首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The receptor-generated signals that are responsible for driving the cell cycle are incompletely characterised in mammalian cells. It is clear, however, that the cellular messenger systems that stimulate DNA synthesis and mitosis are separable. These are interwoven with biochemical checkpoints that ensure that processes, such as chromosomal replication and microtubule attachment to duplicated chromosomes, are complete before the following phase of the cell cycle is initiated. In some cells, activation of DNA synthesis by factors such as LPA and serum has been shown to require the GTP-binding protein G(i). We have found that G(i) plays an additional role in mitosis activated by both 7-transmembrane receptors and tyrosine kinase receptors, and that this involves the translocation of the alpha-subunit of G(i) (G(ialpha)) to the nucleus. Here we show by confocal microscopy that G(ialpha)migrates to the nucleus near the onset of mitosis in serum-activated Swiss 3T3 cells and binds to the kinetochore region of replicated chromosomes. Inhibition of G(i) function with pertussis toxin had no effect on the induction of DNA synthesis by serum, but cell proliferation was inhibited. Flow cytometric analysis showed that this resulted from retardation of the transition through mitosis and into G(1). Additionally, pertussis toxin impaired the activity of p34(cdc2), a cyclin-dependent kinase involved in the transition from M-phase to G(1), but not the S-phase cyclin, cyclin E. These data show that the G-protein G(i) has a key role in the regulation of mitosis in fibroblasts.  相似文献   

2.
The non-receptor tyrosine kinase Src is recruited to activated fibroblast growth factor receptor (FGFR) complexes through the adaptor protein factor receptor substrate 2 (FRS2). Here, we show that Src kinase activity has a crucial role in the regulation of FGFR1 signalling dynamics. Following receptor activation by ligand binding, activated Src is colocalized with activated FGFR1 at the plasma membrane. This localization requires both active Src and FGFR1 kinases, which are inter-dependent. Internalization of activated FGFR1 is associated with release from complexes containing activated Src. Src-mediated transport and subsequent activation of FGFR1 require both RhoB endosomes and an intact actin cytoskeleton. Chemical and genetic inhibition studies showed strikingly different requirements for Src family kinases in FGFR1-mediated signalling; activation of the phosphoinositide-3 kinase-Akt pathway is severely attenuated, whereas activation of the extracellular signal-regulated kinase pathway is delayed in its initial phase and fails to attenuate.  相似文献   

3.
4.
Although p38 MAPK is known to be activated in response to various environmental stresses and to have inhibitory roles in cell proliferation and tumor progression, its role in cell cycle progression in the absence of stress is unknown in most cell types. In the case of G(2)/M cell cycle control, p38 activation has been shown to trigger a rapid G(2)/M cell cycle checkpoint after DNA damage stress and a spindle checkpoint after microtubule disruption. In the course of our studies, we observed that p38 became actively phosphorylated, and its kinase activity increased transiently during G(2)/M cell cycle transition. Using an immunocytochemistry approach, the active form of p38 was found at the centrosome from late G(2) throughout mitosis, which suggests functional relevance for active p38 protein during mitotic entry. A closer examination reveals that p38 inhibition by pharmacologic inhibitors significantly accelerated the timing of mitotic entry. In addition, long term exposure of the inhibitor enhanced Cdc2 activity. These results indicate that p38 activity during G(2)/M may be involved in a mechanism for fine tuning the initiation of mitosis and perhaps transit of mitosis. Consistent with our previous findings, Cdc25B was phosphorylated on serine 309 at the centrosome during G(2)/M when p38 was active at this site; Cdc25B phosphorylation inhibits Cdc25B activity, and this phosphorylation was found to be p38-dependent. Taken together, our findings suggest that p38 regulates the timing of mitotic entry via modulation of Cdc25B activity under normal nonstress conditions.  相似文献   

5.
Mitotic entry and exit require activation and inactivation of the Cdk1-cyclin B kinase complex, respectively. The Cdc25 protein phosphatase family activates Cdk1-cyclin B at the G2/M transition by removing inhibitory phosphate groups. Cdc25 family members, held inactive during interphase, are activated during mitotic progression in an amplification loop involving Cdk1-cyclin B. While Cdc25 activation at the G2/M transition is required for the timely initiation of mitosis, recent evidence suggests that the inactivation of Cdc25 in late mitosis may play a role in supporting Cdk1-cyclin B inactivation. Here, we discuss the mechanisms of Cdc25 regulation and how they pertain to both mitotic entry and exit.  相似文献   

6.
N Furuno  Y Ogawa  J Iwashita  N Nakajo    N Sagata 《The EMBO journal》1997,16(13):3860-3865
In vertebrates, M phase-promoting factor (MPF), a universal G2/M regulator in eukaryotic cells, drives meiotic maturation of oocytes, while cytostatic factor (CSF) arrests mature oocytes at metaphase II until fertilization. Cdk2 kinase, a G1/S regulator in higher eukaryotic cells, is activated during meiotic maturation of Xenopus oocytes and, like Mos (an essential component of CSF), is proposed to be involved in metaphase II arrest in mature oocytes. In addition, cdk2 kinase has been shown recently to be essential for MPF activation in Xenopus embryonic mitosis. Here we report injection of Xenopus oocytes with the cdk2 kinase inhibitor p21Cip in order to (re)evaluate the role of cdk2 kinase in oocyte meiosis. Immature oocytes injected with p21Cip can enter both meiosis I and meiosis II normally, as evidenced by the typical fluctuations in MPF activity. Moreover, mature oocytes injected with p21Cip are retained normally in metaphase II for a prolonged period, whereas those injected with neutralizing anti-Mos antibody are released readily from metaphase II arrest. These results argue strongly against a role for cdk2 kinase in MPF activation and its proposed role in metaphase II arrest, in Xenopus oocyte meiosis. We discuss the possibility that cdk2 kinase stored in oocytes may function, as a maternal protein, solely for early embryonic cell cycles.  相似文献   

7.
Mitotic entry and exit require activation and inactivation of the Cdk1-cyclin B kinase complex, respectively. The Cdc25 protein phosphatase family activates Cdk1-cyclin B at the G2/M transition by removing inhibitory phosphate groups. Cdc25 family members, held inactive during interphase, are activated during mitotic progression in an amplification loop involving Cdk1-cyclin B. While Cdc25 activation at the G2/M transition is required for the timely initiation of mitosis, recent evidence suggests that the inactivation of Cdc25 in late mitosis may play a role in supporting Cdk1-cyclin B inactivation. Here, we discuss the mechanisms of Cdc25 regulation and how they pertain to both mitotic entry and exit.  相似文献   

8.
The Bcl-2 protein has an anti-apoptotic effect in neuronal and other cell types. We show for the first time that the Bcl-2 promoter is activated by the neuronal survival factor nerve growth factor (NGF) and that this effect is dependent on a region of the promoter from -1472 to -1414. This activation requires the Rap-1 G protein and the MEK-1 and p42/p44 MAPK enzymes but is independent of other NGF-activated signalling pathways involving protein kinase A or protein kinase C.  相似文献   

9.
It is now established that a family of dual-specificity protein phosphatases are able to interact with mitogen and stress-activated protein kinases in a highly specific manner to differentially regulate these enzymes in mammalian cells. A role for these proteins in negative feedback regulation of MAP kinase activity is also supported by genetic and biochemical studies in yeasts and Drosophila. More recently it has become clear that other classes of protein phosphatase also play key roles in the regulated dephosphorylation of MAP kinases, including tyrosine-specific protein phosphatases and serine/threonine protein phosphatases. It is likely that a complex balance between upstream activators and these different classes of MAP kinase specific phosphatase are responsible for determining, at least in part, the magnitude and duration of MAP kinase activation and hence the physiological outcome of signalling.  相似文献   

10.
The site of action of growth factors on mammalian cell cycle has been assigned to the boundary between the G1 and S phases. We show here that Epidermal Growth Factor (EGF) is also required for mitosis. BaF/3 cells expressing the EGFR (BaF/wtEGFR) synthesize DNA in response to EGF, but arrest in S-phase. We have generated a cell line (BaF/ERX) with defective downregulation of the EGFR and sustained activation of EGFR signalling pathways: these cells undergo mitosis in an EGF-dependent manner. The transit of BaF/ERX cells through G2/M strictly requires activation of EGFR and is abolished by AG1478. This phenotype is mimicked by co-expression of ErbB2 in BaF/wtEGFR cells, and abolished by inhibition of the EGFR kinase, suggesting that sustained signalling of the EGFR, through impaired downregulation of the EGFR or heterodimerization, is required for completion of the cycle. We have confirmed the role of EGFR signalling in the G2/M phase of the cell cycle using a human tumor cell line which overexpresses the EGFR and is dependent on EGFR signalling for growth. These findings unmask an EGF-sensitive checkpoint, helping to understand the link between sustained EGFR signalling, proliferation and the acquisition of a radioresistant phenotype in cancer cells.  相似文献   

11.
《Current biology : CB》1999,9(17):971-S2
Receptors of the seven transmembrane domain family are coupled to heterotrimeric G proteins [1]. Binding of ligand to these receptors induces dissociation of the heterotrimeric complex into free GTP–Gα and Gβγ subunits, which then interact with their respective effector molecules to stimulate specific cellular responses. In some cases, these cellular responses involve mitogenic signalling [2]. The mitogen-activated protein (MAP) kinase cascade is initiated by the protein kinase cRaf1 and links growth factor receptor signalling to cell growth and differentiation [3]. The main activator of cRaf1 is the small GTP-binding protein Ras [4], and the binding of cRaf1 to GTP–Ras translocates cRaf1 to the plasma membrane, where it is activated [5]. It has been reported that cRaf1 associates directly with the β subunit of heterotrimeric G proteins in vitro, and with the βγ subunit complex in vivo[6], but the role of this association is not yet understood. Here, we show that cRaf1 associates with Gβ1γ2, and that this association in mammalian cells is significantly enhanced when active p21Ras is present or when cRaf1 is otherwise targeted to the membrane. Association with Gβ1γ2 has no effect on the kinase activity of cRaf1, but cRaf1 can affect Gβγ-mediated signalling events. Thus, membrane-localised cRaf1 inhibits G-protein-coupled receptor (GPCR)-stimulated activation of phospholipase Cβ (PLCβ) by sequestration of Gβγ subunits, an effect also observed with endogenous levels of cRaf1. Our data suggest that cRaf1 may be an important regulator of signalling by Gβγ, particularly in those GPCR systems that stimulate the MAP kinase cascade through the activation of p21Ras.  相似文献   

12.
Protein kinase cascades in meiotic and mitotic cell cycle control   总被引:24,自引:0,他引:24  
Eukaryotic cell cycle progression during meiosis and mitosis is extensively regulated by reversible protein phosphorylation. Many cell surface receptors for mitogens are ligand-stimulated protein-tyrosine kinases that control the activation of a network of cytoplasmic and nuclear protein-serine (threonine) kinases. Over 30 plasma membrane associated protein-tyrosine kinases are encoded by proto-oncogenes, i.e., genes that have the potential to facilitate cancer when disregulated. Proteins such as ribosomal protein S6, microtubule-associated protein-2, myelin basic protein, and casein have been used to detect intracellular protein-serine (threonine) kinases that are activated further downstream in growth factor signalling transduction cascades. Genetic analysis of yeast cell division control (cdc) mutants has revealed another 20 or so protein-serine (threonine) kinases. One of these, specified by the cdc-2 gene in Schizosaccharomyces pombe, has homologs that are stimulated during M phase in maturing sea star and frog oocytes and mammalian somatic cells. Furthermore, during meiotic maturation in these echinoderm and amphibian oocytes, this is followed by activation of many of the same protein-serine (threonine) kinases that are stimulated when quiescent mammalian somatic cells are prompted with mitogens to traverse from G0 to G1 phase. These findings imply that a similar protein kinase cascade may oversee progression at multiple points in the cell cycle.  相似文献   

13.
14.
Mitogen-activated protein kinase (MAPK) is inactivated through dephosphorylation of tyrosyl and threonyl regulatory sites. In yeast, both dual-specificity and tyrosine-specific phosphatases are involved in dephosphorylation. In mammals, however, no tyrosine-specific phosphatase has been identified molecularly to dephosphorylate MAPK in vivo. Recently, we and others have cloned a murine tyrosine-specific phosphatase, PTPBR7/PTP-SL, which is expressed predominantly in the brain. Here we report inactivation of the extracellular signal-regulated kinase (ERK) family MAPK by PTPBR7. PTPBR7 made complexes with ERK1/ERK2 in vivo and dephosphorylated ERK1 in vitro. When overexpressed in mammalian cells, wild-type PTPBR7 suppressed the phosphorylation and activation of ERK by epidermal growth factor (EGF), nerve growth factor (NGF), and constitutively active MEK1, a mutant MAPK kinase. In contrast, catalytically inactive and ERK-binding-deficient mutants revealed little inhibition on the ERK cascade. These results indicate that PTPBR7 suppresses MAPK directly in vivo.  相似文献   

15.
Microtubules are central to eukaryotic cell morphogenesis. Microtubule plus-end tracking proteins (+TIPs) transport polarity factors to the cell cortex, thereby playing a key role in both microtubule dynamics and cell polarity. However, the signalling pathway linking +TIPs to cell polarity control remains elusive. Here we show that the fission yeast checkpoint kinase Cds1 (Chk2 homologue) delays the transition of growth polarity from monopolar to bipolar (termed NETO; new-end take-off). The +TIPs CLIP170 homologue Tip1 and kinesin Tea2 are responsible for this delay, which is accompanied by a reduction in microtubule dynamics at the cell tip. Remarkably, microtubule stabilization occurs asymmetrically, prominently at the non-growing cell end, which induces abnormal accumulation of the polarity factor Tea1. Importantly, NETO delay requires activation of calcineurin, which is carried out by Cds1, resulting in Tip1 dephosphorylation. Thus, our study establishes a critical link between calcineurin and checkpoint-dependent cell morphogenesis.  相似文献   

16.
MCAK, a kinesin related motor protein with microtubule depolymerizing activity, is known to play an important role in spindle assembly and correcting errors in mitotic chromosome alignment. Experiments to determine how cellular levels of the protein are regulated demonstrate that MCAK accumulates during cell cycle progression, reaches a maximum at G2/M phase, and is rapidly degraded by the proteasome during mitosis. Immunofluorescence microscopy further indicates that MCAK largely disappears from kinetochores and spindle poles at the metaphase to anaphase transition. A phosphorylated form of MCAK appears during mitosis and seems to be preferentially degraded, but degradation does not appear to depend on Aurora B, a kinase reported to be involved in regulating the error correcting activity of the protein. These studies indicate that MCAK activity is limited during the latter stages of mitosis by protein degradation, and argue against a role for the protein in anaphase chromosome movement.  相似文献   

17.
The NIMA-related kinase Nek2 promotes centrosome separation at the G2/M transition and, consistent with this role, is known to be concentrated at the proximal ends of centrioles. Here, we show by immunofluorescence microscopy that Nek2 also localises to the distal portion of the mother centriole. Its accumulation at this site is cell cycle-dependent and appears to peak in late G2. These findings are consistent with previous data implicating Nek2 in promoting reorganisation of centrosome-anchored microtubules at the G2/M transition, given that microtubules are anchored at the subdistal appendages of the mother centriole in interphase. In addition, we report that siRNA-mediated depletion of Nek2 compromises the ability of cells to resorb primary cilia before the onset of mitosis, while overexpression of catalytically active Nek2A reduces ciliation and cilium length in serum-starved cells. Based on these findings, we propose that Nek2 has a role in promoting cilium disassembly at the onset of mitosis. We also present evidence that recruitment of Nek2 to the proximal ends of centrioles is dependent on one of its substrates, the centrosome cohesion protein C-Nap1.  相似文献   

18.
Cyclins and their partners: from a simple idea to complicated reality.   总被引:23,自引:0,他引:23  
The cyclins comprise a family of proteins which combine with protein kinase subunits encoded by members of the cdc2 family. The active protein kinase thus formed phosphorylates target proteins in the cell and promotes certain cell cycle transitions. Cyclins A and B show the unusual property of sudden and specific proteolysis shortly before the metaphase-anaphase transition during mitosis. The destruction of the cyclins leads to rapid loss of activity of their kinase companions. The 'simple idea' referred to in the title of this article was that accumulation of cyclin formed maturation promoting factor (MPF), the enzyme that promotes the G2-M transition, and cyclin destruction turned off MPF. The complexity refers to additional controls of cdc2 activity, such as its reversible phosphorylation. Furthermore, many new members of the cyclin family have recently been discovered that may play a role in the regulation of the G1-S transition, and in higher organisms, the cdc2 family is also more numerous than was at first appreciated. Cyclins make important contributions both to subcellular localization and the substrate specificity of their companion kinase subunits. It is too early to say if the entire range of cyclin-like and cdc2-like protein kinases are involved in the control of the cell cycle.  相似文献   

19.
Receptors of the seven transmembrane domain family are coupled to heterotrimeric G proteins [1]. Binding of ligand to these receptors induces dissociation of the heterotrimeric complex into free GTP-Galpha and Gbetagamma subunits, which then interact with their respective effector molecules to stimulate specific cellular responses. In some cases, these cellular responses involve mitogenic signalling [2]. The mitogen-activated protein (MAP) kinase cascade is initiated by the protein kinase cRaf1 and links growth factor receptor signalling to cell growth and differentiation [3]. The main activator of cRaf1 is the small GTP-binding protein Ras [4], and the binding of cRaf1 to GTP-Ras translocates cRaf1 to the plasma membrane, where it is activated [5]. It has been reported that cRaf1 associates directly with the beta subunit of heterotrimeric G proteins in vitro, and with the betagamma subunit complex in vivo [6], but the role of this association is not yet understood. Here, we show that cRaf1 associates with Gbeta1gamma2, and that this association in mammalian cells is significantly enhanced when active p21(Ras) is present or when cRaf1 is otherwise targeted to the membrane. Association with Gbeta1gamma2 has no effect on the kinase activity of cRaf1, but cRaf1 can affect Gbetagamma-mediated signalling events. Thus, membrane-localised cRaf1 inhibits G-protein-coupled receptor (GPCR)-stimulated activation of phospholipase Cbeta (PLCbeta) by sequestration of Gbetagamma subunits, an effect also observed with endogenous levels of cRaf1. Our data suggest that cRaf1 may be an important regulator of signalling by Gbetagamma, particularly in those GPCR systems that stimulate the MAP kinase cascade through the activation of p21(Ras).  相似文献   

20.
Cell shape change and the restructuring of the cytoskeleton are important regulatory responses that influence the growth, differentiation, and commitment to apoptosis of different cell types. MEK kinase 1 (MEKK1) activates the c-Jun NH2-terminal kinase (JNK) pathway in response to exposure of cells to microtubule toxins, including taxol. MEKK1 expression is elevated 3-fold in mitosis and microtubule toxin-treated cells accumulated at G2/M of the cell cycle. Targeted disruption of MEKK1 expression in embryonic stem cells resulted in the loss of JNK activation and increased apoptosis in response to taxol. Targeted disruption of the MEK kinase 2 gene had no effect on activation of the JNK pathway in response to microtubule toxins demonstrating a specific role of MEKK1 in this response. Cytochalasin D-mediated disruption of actin fibers activates JNK and stimulates apoptosis similarly in MEKK1(-/-) and wild type cells. The results show that MEKK1 is required for JNK activation in response to microtubule but not actin fiber toxins in embryonic stem cells. MEKK1 activation can protect cells from apoptosis in response to change in the integrity of the microtubule cytoskeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号