance against the intracellular parasite Toxoplasma gondii we examined whether human NK cells and lymphokine-activated killer (LAK) cells have activity against trophozoites and cysts of this organism in vitro. A method to radiolabel Toxoplasma trophozoites with 51Cr was developed and direct cytotoxic activity was determined by using modifications of the standard 51Cr release assay. Viability of 51Cr-labeled trophozoites assessed by both methylene blue staining and trypan blue exclusion was greater than 90%. Significantly more 51Cr was released by anti-Toxoplasma antibody and C than by antibody in the absence of C. Incubation of trophozoites with freshly isolated human NK cells or NK cells activated with either rIL-2 or rIFN-alpha did not result in significant release of 51Cr (specific lysis was 0 to 2.3%). In contrast, the average specific lysis of radiolabeled trophozoites by LAK cells was significant (specific lysis was 7.8% +/- 1.1, p less than 0.01). In a series of separate experiments, preincubation of radiolabeled trophozoites with heat-inactivated normal or Toxoplasma antibody-positive human serum increased the cytotoxicity of LAK cells from a mean specific lysis of 15% +/- 4.5 to 39% +/- 8.5, respectively (p less than 0.05), as assessed by 51Cr release. Because previous work has shown that radioisotope release from parasites may be nonspecific, separate experiments were performed to determine the cytotoxicity of LAK cells against antibody-coated trophozoites by using ethidium bromide-acridine orange staining to assess effector cell damage. LAK cells had a mean specific lysis of 51% against antibody-coated trophozoites by ethidium bromide-acridine orange staining. Preincubation with heat-inactivated Toxoplasma-antibody positive human serum did not increase activity of rIL-2-activated NK cells against 51CR-labeled trophozoites. Neither human NK cells (freshly isolated or activated by rIL-2 or rIFN-alpha) nor LAK cells were cytotoxic for purified preparations of cysts of Toxoplasma isolated from the brains of chronically infected mice.  相似文献   

13.
We compared in vitro effect of lipoxygenase (LO) products derived from arachidonic acid (AA) and eicosapentaenoic acid (EPA) on cytotoxic activity of human natural killer (NK) cell against human erythroleukemia cell line K-562. Leukotriene B4 (LTB4) derived from AA was found to significantly augment NK cell activity compared to the control level (in the absence of LTB). LTB5 showed a weak, but not significant, enhancing effect on NK cell activity. LTB4 was significantly more potent than LTB5 in the enhancement of NK cell activity. On the other hand, both 5- and 15-hydroperoxy fatty acids derived from AA and EPA significantly enhanced NK cell activity compared to the control level with similar potencies.  相似文献   

14.
Cultures of human peripheral blood mononuclear cells (PBMC) as well as cultures of preseparated peripheral non-adherent cells (PNAC) and monocytes showed enhancement of natural killer (NK) cytotoxicity against K562 tumor cells when pretreated with arabinogalactan fromLarix occidentalis for 48–72 h. Lack of enhanced responses of PBMC (37% of donors) did not necessarily mean that PNAC and monocyte cultures were also non-responsive to arabinogalactan treatment. Moreover, PBMC, PNAC and monocytes of individual donors could exhibit various responses to arabinogalactan when cultures derived from bleedings after intervals of several months were assayed. Arabinogalactan-mediated enhancement of NK cytotoxicity was not initiated directly but was found to be governed by the cytokine network. Generally, arabinogalactan pretreatment induced an increased release of interferon (IFN), tumor necrosis factor , interleukin-1 (IL-1) and IL-6 but only IFN was involved in enhancement of NK cytotoxicity since cytotoxicity enhancement of PBMC and PNAC but not that of monocytes could be blocked when anti-IFN antibodies were present during pretreatment. The presence of anti-IL-2 antibodies completely blocked NK cytotoxicity enhancement of PBMC and only moderately that of PNAC and monocytes. This blocking effect was also observed when no detectable increase of IL-2 release could be recorded. The receptor specificity of arabinogalactan is not well characterized. Initial information obtained from comparative studies indicated that arabinogalactan presumably interacts with a receptor that showed specificity for a NK-cytotoxicity-enhancing oligo-saccharide fromViscum album extracts since the action of both components was not synergistic but rather competitive.  相似文献   

15.
Natural Killer (NK) cells are important in the immune response to a number of viruses; however, the mechanisms used by NK cells to discriminate between healthy and virus-infected cells are only beginning to be understood. Infection with vaccinia virus provokes a marked increase in the susceptibility of target cells to lysis by NK cells, and we show that recognition of the changes in the target cell induced by vaccinia virus infection depends on the natural cytotoxicity receptors NKp30, NKp44, and NKp46. Vaccinia virus infection does not induce expression of ligands for the activating NKG2D receptor, nor does downregulation of major histocompatibility complex class I molecules appear to be of critical importance for altered target cell susceptibility to NK cell lysis. The increased susceptibility to lysis by NK cells triggered upon poxvirus infection depends on a viral gene, or genes, transcribed early in the viral life cycle and present in multiple distinct orthopoxviruses. The more general implications of these data for the processes of innate immune recognition are discussed.  相似文献   

16.
17.
The rate of disintegration of target cells subsequent to lytic programming by human peripheral blood natural killer (NK) cells was investigated using a quantitative calcium pulse technique. The rate of this initial calcium-independent target cell disintegration was indicative of a first-order decay process for programmed target cells with a calculated half-life of less than 3 min. This initial, rapid disintegration phase was independent of the overall cytotoxic activity of the lymphocyte preparation tested. Moreover, initial rates of target cell disintegration were comparable for target cell lines that exhibit up to 6-fold differences in overall susceptibility to natural cytotoxicity. In these studies we also consistently observed very slow, calcium-independent disintegration of additional target cells following apparent completion of the rapid disintegration process. Using a 51Cr release assay and K-562 target cells, the kinetics of this slow disintegration process were examined and found to be similar for donors exhibiting up to a 2-fold difference in overall cytotoxic activity and independent of the concentration of programed target cells. Whereas the initial rapid disintegration mechanism was independent of temperature over the range of 10-37 degrees C, the slow disintegration mechanism exhibited a direct dependence on the incubation temperature. Furthermore, we observed that supernatants obtained after the termination of lytic programing by ethylene diaminetetraacetic acid could effect the slow lysis of fresh NK-susceptible target cell lines. These results support the utilization of at least two distinct mechanisms for target cell lysis by human NK cells.  相似文献   

18.
Inhibition of mouse natural killer cytotoxicity by heparin   总被引:4,自引:0,他引:4  
The effect of heparin on mouse natural killer (NK) cytotoxicity was investigated. Heparin greatly inhibited NK activity at a concentration of more than 10 units/ml. Inhibition of NK cytotoxicity was observed only when heparin was present in the reaction mixture of the cytotoxicity assay. The results of kinetic study of NK inhibition and target-effector binding assay proposed the possibility that heparin inhibits NK cytotoxicity after the binding of effector cells to target cells. Dextran sulfate, the heparin analog, which has potent negative charge also had an inhibitory effect on NK activity. Fractionation of heparin on Sephadex A-25 column revealed the parallelism of the negative charge and the inhibitory effect of heparin on NK cytotoxicity. These results demonstrated that polyanion could modulate NK cytotoxicity.  相似文献   

19.
NK cells and certain CTL can recognize and lyse targets without restriction by the MHC. NK cells do not express CD3/TCR complexes and the membrane receptors participating in MHC-unrestricted cytotoxicity are largely unknown. We demonstrate that YT2C2, a human NK leukemia cell line, expresses the CD28 differentiation Ag and can spontaneously lyse both murine and human cell lines expressing B7, a B cell- activation Ag that is a ligand for CD28. The participation of CD28/B7 interactions in MHC-unrestricted cytotoxicity mediated by YT2C2 cells was demonstrated by correlation of target sensitivity with levels of B7 expression, inhibition of cytotoxicity by anti-CD28 or anti-B7 mAb, and by making both murine and human cell lines susceptible to YT2C2-mediated lysis by genetic transfection with expression vectors containing B7 cDNA. However, CD28/B7 interactions alone were insufficient to initiate cytotoxicity. mAb inhibition experiments and selection of CD54- (intercellular adhesion molecule-1) deficient B cell targets indicated that CD11a/18 (lymphocyte function-associated Ag-1) also cooperated in CD28/B7-dependent cytotoxicity. The requirement for both CD28/B7 and lymphocyte function-associated Ag-1/intercellular adhesion molecule-1 interactions in YT2C2-mediated MHC-unrestricted cytotoxicity was confirmed by demonstrating that efficient lysis of murine L cells required cotransfection with both B7 and intercellular adhesion molecule-1. These findings support the concept that MHC-unrestricted cytotoxicity may not be due to a unique receptor, but may result from interactions between an appropriate array of "adhesion" molecules with their ligands.  相似文献   

20.
Effect of surgical stress on murine natural killer cell cytotoxicity   总被引:1,自引:0,他引:1  
Natural killer cell cytotoxicity (NKCC) against tumors may be important in preventing in vivo solid tumor dissemination. Multiple animal models demonstrate increased rates of tumor dissemination after surgical stress; previously, we have observed that surgical stress impairs murine NKCC. Because of the importance of surgery in the control of solid tumors, it appeared valuable to examine the mechanism underlying surgical stress impairment of NKCC. The results of this study demonstrate that postsurgical suppression of NKCC begins as early as 2 hr after murine hind limb amputation, reaches nadir at 4 days, and does not recover to control level until postoperative day 12. Anesthetic treatment alone does not cause comparable NKCC suppression. The suppression of NKCC accompanied changes in both splenic size and morphology. The immune suppression was observed in multiple compartments including peripheral blood, bone marrow, and spleen. Mixing experiments demonstrated that surgical stress per se generated a suppressor cell population affecting NKCC. The observed suppression apparently required cell-to-cell contact, because supernatants from 4 and 18 hr cultures of suppressor cells did not cause suppression. The observed suppression was prevented by perioperative treatment with the pyrimidinone analog 2-amino-5-bromo-6-phenyl-4-pyrimidinol. These preclinical observations point to the future prospect of NK-specific perioperative immunotherapy that may help prevent possible tumor dissemination from occurring at the time of surgery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号