首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The adhesion force and specificity in the first experimental evidence for cell-cell recognition in the animal kingdom were assigned to marine sponge cell surface proteoglycans. However, the question whether the specificity resided in a protein or carbohydrate moiety could not yet be resolved. Here, the strength and species specificity of cell-cell recognition could be assigned to a direct carbohydrate-carbohydrate interaction. Atomic force microscopy measurements revealed equally strong adhesion forces between glycan molecules (190-310 piconewtons) as between proteins in antibody-antigen interactions (244 piconewtons). Quantitative measurements of adhesion forces between glycans from identical species versus glycans from different species confirmed the species specificity of the interaction. Glycan-coated beads aggregated according to their species of origin, i.e., the same way as live sponge cells did. Live cells also demonstrated species selective binding to glycans coated on surfaces. These findings confirm for the first time the existence of relatively strong and species-specific recognition between surface glycans, a process that may have significant implications in cellular recognition.  相似文献   

2.
A possible role of cell surface glycoconjugates in cell recognition has been envisioned based on recognition of carbohydrates by cell surface proteins such as endogenous lectins, glycosyltransferases, and hydrolases (refs. 18-22 in text). A new possibility that a specific carbohydrate at the cell surface could be recognized by the same or similar carbohydrate on the counterpart cell surface is now suggested by specific interaction between Lex and Lex, but not between Lex and sialylated or non-substituted type 2 chain. A new hypothesis is hereby proposed for carbohydrate-carbohydrate interactions as recognition signals during embryogenesis and organogenesis.  相似文献   

3.
Complex glycosylated glycoproteins, glycolipids and proteoglycans are expressed on the cell surface and are also found as constituents of the extracellular matrix (ECM). Interactions of the carbohydrate moiety of these macromolecules with specific receptors (lectins) are involved in many functions of immune cells such as cell-cell or cell-ECM adhesion, recognition, and neutralization of pathogens and regulation of apoptosis. For studies on live cells mAbs recognizing distinct oligosaccharide structures are useful tools because in contrast to other analytical methods of carbohydrate biochemistry they are able to react with glycans in the complex sterical context of the cell surface. In general expression patterns of carbohydrate mAbs depend on (i) the number and type of carriers to which the glycans are linked (glycoproteins, glycolipids), (ii) the steric situation on the cell surface, and (iii) modifications of the basic glycotope (different branching, chain length, masking by sialylation, sulphation or fucosylation).  相似文献   

4.
Lecticans, a family of chondroitin sulfate proteoglycans, represent the largest group of proteoglycans expressed in the nervous system. We previously showed that the C-type lectin domains of lecticans bind two classes of sulfated cell surface glycolipids, sulfatides and HNK-1-reactive sulfoglucuronylglycolipids (SGGLs). In this paper, we demonstrate that the interaction between the lectin domain of brevican, a nervous system-specific lectican, and cell surface SGGLs acts as a novel cell recognition system that promotes neuronal adhesion and neurite outgrowth. The Ig chimera of the brevican lectin domain bind to the surface of SGGL-expressing rat hippocampal neurons. The substrate of the brevican chimera promotes adhesion and neurite outgrowth of hippocampal neurons. The authentic, full-length brevican also promotes neuronal cell adhesion and neurite outgrowth. These activities of brevican substrates are neutralized by preincubation of cells with HNK-1 monoclonal antibodies and by pretreatment of the brevican substrates with purified SGGLs. Brevican and HNK-1 carbohydrates are coexpressed in specific layers of the developing hippocampus where axons from entorhinal neurons elongate. Our observations suggest that cell surface SGGLs and extracellular lecticans comprise a novel cell-substrate recognition system operating in the developing nervous system.  相似文献   

5.
Early Metazoans had to evolve the first cell adhesion system addressed to maintaining stable interactions between cells constituting different individuals. As the oldest extant multicellular animals, sponges are good candidates to have remnants of the molecules responsible for that crucial innovation. Sponge cells associate in a species-specific process through multivalent calcium-dependent interactions of carbohydrate structures on an extracellular membrane-bound proteoglycan termed aggregation factor. Single-molecule force spectroscopy studies of the mechanics of aggregation factor self-binding indicate the existence of intermolecular carbohydrate adhesion domains. A 200-kDa aggregation factor glycan (g200) involved in cell adhesion exhibits interindividual differences in size and epitope content which suggest the existence of allelic variants. We have purified two of these g200 distinct forms from two individuals of the same sponge species. Comparison of allotypic versus isotypic g200 binding forces reveals significant differences. Surface plasmon resonance measurements show that g200 self-adhesion is much stronger than its binding to other unrelated glycans such as chondroitin sulfate. This adhesive specificity through multiple carbohydrate binding domains is a type of cooperative interaction that can contribute to explain some functions of modular proteoglycans in general. From our results it can be deduced that the binding strength/surface area between two aggregation factor molecules is comparable with that of focal contacts in vertebrate cells, indicating that strong carbohydrate-based cell adhesions evolved at the very start of Metazoan history.  相似文献   

6.
G. H. Kim  L. Fritz 《Protoplasma》1993,174(1-2):69-73
Summary Fertilization in the marine red algaAntithamnion nipponicum is a highly specific process involving non-motile male gametes, spermatia, and female receptive structures, carpogonia. FITC-lectin and Calcofluor white ST labelling show that the outer cell walls of spermatia differ from vegetative cells in carbohydrate composition. Specific binding of the lectins to spermatial walls was confirmed by lectin-gold labelling on thin sections. Gametic recognition inAntithamnion nipponicum is based on the interaction of a surface carbohydrate on the spermatia with a surface carbohydrate receptor on the trichogynes. Spermatial binding to trichogynes is inhibited by pre-incubation with concanavalin A and trichogyne receptors are blocked by the complementary carbohydrate -D-methyl mannose. The inhibitory effects of concanavalin A to spermatial binding of trichogynes is reversed by preincubation with -D-methyl mannose. The combination of long spermatial appendages and a carbohydrate-carbohydrate receptor-based gamete recognition mechanism make fertilization in this species an efficient process.  相似文献   

7.
Carbohydrate-carbohydrate interaction is a reliable and versatile mechanism for cell adhesion and recognition. Glycosphingolipid (GSL) clusters at the cell membrane are mainly involved in this interaction. To investigate carbohydrate-carbohydrate interaction an integrated strategy (Glyconanotechnology) was developed. This strategy includes polyvalent tools (gold glyconanoparticles) mimicking GSL clustering at the cell membrane as well as analytical techniques such as AFM, TEM, and SPR to evaluate the interactions. The results obtained by means of this strategy and current status are presented.  相似文献   

8.
Obtaining a better understanding of the molecular basis of cell recognition remains an important challenge with regard to the social functioning of cells in multicellular systems. The wide structural diversity of carbohydrates allows many combinatorial possibilities for fine-tuning cell-cell and cell-matrix recognition in multicellular organisms. Direct carbohydrate-carbohydrate interaction would endow both the flexibility and the specificity of reversible contacts at the cell surface during the formation, maintenance and pathogenesis of tissues. The recent development of methods for the characterization of such interactions will help to expand our knowledge of the mechanisms that trigger early events in cell recognition.  相似文献   

9.
Adhesion of circulating leukocytes to the vascular endothelium during inflammation is mediated in part by their interaction with the endothelial-leukocyte adhesion molecule ELAM-1. ELAM-1, a member of the LEC-CAM family of cell adhesion molecules, expresses an N-terminal carbohydrate recognition domain (CRD) homologous to various calcium-dependent mammalian lectins. However, the contribution of the CRD to cell adhesion and its carbohydrate binding specificity have not been elucidated. This study demonstrates that transfection of a human fucosyltransferase cDNA into nonmyeloid cell lines confers ELAM-1--dependent endothelial adhesion. Binding activity correlates with de novo cell surface expression of the sialylated Lewis x tetrasaccharide, whose biosynthesis is determined by the transfected fucosyltransferase cDNA. We propose that specific alpha(1,3)fucosyltransferases regulate cell adhesion to ELAM-1 by modulating cell surface expression of one or more alpha(2,3)sialylated, alpha(1,3)fucosylated lactosaminoglycans represented by the sialyl Lewis x carbohydrate determinant.  相似文献   

10.
Raval S  Gowda SB  Singh DD  Chandra NR 《Glycobiology》2004,14(12):1247-1263
Lectins are known to be important for many biological processes, due to their ability to recognize cell surface carbohydrates with high specificity. Plant lectins have been model systems to study protein-carbohydrate recognition, because individually they exhibit high sensitivity and as a group large diversity in recognizing carbohydrate structures. Although extensive studies have been carried out for legume lectins that have led to interesting insights into the sequence determinants of sugar recognition in them, frameworks with such specific correlations are not available for other plant lectin families. This study reports a large-scale data acquisition and extensive analysis of sequences and structures of beta-prism-I or jacalin-related lectins (JRLs) and shows that hypervariability in the binding site loops generates carbohydrate recognition diversity, a strategy analogous to that in legume lectins. Analyses of the size, conformation, and sequence variability in key regions reveal the existence of a common theme, encoded as a set of structural features over a common scaffold, in defining specificity. This study also points to the remarkable range of domain architectures, often arising out of gene duplication events in lectins of this family. The data analyzed here also indicate a spectacular variety of quaternary associations possible in this family of lectins that have implications for glycan recognition. These results thus provide sequence-structure-function correlations, an understanding of the molecular basis of carbohydrate recognition by beta-prism-I lectins, and also a rationale for engineering specific recognition capabilities in relevant molecules.  相似文献   

11.
Carbohydrate-carbohydrate interactions are rarely considered in biologically relevant situations such as cell recognition and adhesion. One Ca(2+)-mediated homotypic interaction between two Lewis(x) determinants (Le(x)) has been proposed to drive cell adhesion in murine embryogenesis. Here, we confirm the existence of this specific interaction by reporting the first direct quantitative measurements in an environment akin to that provided by membranes. The adhesion between giant vesicles functionalized with Le(x) was obtained by micropipette aspiration and contact angle measurements. This interaction is below the thermal energy, and cell-cell adhesion will require a large number of molecules, as illustrated by the Le(x) concentration peak observed at the cell membranes during the morula stage of the embryo. This adhesion is ultralow and therefore difficult to measure. Such small interactions explain why the concept of specific interactions between carbohydrates is often neglected.  相似文献   

12.
Immobilized glycoconjugates for cell recognition studies   总被引:2,自引:0,他引:2  
Specific cell-cell recognition and adhesion may involve cell surface glycoconjugates on one cell binding the complementary carbohydrate receptors on an apposing cell surface. Such interactions have been modeled by immobilizing simple synthetic glycosides, glycoproteins, glycosaminoglycans, and glycolipids on otherwise inert plastic surfaces and incubating them with intact cells. Using this approach, the ability of several cell types to recognize specific carbohydrates has been demonstrated. This carbohydrate-directed cell adhesion may depend on cell surface carbohydrate receptors which mediate both the initial specific adhesion and complex postrecognition cellular responses. While the relationship of the cell adhesion demonstrated here to cell-cell recognition in vivo has yet to be determined, this well-controlled biochemical approach may reveal new information on the way in which cells analyze and respond to their immediate external environment.  相似文献   

13.
The appearance of multicellular forms of life has been tightly coupled to the ability of an organism to retain its own anatomical integrity and to distinguish self from non-self. Large glycoconjugates, which make up the outermost cell surface layer of all Metazoans, are the primary candidates for the primordial adhesion and recognition functions in biological self-assembly systems. Atomic force microscopy experiments demonstrated that the binding strength between a single pair of Porifera cell surface glyconectin 1 glycoconjugates from Microciona prolifera can hold the weight of 1600 cells, proving their adhesion functions. Here, measurement of molecular self-recognition of glyconectins (GNs) purified from three Porifera species was used as an experimental model for primordial xenogeneic self/non-self discrimination. Physicochemical and biochemical characterization of the three glyconectins, their glycans, and peptides using gel electrophoresis, ultracentrifugation, NMR, mass spectrometry, glycosaminoglycan-degrading enzyme treatment, amino acid and carbohydrate analyses, and peptide mapping showed that GNs define a new family of proteoglycan-like molecules exhibiting species-specific structures with complex and repetitive acidic carbohydrate motives different from the classical proteoglycans and mucins. In functional self-assembly color-coded bead, cell, and blotting assays, glyconectins displayed species-specific recognition and adhesion. Affinity-purified monospecific polyclonal antibodies prepared against GN1, -2, and -3 glycans selectively inhibited cell adhesion of the respective sponge species. These results together with species-specific coaggregation of GN carbohydrate-coated beads with cells showed that GN glycans are functional in cell recognition and adhesion. The specificity of carbohydrate-mediated homophilic GN interactions in Porifera approaches the binding selectivity of the evolutionarily advanced immunoglobulin superfamily. Xenoselectivity of primordial glyconectin to glyconectin recognition may be a new paradigm in the self-assembly and non-self discrimination pathway of cellular adhesion leading to multicellularity.  相似文献   

14.
The Lex determinant (Gal beta 1----4[Fuc alpha 1----3]GlcNAc-beta 1----R) has been implicated as having a role in mediating compaction of the mouse embryo at the morula stage (Fenderson, B., Zehavi, U., and Hakomori, S. (1984) J. Exp. Med. 160, 1591-1596). Here, we present evidence suggesting a role for Lex in F9 embryonal carcinoma cell adhesion and a mechanism for Lex recognition based on carbohydrate-carbohydrate interaction. Homotypic aggregation of F9 cells was inhibited by lacto-N-fucopentaose III, and F9 cells showed a preferential interaction with Lex liposomes. The following observations suggest that the structure capable of recognizing Lex per se on F9 cells is Lex: (i) Cell surface-labeled components solubilized in octylglucoside, affinity-bound on an Lex-octyl-Sepharose column, contained glycoproteins reactive with anti-Lex antibody. (ii) Liposomes containing Lex showed significant interaction with Lex glycolipid, but not other glycolipids, coated on a plastic surface. (iii) Liposomes containing Lex glycolipid were found to self-aggregate, whereas liposomes containing paragloboside (nLc4) or sialylparagloboside (IV3NeuAcnLc4) did not. (iv) The diffusibility of 3H-labeled lacto-N-fucopentaitol III (but not I or II), incubated with Lex liposome, from the lower to the upper Boyden chamber through a semipermeable membrane was inhibited. In all these experiments (i-iv), the interaction of Lex to Lex (or Lex to lacto-N-fucopentaose III) was clearly observed only in the presence of Ca2+ and Mg2+ and was enhanced by the presence of Mn2+. These interactions were inhibited by EDTA. The results suggest the novel hypothesis that carbohydrate-carbohydrate interactions may play an important role in controlling cell recognition during F9 cell aggregation and during embryonic development.  相似文献   

15.
Selectins, a family of cell adhesion molecules, bind to sialylated and fucosylated carbohydrates, such as sialyl Lewisx (SLex) and its derivatives, as their minimal recognition motif. Here we report that P-selectin bound to human malignant melanoma A375 cells and mediated their adhesion under flow. However, probing with a specific Ab failed to detect any apparent expression of SLex. This finding was bolstered by reduced expression of alpha-1,3-fucosyltransferase VII mRNA and by absence of the cell surface expression of P-selectin glycoprotein ligand-1. Instead, they expressed heparan sulfate-like proteoglycans on their cell surfaces. Treatment with beta-d -xyloside (a proteoglycan biosynthesis inhibitor) or heparinases could reduce the binding of these cells to P-selectin. In the competition assays, heparin, but not other proteoglycans, could abolish the P-selectin recognition. Further, we found that P-selectin could bind specifically to human tongue squamous cancer Tca-8113 cells, which had negative staining of SLex but positive staining of heparan sulfates. Both beta-d -xyloside and heparinases could reduce the binding of P-selectin to Tca-8113 cells. Our results thus indicate that heparan sulfate-like proteoglycans can mediate adhesion of certain types of non-blood borne, "epithelial-like" human cancer cells to P-selectin.  相似文献   

16.
Glycosphingolipids (GSLs) can interact with each other by homotypic or heterotypic trans carbohydrate-carbohydrate interactions across apposed membranes, resulting in cell-cell adhesion. This interaction can also provide an extracellular signal which is transmitted to the cytosolic side, thus forming a glycosynapse between two cells. The two major GSLs of myelin, galactosylceramide (GalC) and its sulfated form, galactosylceramide I(3)-sulfate (SGC), are an example of a pair of GSLs which can participate in these trans carbohydrate-carbohydrate interactions and trigger transmembrane signaling. These GSLs could interact across apposed oligodendrocyte membranes at high cell density or when a membranous process of a cell contacts itself as it wraps around the axon. GalC and SGC also face each other in the apposed extracellular surfaces of the multilayered myelin sheath. Communication between the myelin sheath and the axon regulates both axonal and myelin function and is necessary to prevent neurodegeneration. Participation of transient GalC and SGC interactions in glycosynapses between the apposed extracellular surfaces of mature myelin might allow transmission of signals throughout the myelin sheath and thus facilitate myelin-axonal communication.  相似文献   

17.
The physiological importance of weak interactions between biological macromolecules (molar dissociation constants >10 microM) is now well recognized, particularly with regard to cell adhesion and immunological phenomena, and many weak interactions have been measured for proteins. The concomitant importance of carbohydrate-carbohydrate interactions has also been identified, although no weak interaction between pure carbohydrate systems has ever been measured. We now demonstrate for the first time to our knowledge using a powerful probe for weak interactions--sedimentation velocity in the analytical ultracentrifuge--that at least some carbohydrates (from the class of polysaccharides known as heteroxylans and demonstrated here to be biologically active) can show well-defined weak self-interactions of the "monomer-dimer" type frequently found in protein systems. The weak interaction between the heteroxylans is shown from a temperature dependence study to be likely to be hydrophobic in nature.  相似文献   

18.
Cell-cell interactions play an important role in the development, maintenance, and pathogenesis of tissues. They are highly dynamic processes which include migration, recognition, signaling, adhesion, and finally attachment. Cells on their pathway to a final location have to pass and interact with their substratum formed of matrix and cell layers. Testing and recognition are important keys for the proper result of tissue formation. They can, however, also lead to diseases when they are misused in pathological situations, by microorganisms or malignant cells, for instance. Carbohydrates, which are the most prominent surface-exposed structures, must play an important role as recognition molecules in such processes. The rich variability of carbohydrate sequences which cell surfaces can present to lectins, adhesion molecules, and other ligands creates a refined pattern of potential attachment sites. The subtle control of the surface presentation density can provide variations in attachment strength. Not only the carbohydrate sequences but also the fact that carbohydrates can be branched while proteins cannot and that the oligosaccharide chains can be attached to the protein backbone in different densities and patterns will create yet more interaction possibilities. Maximal use of the combinatorial richness of carbohydrate molecules would be made when carbohydrate sequences could interact with other carbohydrate sequences. Such interactions have only very rarely been considered for biochemically and biologically relevant situations since they are difficult to measure. A few are known and will be summarized here with the hope that this wealth of possible chemical interactions may be considered more and more by surface cell biochemists when analyzing fine tuning in cellular interactions. © 1996 Wiley-Liss, Inc.  相似文献   

19.
Sulfoglucuronyl carbohydrate linked to neolactotetraose reacts with HNK-1 antibody. The HNK-1 carbohydrate epitope is found in two major glycolipids, several glycoproteins and in some proteoglycans of the nervous system. Most of the HNK-1 reactive glycoproteins so far identified are neural cell adhesion molecules and/or are involved in cell-cell interactions. HNK-1 carbohydrate is highly immunogenic. Several HNK-1-like antibodies, including IgM of some patients with plasma cell abnormalities and having peripheral neuropathy, have been described. This article summarizes published work mainly on sulfoglucuronyl glycolipids, SGGLs and covers: structural requirements of the carbohydrate epitope for binding to HNK-1 and human antibodies, expression of the lipids in various neural areas, stage and region specific developmental expression in CNS and PNS, immunocytochemical localization, loss of expression in Purkinje cell abnormality murine mutations, biosynthetic regulation of expression by a single enzyme N-acetylglucosaminyl transferase, identification of receptor-like carbohydrate binding neural proteins (lectins), and perceived role of the carbohydrate in physiological functions. The latter includes role in: pathogenesis of certain peripheral neuropathies, in migration of neural crest cells, as a ligand in cell-cell adhesion/interaction and as a promoter of neurite outgrowth for motor neurons. Multiple expression of HNK-1 carbohydrate in several molecules and in various neural cell types at specific stages of nervous system development has puzzled investigators as to its specific biological function, but this may also suggest its importance in multiple systems during cell differentiation and migration processes.Special issue dedicated to Dr. Marjorie B. Lees.  相似文献   

20.
Cellular recognition and adhesion to the extracellular matrix (ECM) has a complex molecular basis, involving both integrins and cell surface proteoglycans (PG). The current studies have used specific inhibitors of chondroitin sulfate proteoglycan (CSPG) synthesis along with anti-alpha 4 integrin subunit monoclonal antibodies to demonstrate that human melanoma cell adhesion to an A-chain derived, 33-kD carboxyl-terminal heparin binding fragment of human plasma fibronectin (FN) involves both cell surface CSPG and alpha 4 beta 1 integrin. A direct role for cell surface CSPG in mediating melanoma cell adhesion to this FN fragment was demonstrated by the identification of a cationic synthetic peptide, termed FN-C/H-III, within the fragment. FN-C/H-III is located close to the amino terminal end of the fragment, representing residues #1721-1736 of intact FN. FN-C/H-III binds CSPG directly, can inhibit CSPG binding to the fragment, and promotes melanoma cell adhesion by a CSPG-dependent, alpha 4 beta 1 integrin-independent mechanism. A scrambled version of FN-C/H-III does not inhibit CSPG binding or cell adhesion to the fragment or to FN-C/H-III, indicating that the primary sequence of FN-C/H-III is important for its biological properties. Previous studies have identified three other synthetic peptides from within this 33-kD FN fragment that promote cell adhesion by an arginyl-glycyl-aspartic acid (RGD) independent mechanism. Two of these synthetic peptides (FN-C/H-I and FN-C/H-II) bind heparin and promote cell adhesion, implicating cell surface PG in mediating cellular recognition of these two peptides. Additionally, a third synthetic peptide, CS1, is located in close proximity to FN-C/H-I and FN-C/H-II and it promotes cell adhesion by an alpha 4 beta 1 integrin-dependent mechanism. In contrast to FN-C/H-III, cellular recognition of these three peptides involved contributions from both CSPG and alpha 4 integrin subunits. Of particular importance are observations demonstrating that CS1-mediated melanoma cell adhesion could be inhibited by interfering with CSPG synthesis or expression. Since CS1 does not bind CSPG, the results suggest that CSPG may modify the function and/or activity of alpha 4 beta 1 integrin on the surface of human melanoma cells. Together, these results support a model in which the PG and integrin binding sites within the 33-kD fragment may act in concert to focus these two cell adhesion receptors into close proximity on the cell surface, thereby influencing initial cellular recognition events that contribute to melanoma cell adhesion on this fragment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号