首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The current knowledge on the structure and on the organization of polyhydroxyalkanoic acid (PHA)-biosynthetic genes from a wide range of different bacteria, which rely on different pathways for biosynthesis of this storage polyesters, is provided. Molecular data will be shown for genes of Alcaligenes eutrophus, purple non-sulfur bacteria, such as Rhodospirillum rubrum, purple sulfur bacteria, such as Chromatium vinosum, pseudomonads belonging to rRNA homology group I, such as Pseudomonas aeruginosa, Methylobacterium extorquens, and for the Gram-positive bacterium Rhodococcus ruber. Three different types of PHA synthases can be distinguished with respect to their substrate specificity and structure. Strategies for the cloning of PHA synthase structural genes will be outlined which are based on the knowledge of conserved regions of PHA synthase structural genes and of the PHA-biosynthetic routes in bacteria as well as on the heterologous expression of these genes and on the availability of mutants impaired in the accumulation of PHA. In addition, a terminology for the designation of PHAs and of proteins and genes relevant for the metabolism of PHA is suggested.  相似文献   

2.
Summary In bacteria 5-aminolevulinate, the universal precursor in the biosynthesis of the porphyrin nucleus of hemes, chlorophylls and bilins is synthesised by two different pathways: in non-sulphur purple bacteria (Rhodobacter) or Rhizobium 5-aminolevulinate synthase condenses glycine and succinyl-CoA into 5-aminolevulinate as is the case in mammalian cells and yeast. In cyanobacteria, green and purple sulphur bacteria, as in chloroplasts of higher plants and algae a three step pathway converts glutamate into 5-aminolevulinate. The last step is the conversion of glutamate 1-semialdehyde into 5-aminolevulinate. Using a cDNA clone encoding glutamate 1-semialdehyde aminotransferase from barley, genes for this enzyme were cloned from Synechococcus PCC6301 and Escherichia coli and sequenced. The popC gene of E. coli, previously considered to encode 5-aminolevulinate synthase, appears to be a structural gene for glutamate 1-semialdehyde aminotransferase. Domains with identical amino acid sequences comprise 48% of the primary structure of the barley, cyanobacterial and putative E. coli glutamate 1-semialdehyde aminotransferases. The cyanobacterial and barley enzymes share 72% identical residues. The peptide containing a likely pyridoxamine phosphate binding lysine is conserved in all three protein sequences.  相似文献   

3.
Four representatives of methylotrophic bacteria relying on the ribulose monophosphate (RMP) pathway were investigated for their capability to synthesize polyhydroxyalkanoic acids (PHA). In Methylophilus methylotrophus B115, Methylobacillus glycogenes strains B121 and B53 and Acetobacter methanolicus B58 no \-ketothiolase, acetoacetyl-coenzyme A (CoA) reductase or PHA synthase could be detected, and hybridization experiments using heterologous DNA probes derived from PHA-biosynthesis genes of Methylobacterium extorquens or Alcaligenes eutrophus gave no evidence for the presence of the corresponding genes in these PHA-negative methylotrophic bacteria. Fragments harbouring a cluster of PHA-biosynthesis genes of A. eutrophus or Chromatium vinosum or isolated PHA synthase structural genes of M. extorquens, Rhodospirillum rubrum or Rhodobacter sphaeroides were mobilized into the RMP pathway bacteria mentioned above. Only transconjugants, which harboured the PHA-biosynthesis genes of A. eutrophus or C. vinosum, expressed active \-ketothiolase, acetoacetyl-CoA reductase and PHA synthase and accumulated poly(3-hydroxybutyric acid) (PHB). Highest amounts of PHB (up to 15% of the cellular dry weight) were accumulated in transconjugants of Methylophilus methylotrophus B115 or of Methylobacillus glycogenes strains B121 and B53 harbouring the PHA-biosynthesis genes of C. vinosum. Correspondence to: A. Steinbüchel  相似文献   

4.
Many microorganisms harbor genes necessary to synthesize biodegradable plastics known as polyhydroxyalkanoates (PHAs). We surveyed a genomic database and discovered a new cluster of class IV PHA synthase genes (phaRC). These genes are different in sequence and operon structure from any previously reported PHA synthase. The newly discovered PhaRC synthase was demonstrated to produce PHAs in recombinant Escherichia coli.  相似文献   

5.
The formation of poly(3-hydroxyalkanoic acid), PHA, by various strains of chemolithotrophic and phototrophic bacteria has been examined. Chemolithotrophic bacteria were grown aerobically under nitrogen-limiting conditions on various aliphatic organic acids. Phototrophic bacteria were grown anaerobically in the light on a nitrogen-rich medium and were subsequently transferred to a nitrogen-free medium containing acetate, propionate, valerate, heptanoate or octanoate as carbon source. All 41 strains investigated in this study were able to synthesize and accumulate PHA. All 11 strains of chemolithotrophic bacteria and all 15 strains belonging to the non-sulfur purple bacteria synthesized a polymer, which contained 3-hydroxy-valerate (3HV) beside 3-hydroxybutyrate (3HB), if the cells were cultivated in the presence of propionate, valerate or heptanoate. Many non-sulfur purple bacteria synthesized copolyesters of 3HB and 3HV even with acetate as carbon source. In contrast, most sulfur purple bacteria did not incorporate 3HV at all. Among 15 strains tested, only Chromatium vinosum strain 1611, C. purpuratum strain BN5500 and Lamprocystis roseopersicina strain 3112 were able to synthesize polyesters containing 3HV with propionate, valerate or heptanoate as carbon source.  相似文献   

6.
Polyhydroxyalkanoates (PHAs) are polyesters naturally produced by bacteria that have properties of biodegradable plastics and elastomers. A PHA synthase from Pseudomonas aeruginosa modified at the carboxy-end for peroxisomal targeting was transformed in Pichia pastoris. The PHA synthase was expressed under the control of the promoter of the P. pastoris acyl-CoA oxidase gene. Synthesis of up to 1% medium-chain-length PHA per g dry weight was dependent on both the expression of the PHA synthase and the presence of oleic acid in the medium. PHA accumulated as inclusions within the peroxisomes. P. pastoris could be used as a model system to study how peroxisomal metabolism needs to be modified to increase PHA production in other eukaryotes, such as plants.  相似文献   

7.
聚羟基脂肪酸酯(polyhydroxyalkanoate)PHA 纳米微球是很多微生物在营养失衡的情况下,在体内合成的一种可生物降解的细胞内聚酯,主要作为微生物的碳源及能量储备。天然 PHA 微球的内部是由疏水的聚酯链构成的疏水核心,其外层是由磷脂界膜及膜上嵌入或附着的包括 PHA合酶 PhaC 和 PHA 颗粒相关蛋白 PhaP 等蛋白构成的边界层。PhaC 通过共价键连接在PHA微球表面,而 PhaP 通过疏水相互作用吸附在 PHA 微球表面。通过将外源性功能蛋白与 PhaC 或 PhaP 进行融合表达,在重组微生物体内就能直接合成表面带有功能蛋白的纳米微球复合体。由于该纳米微球在微生物细胞内是以独立的包涵体形式存在,因此通过细胞破碎及离心等方法就能简便、有效地使其从细胞中分离并得以纯化。鉴于 PHA 微球这种表面易被修饰改造的特性,越来越多的功能蛋白通过与 PHA 微球表面蛋白(PhaC 或 PhaP)的融合表达,呈递在了 PHA 微球表面,使其成为一种廉价、高效的蛋白固定化及呈递的新技术。本文在介绍了 PHA 微球的结构特性及生物合成的基础上,着重综述了目前关于功能化 PHA 微球在蛋白纯化、固定化酶、生物分离、靶向递药、疾病诊断、成像技术及新型疫苗开发方面的研究现状及其未来在生物医药等领域的广泛应用前景。  相似文献   

8.
In order to investigate the in vivo substrate specificity of the type I polyhydroxyalkanoate (PHA) synthase from Ralstonia eutropha, we functionally expressed the PHA synthase gene in various Escherichia coli mutants affected in fatty acid beta-oxidation and the wild-type. The PHA synthase gene was expressed either solely (pBHR70) or in addition to the R. eutropha genes encoding beta-ketothiolase and acetoacetyl-coenzyme A (CoA) reductase comprising the entire PHB operon (pBHR68) as well as in combination with the phaC1 gene (pBHR77) from Pseudomonas aeruginosa encoding type II PHA synthase. The fatty acid beta-oxidation route was employed to provide various 3-hydroxyacyl-CoA thioesters, depending on the carbon source, as in vivo substrate for the PHA synthase. In vivo PHA synthase activity was indicated by PHA accumulation and substrate specificity was revealed by analysis of the comonomer composition of the respective polyester. Only in recombinant E. coli fad mutants harboring plasmid pBHR68, the R. eutropha PHA synthase led to accumulation of poly(3-hydroxybutyrate-co-3-hydroxyoctanoate) (poly(3HB-co-3HO)) and poly(3HB-co-3HO-co-3-hydroxydodecanoate (3HDD)), when octanoate and decanoate or dodecanoate were provided as carbon source, respectively. Coexpression of phaC1 from P. aeruginosa indicated and confirmed the provision of PHA precursor via the beta-oxidation pathway and led to the accumulation of a blend of two different PHAs in the respective E. coli strain. These data strongly suggested that R. eutropha PHA synthase accepts, besides the main substrate 3-hydroxybutyryl-CoA, also the CoA thioesters of 3HO and 3HDD.  相似文献   

9.
Bacteria are able to synthesize a wide variety of different thermoplastic polyhydroxyalkanoic acids (PHA). The physiology of PHA metabolism has been studied in most detail in the aerobic hydrogen bacterium Alcaligenes eutrophus. Strains of this bacterium are already used for the production of biodegradable polyesters on a technological scale. The current knowledge on the pathways for PHA synthesis, on the genes essential for PHA biosynthesis and on genes affecting the accumulation of PHA in this bacterium will be reviewed.  相似文献   

10.
Polyhydroxyalkanoates (PHAs) are biopolyesters that generally consist of 3-, 4-, 5-, and 6-hydroxycarboxylic acids, which are accumulated as carbon and energy storage materials in many bacteria in limited growth conditions with excess carbon sources. Due to the diverse substrate specificities of PHA synthases, the key enzymes for PHA biosynthesis, PHAs with different material properties have been synthesized by incorporating different monomer components with differing compositions. Also, engineering PHA synthases using in vitro-directed evolution and site-directed mutagenesis facilitates the synthesis of PHA copolymers with novel material properties by broadening the spectrum of monomers available for PHA biosynthesis. Based on the understanding of metabolism of PHA biosynthesis, recombinant bacteria have been engineered to produce different types of PHAs by expressing heterologous PHA biosynthesis genes, and by creating and enhancing the metabolic pathways to efficiently generate precursors for PHA monomers. Recently, the PHA biosynthesis system has been expanded to produce unnatural biopolyesters containing 2-hydroxyacid monomers such as glycolate, lactate, and 2-hydroxybutyrate by employing natural and engineered PHA synthases. Using this system, polylactic acid (PLA), one of the major commercially-available bioplastics, can be synthesized from renewable resources by direct fermentation of recombinant bacteria. In this review, we discuss recent advances in the development of the PHA biosynthesis system as a platform for tailor-made polyesters with novel material properties.  相似文献   

11.
[背景] 细菌能通过合成聚羟基脂肪酸酯(Polyhydroxyalknoates,PHA)在细胞内储存物质和能量,提高对环境的适应能力。在红树林中,由于土壤周期性受海水浸没,形成营养物质种类丰富和含量波动大的特殊生境,为细菌进化出特殊的PHA合成途径提供了条件。[目标] 为了增加对红树林产PHA细菌资源的了解,获得产PHA细菌,使用纯培养方法分离和鉴定细菌,并评估菌株的产PHA能力。[方法] 采集红树植物海桑根系和红树滩涂土壤样品,连续5周培养、分离纯化获得细菌菌株;通过16S rRNA基因相似性及系统进化分析鉴定细菌分类地位,利用PHA合成酶基因(phaC)鉴定细菌合成PHA的能力;通过基因组草图测序,分析细菌的phaC基因种类、代谢通路及系统进化关系;通过气相色谱分析细菌产PHA的累积量及组成。[结果] 从红树林土壤样品中分离得到97株细菌,其中13株带有phaC基因,包括坚强芽孢杆菌(Cytobacillus firmus)、弯曲芽孢杆菌(Bacillus flexus)、除烃海杆菌(Marinobacter hydrocarbonoclasticus)和酯香微杆菌(Microbacterium esteraromaticum)。B. flexus MN15-19以丙酮酸盐为碳源,可累积细胞干重11%的PHA,同时具有固碳功能的还原性三羧酸循环通路,有开发成为固碳产PHA工程菌株的潜力。酯香微杆菌可产PHA,但是其phaC基因结构特殊,基因组注释未能识别出任何已知phaC基因。[结论] 研究发现红树林土壤可培养细菌中存在未知的PHA合成途径,说明红树林生态系统中的细菌具有资源挖掘的重要价值。  相似文献   

12.
A 37-kb photosynthesis gene cluster was sequenced in a photosynthetic bacterium belonging to the beta subclass of purple bacteria (Proteobacteria), Rubrivivax gelatinosus. The cluster contained 12 bacteriochlorophyll biosynthesis genes (bch), 7 carotenoid biosynthesis genes (crt), structural genes for photosynthetic apparatuses (puf and puh), and some other related genes. The gene arrangement was markedly different from those of other purple photosynthetic bacteria, while two superoperonal structures, crtEF-bchCXYZ-puf and bchFNBHLM-lhaA-puhA, were conserved. Molecular phylogenetic analyses of these photosynthesis genes showed that the photosynthesis gene cluster of Rvi. gelatinosus was originated from those of the species belonging to the alpha subclass of purple bacteria. It was concluded that a horizontal transfer of the photosynthesis gene cluster from an ancestral species belonging to the alpha subclass to that of the beta subclass of purple bacteria had occurred and was followed by rearrangements of the operons in this cluster.  相似文献   

13.
Polyhydroxyalkanoates (PHAs) are biologically produced polyesters that have potential application as biodegradable plastics. Especially important are the short-chain-length-medium-chain-length (SCL-MCL) PHA copolymers, which have properties ranging from thermoplastic to elastomeric, depending on the ratio of SCL to MCL monomers incorporated into the copolymer. Because of the potential wide range of applications for SCL-MCL PHA copolymers, it is important to develop and characterize metabolic pathways for SCL-MCL PHA production. In previous studies, coexpression of PHA synthase genes and the 3-ketoacyl-acyl carrier protein reductase gene (fabG) in recombinant Escherichia coli has been shown to enhance PHA production from related carbon sources such as fatty acids. In this study, a new fabG gene from Pseudomonas sp. 61-3 was cloned and its gene product characterized. Results indicate that the Pseudomonas sp. 61-3 and E. coli FabG proteins have different substrate specificities in vitro. The current study also presents the first evidence that coexpression of fabG genes from either E. coli or Pseudomonas sp. 61-3 with fabH(F87T) and PHA synthase genes can enhance the production of SCL-MCL PHA copolymers from nonrelated carbon sources. Differences in the substrate specificities of the FabG proteins were reflected in the monomer composition of the polymers produced by recombinant E. coli. SCL-MCL PHA copolymer isolated from a recombinant E. coli strain had improved physical properties compared to the SCL homopolymer poly-3-hydroxybutyrate. This study defines a pathway to produce SCL-MCL PHA copolymer from the fatty acid biosynthesis that may impact on PHA production in recombinant organisms.  相似文献   

14.
The purple photosynthetic bacteria contain a large variety of sensory and regulatory proteins, and those responding to light are among the most interesting. These currently include bacteriophytochrome (Bph), sensory rhodopsin (SR), and photoactive yellow protein (PYP), which all appear to function as light sensors. We herein interpret new findings within the context of current knowledge. For greater detail, the reader is referred to comprehensive reviews on these topics. Of the three proteins, only PYP has been well-characterized in terms of structure and physical-chemical properties in the purple bacteria, although none have well-defined functions. New findings include a cluster of six genes in the Thermochromatium tepidum genome that encodes presumed sensory rhodopsin and phototaxis proteins. T. tepidum also has a gene for PYP fused to bacteriophytochrome and diguanylate cyclase domains. The genes for PYP and its biosynthetic enzymes are associated with those for gas vesicle formation in Rhodobacter species, suggesting that one function of PYP is to regulate cell buoyancy. The association of bacteriophytochrome genes with those for reaction centers and light-harvesting proteins in Rhodopseudomonas palustris suggests that the photosynthetic antenna as well as the reaction center are regulated by Bphs. Furthermore, Rc. centenum PPR is reversibly photobleached at 702 nm rather than red-shifted as in other phytochromes, suggesting that PPR senses the intensity of white light rather than light quality. PYP from Halorhodospira(aka Ectothiorhodospira)halophila is of special interest because it has become the structural prototype for the PAS domain, a motif that is found throughout the phylogenetic tree and which plays important roles in many signaling pathways. Thus, the structural and photochemical characterization of PYP, utilizing site-directed mutagenesis, provides insights into the mechanism of signal transduction.  相似文献   

15.
16.
In the genome of Burkholderia cepacia strain IPT64, which accumulates a blend of the two homopolyesters poly(3-hydroxybutyrate), poly(3HB), and poly(3-hydroxy-4-pentenoic acid), poly(3H4PE), from sucrose or gluconate as single carbon source, the polyhydroxyalkanoate (PHA) synthase structural gene was disrupted by the insertion of a chloramphenicol-resistant gene cassette (phaC1::Cm). The suicide vector pSUP202 harboring phaC1::Cm was transferred to B. cepacia by conjugation. The inactivated gene was integrated into the chromosome of B. cepacia by homologous recombination. This mutant and also 15 N-methyl-N'-nitrosoguanidine (NMG)-induced mutants still accumulated low amounts of PHAs and expressed low PHA synthase activity. The analysis of the mutant phaC1::Cm showed that it accumulated about 1% of PHA consisting of 68.2 mol% 3HB and 31.8 mol% 3H4PE from gluconate. The wild-type, in contrast, accumulated 49.3% of PHA consisting of 96.5 mol% 3HB and 3. 5 mol% 3H4PE. Our results indicated that the genome of B. cepacia possesses at least two PHA synthase genes, which probably have different substrate specificities.  相似文献   

17.
18.
The PCR cloning strategy for type II polyhydroxyalkanoate (PHA) biosynthesis genes established previously for Pseudomonas was successfully applied to Burkholderia caryophylli strain AS 1.2741. The whole pha locus containing PHA synthase genes phaC1, phaC2 and PHA depolymerase gene phaZ was cloned. The complete open reading frames of phaC1(Bc), phaC2(Bc) and phaZ(Bc) were identified. Sequence analyses of the phaC1(Bc), phaZ(Bc) and phaC2(Bc) showed more than 77.7%, 73.7% and 68.5% identities compared with the corresponding pha loci of the known Pseudomonas strains, respectively. The functional expression of the phaC1(Bc) or phaC2(Bc) in Escherichia coli strain KM32B (fadB deleted mutant) showed the abilities of PHA production by the estimated PHA synthase genes. Over 1% PHA consisting of 3-hydroxyhexanoate (3HHx), 3-hydroxyoctanoate (3HO) and 3-hydroxydecanoate (3HD) was detected from cells of recombinant E. coli KM32B (pHXM11) harboring phaC1(Bc), grown on octanoate. At the same time over 3% of PHA consisting of 3HO and 3HD was produced from cells of recombinant E. coli KM32B (pHXM21) harboring phaC2(BC), grown on decanoate. Results showed the PCR cloning strategy developed previously can be applied to non-Pseudomonas strains such as Burkholderia in this case. This result also provided evidence for the presumption that the Burkholderia strain possesses not only polyhydroxybutyrate synthase genes, but also synthase for medium-chain-length polyhydroxyalkanoates consisting of 3HHx, 3HO and 3HD.  相似文献   

19.
Conservation of the photosynthesis gene cluster in Rhodospirillum centenum   总被引:5,自引:0,他引:5  
Intraspecies and intergenus complementation analysis were utilized to demonstrate that photosynthesis genes are clustered in distantly related purple photosynthetic bacteria. Specifically, we show that the linkage order for genes involved in bacteriochlorophyll and carotenoid biosynthesis in Rhodospirillum centenum are arranged essentially as in Rhodobacter capsulatus and Rhodobacter sphaeroides. In addition, the location and relative distance observed between the puf and puh operons which encode for light harvesting and reaction-centre structural genes are also conserved between these species. Conservation of the photosynthesis gene cluster implies either that there are structural or regulatory constraints that limit rearrangement of the photosynthesis gene cluster or that there may have been lateral transfer of the photosynthesis gene cluster among different species of phototrophic bacteria.  相似文献   

20.
Only the PHA synthase is required for formation of spherical intracellular PHA granules emerging at cell poles. This study aims to assign the polar targeting signal in the PHA synthase and to provide insight into molecular mechanisms of granule formation. Random in-frame insertion mutagenesis indicated dispensable and essential regions suggesting that only the N terminus (<100 aa) is dispensable and forms a random coil structure. The inactive PHA synthase (C319A) is still localized to cell poles, indicating that the nascent PHA chain does not serve as an anchor or signal for subcellular localization and granule formation. Deletion of the N terminus did neither affect subcellular localization nor PHA granule formation. The deletion of the hydrophobic C terminus (68 aa) did not impact on subcellular localization of the PHA synthase, but abolished PHA synthase activity. The structural protein PhaP1 was found to be not required for subcellular localization and initiation of granule formation. PhaP1 only localizes to the cell poles, when PHA granules are formed. These data suggested that the PHA synthase itself localizes to the cell poles via its core region (93-521 aa), which is structurally constraint and comprises the polar positional information for self-assembly of PHA granules at the cell poles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号