首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA damage occurs unceasingly in all cells. Spontaneous DNA base loss, as well as the removal of damaged DNA bases by specific enzymes targeted to distinct base lesions, creates non-coding and lethal apurinic/apyrimidinic (AP) sites. AP sites are the central intermediate in DNA base excision repair (BER) and must be processed by 5' AP endonucleases. These pivotal enzymes detect, recognize, and cleave the DNA phosphodiester backbone 5' of, AP sites to create a free 3'-OH end for DNA polymerase repair synthesis. In humans, AP sites are processed by APE1, whereas in yeast the primary AP endonuclease is termed APN1, and these enzymes are the major constitutively expressed AP endonucleases in these organisms and are homologous to the Escherichia coli enzymes Exonuclease III (Exo III) and Endonuclease IV (Endo IV), respectively. These enzymes represent both of the conserved 5' AP endonuclease enzyme families that exist in biology. Crystal structures of APE1 and Endo IV, both bound to AP site-containing DNA reveal how abasic sites are recognized and the DNA phosphodiester backbone cleaved by these two structurally unrelated enzymes with distinct chemical mechanisms. Both enzymes orient the AP-DNA via positively charged complementary surfaces and insert loops into the DNA base stack, bending and kinking the DNA to promote flipping of the AP site into a sequestered enzyme pocket that excludes undamaged nucleotides. Each enzyme-DNA complex exhibits distinctly different DNA conformations, which may impact upon the biological functions of each enzyme within BER signal-transduction pathways.  相似文献   

2.
Three high-resolution crystal structures of DNA complexes with wild-type and mutant human uracil-DNA glycosylase (UDG), coupled kinetic characterizations and comparisons with the refined unbound UDG structure help resolve fundamental issues in the initiation of DNA base excision repair (BER): damage detection, nucleotide flipping versus extrahelical nucleotide capture, avoidance of apurinic/apyrimidinic (AP) site toxicity and coupling of damage-specific and damage-general BER steps. Structural and kinetic results suggest that UDG binds, kinks and compresses the DNA backbone with a 'Ser-Pro pinch' and scans the minor groove for damage. Concerted shifts in UDG simultaneously form the catalytically competent active site and induce further compression and kinking of the double-stranded DNA backbone only at uracil and AP sites, where these nucleotides can flip at the phosphate-sugar junction into a complementary specificity pocket. Unexpectedly, UDG binds to AP sites more tightly and more rapidly than to uracil-containing DNA, and thus may protect cells sterically from AP site toxicity. Furthermore, AP-endonuclease, which catalyzes the first damage-general step of BER, enhances UDG activity, most likely by inducing UDG release via shared minor groove contacts and flipped AP site binding. Thus, AP site binding may couple damage-specific and damage-general steps of BER without requiring direct protein-protein interactions.  相似文献   

3.
Greenberg MM  Weledji YN  Kim J  Bales BC 《Biochemistry》2004,43(25):8178-8183
2-Deoxyribonolactone (L) and the C4'-oxidized abasic site (C4-AP) are produced by a variety of DNA-damaging agents. If not repaired, these lesions can be mutagenic. Exonuclease III and endonuclease IV are the major enzymes in E. coli responsible for 5'-incision of abasic sites (APs), the first steps in AP repair. Endonuclease III efficiently excises AP lesions via intermediate Schiff-base formation. Incision of L and C4-AP lesions by exonuclease III and endonuclease IV was determined under steady-state conditions using oligonucleotide duplexes containing the lesions at defined sites. An abasic lesion (AP) in an otherwise identical DNA sequence was incised by exonuclease III or endonuclease IV approximately 6-fold more efficiently than either of the oxidized abasic sites (L, C4-AP). Endonuclease IV incision efficiency of 2-deoxyribonolactone or C4-AP was independent of whether the lesion was opposite dA or dG. 2-Deoxyribonolactone is known to cross-link to endonuclease III (Hashimoto, M. (2001) J. Am. Chem. Soc. 123, 3161.). However, the C4-AP lesion is efficiently excised by endonuclease III. Oxidized abasic site repair by endonuclease IV and endonuclease III (C4-AP only) is approximately 100-fold less efficient than repair by exonuclease III. These results suggest that the first step of C4-AP and L oxidized abasic site repair will be the same as that of regular AP lesions in E. coli.  相似文献   

4.
Endonuclease IV gene, the only putative AP endonuclease of C. pneumoniae genome, was cloned into pET28a. Recombinant C. pneumoniae endonuclease I V (CpEndoIV) was expressed in E. coli and purified to homogeneity. CpEndoIV has endonuclease activity against apurinic/apyrimidinic sites (AP sites) of double-stranded (ds) oligonucleotides. AP endonuclease activity of CpEndoIV was promoted by divalent metal ions Mg2+ and Zn2+, and inhibited by EDTA. The natural (A, T, C and G) and modified (U, I and 8-oxo-G (GO)) bases opposite AP site had little effect on the cleavage efficiency of AP site of ds oligonucleotides by CpEndoIV. However, the CpEndoIV-dependent cleavage of AP site opposite modified base GO was strongly inhibited by Chlamydia DNA glycosylase MutY. Interestingly, the AP site in single-stranded (ss) oligonucleotides was also the effective substrate of CpEndoIV. Similar to E. coli endonuclease IV, AP endonuclease activity of CpEndoIV was also heat-stable to some extent, with a half time of 5 min at 60 degrees C.  相似文献   

5.
We have examined the removal of thymine residues from T-G mismatches in DNA by the thymine-DNA mismatch glycosylase from Methanobacterium thermoautrophicum (Mig-Mth), within the context of the base excision repair (BER) pathway, to investigate why this glycosylase has such low activity in vitro. Using single-turnover kinetics and steady-state kinetics, we calculated the catalytic and product dissociation rate constants for Mig-Mth, and determined that Mig-Mth is inhibited by product apyrimidinic (AP) sites in DNA. Electrophoretic mobility shift assays (EMSA) provide evidence that the specificity of product binding is dependent upon the base opposite the AP site. The binding of Mig-Mth to DNA containing the non-cleavable substrate analogue difluorotoluene (F) was also analyzed to determine the effect of the opposite base on Mig-Mth binding specificity for substrate-like duplex DNA. The results of these experiments support the idea that opposite strand interactions play roles in determining substrate specificity. Endonuclease IV, which cleaves AP sites in the next step of the BER pathway, was used to analyze the effect of product removal on the overall rate of thymine hydrolysis by Mig-Mth. Our results support the hypothesis that endonuclease IV increases the apparent activity of Mig-Mth significantly under steady-state conditions by preventing reassociation of enzyme to product.  相似文献   

6.
The base excision repair (BER) pathway for ultraviolet light (UV)-induced cyclobutane pyrimidine dimers is initiated by DNA glycosylases that also possess abasic (AP) site lyase activity. The prototypical enzyme known to catalyze these reactions is the T4 pyrimidine dimer glycosylase (T4-Pdg). The fundamental chemical reactions and the critical amino acids that lead to both glycosyl and phosphodiester bond scission are known. Catalysis proceeds via a protonated imine covalent intermediate between the alpha-amino group of the N-terminal threonine residue and the C1' of the deoxyribose sugar of the 5' pyrimidine at the dimer site. This covalent complex can be trapped as an irreversible, reduced cross-linked DNA-protein complex by incubation with a strong reducing agent. This active site trapping reaction is equally efficient on DNA substrates containing pyrimidine dimers or AP sites. Herein, we report the co-crystal structure of T4-Pdg as a reduced covalent complex with an AP site-containing duplex oligodeoxynucleotide. This high-resolution structure reveals essential precatalytic and catalytic features, including flipping of the nucleotide opposite the AP site, a sharp kink (approximately 66 degrees ) in the DNA at the dimer site and the covalent bond linking the enzyme to the DNA. Superposition of this structure with a previously published co-crystal structure of a catalytically incompetent mutant of T4-Pdg with cyclobutane dimer-containing DNA reveals new insights into the structural requirements and the mechanisms involved in DNA bending, nucleotide flipping and catalytic reaction.  相似文献   

7.
Walker RK  McCullough AK  Lloyd RS 《Biochemistry》2006,45(47):14192-14200
Bacteriophage T4 pyrimidine dimer glycosylase (T4-Pdg) is a base excision repair protein that incises DNA at cyclobutane pyrimidine dimers that are formed as a consequence of exposure to ultraviolet light. Cocrystallization of T4-Pdg with substrate DNA has shown that the adenosine opposite the 5'-thymine of a thymine-thymine (TT) dimer is flipped into an extrahelical conformation and that the DNA backbone is kinked 60 degrees in the enzyme-substrate (ES) complex. To examine the kinetic details of the precatalytic events in the T4-Pdg reaction mechanism, investigations were designed to separately assess nucleotide flipping and DNA bending. The fluorescent adenine base analogue, 2-aminopurine (2-AP), placed opposite an abasic site analogue, tetrahydrofuran, exhibited a 2.8-fold increase in emission intensity when flipped in the ES complex. Using the 2-AP fluorescence signal for nucleotide flipping, kon and koff pre-steady-state kinetic measurements were determined. DNA bending was assessed by fluorescence resonance energy transfer using fluorescent donor-acceptor pairs located at the 5'-ends of oligonucleotides in duplex DNA. The fluorescence intensity of the donor fluorophore was quenched by 15% in the ES complex as a result of an increased efficiency of energy transfer between the labeled ends of the DNA in the bent conformation. Kinetic analyses of the bending signal revealed an off rate that was 2.5-fold faster than the off rate for nucleotide flipping. These results demonstrate that the nucleotide flipping step can be uncoupled from the bending of DNA in the formation of an ES complex.  相似文献   

8.
DNA repair enzymes induce base flipping in the process of damage recognition. Endonuclease V initiates the repair of cis, syn thymine dimers (TD) produced in DNA by UV radiation. The enzyme is known to flip the base opposite the damage into a non-specific binding pocket inside the protein. Uracil DNA glycosylase removes a uracil base from G.U mismatches in DNA by initially flipping it into a highly specific pocket in the enzyme. The contribution of base flipping to specific recognition has been studied by molecular dynamics simulations on the closed and open states of undamaged and damaged models of DNA. Analysis of the distributions of bending and opening angles indicates that enhanced base flipping originates in increased flexibility of the damaged DNA and the lowering of the energy difference between the closed and open states. The increased flexibility of the damaged DNA gives rise to a DNA more susceptible to distortions induced by the enzyme, which lowers the barrier for base flipping. The free energy profile of the base-flipping process was constructed using a potential of mean force representation. The barrier for TD-containing DNA is 2.5 kcal mol(-1) lower than that in the undamaged DNA, while the barrier for uracil flipping is 11.6 kcal mol(-1) lower than the barrier for flipping a cytosine base in the undamaged DNA. The final barriers for base flipping are approximately 10 kcal mol(-1), making the rate of base flipping similar to the rate of linear scanning of proteins on DNA. These results suggest that damage recognition based on lowering the barrier for base flipping can provide a general mechanism for other DNA-repair enzymes.  相似文献   

9.
Repair of depurinated DNA with enzymes from rat liver chromatin.   总被引:2,自引:1,他引:1       下载免费PDF全文
DNA from T7 phage containing AP (apurinic/apyrimidinic) sites was repaired by the successive actions of three chromatin enzymes [AP endodeoxyribonuclease, DNAase IV (5'----3'-exodeoxyribonuclease) and DNA polymerase-beta] prepared from rat liver and T4-phage DNA ligase. Since DNA ligase is also found in rat liver chromatin, all the activities used for the successful repair in vitro are thus present in the chromatin of a eukaryotic cell. Our results show, in particular, that the chromatin DNAase IV is capable of excising the AP site from the DNA strand nicked by the chromatin AP endodeoxyribonuclease. We did not try to combine all the enzymes, since competition between some of them might have prevented the repair; we have, for instance, shown that DNA ligase can seal the incision 5' to the AP site made by the AP endodeoxyribonuclease. Changes in chromatin structure during repair might perhaps prevent this competition when nuclear DNA is repaired in the living cell.  相似文献   

10.
MutY homologue (MYH) is a DNA glycosylase which excises adenine paired with the oxidative lesion 7,8-dihydro-8-oxoguanine (8-oxoG, or Go) during base excision repair (BER). Base excision by MYH results in an apurinic/apyrimidinic (AP) site in the DNA where the DNA sugar–phosphate backbone remains intact. A key feature of MYH activity is its physical interaction and coordination with AP endonuclease I (APE1), which subsequently nicks DNA 5′ to the AP site. Because AP sites are mutagenic and cytotoxic, they must be processed by APE1 immediately after the action of MYH glycosylase. Our recent reports show that the interdomain connector (IDC) of human MYH (hMYH) maintains interactions with hAPE1 and the human checkpoint clamp Rad9–Rad1–Hus1 (9–1–1) complex. In this study, we used NMR chemical shift perturbation experiments to determine hMYH-binding site on hAPE1. Chemical shift perturbations indicate that the hMYH IDC peptide binds to the DNA-binding site of hAPE1 and an additional site which is distal to the APE1 DNA-binding interface. In these two binding sites, N212 and Q137 of hAPE1 are key mediators of the MYH/APE1 interaction. Intriguingly, despite the fact that hHus1 and hAPE1 both interact with the MYH IDC, hHus1 does not compete with hAPE1 for binding to hMYH. Rather, hHus1 stabilizes the hMYH/hAPE1 complex both in vitro and in cells. This is consistent with a common theme in BER, namely that the assembly of protein–DNA complexes enhances repair by efficiently coordinating multiple enzymatic steps while simultaneously minimizing the release of harmful repair intermediates.  相似文献   

11.
A Klungland  T Lindahl 《The EMBO journal》1997,16(11):3341-3348
Two forms of DNA base excision-repair (BER) have been observed: a 'short-patch' BER pathway involving replacement of one nucleotide and a 'long-patch' BER pathway with gap-filling of several nucleotides. The latter mode of repair has been investigated using human cell-free extracts or purified proteins. Correction of a regular abasic site in DNA mainly involves incorporation of a single nucleotide, whereas repair patches of two to six nucleotides in length were found after repair of a reduced or oxidized abasic site. Human AP endonuclease, DNA polymerase beta and a DNA ligase (either III or I) were sufficient for the repair of a regular AP site. In contrast, the structure-specific nuclease DNase IV (FEN1) was essential for repair of a reduced AP site, which occurred through the long-patch BER pathway. DNase IV was required for cleavage of a reaction intermediate generated by template strand displacement during gap-filling. XPG, a related nuclease, could not substitute for DNase IV. The long-patch BER pathway was largely dependent on DNA polymerase beta in cell extracts, but the reaction could be reconstituted with either DNA polymerase beta or delta. Efficient repair of gamma-ray-induced oxidized AP sites in plasmid DNA also required DNase IV. PCNA could promote the Pol beta-dependent long-patch pathway by stimulation of DNase IV.  相似文献   

12.
Clustered DNA damage, where two or more lesions are located proximal to each other on the same or opposite DNA strands, is frequently produced as a result of exposure to ionising radiation. It has been suggested that such complex damaged sites pose problems for repair pathways. In this study, we addressed the question of how two 8-oxoguanine lesions, located two nucleotides apart on the same DNA strand, are repaired. We find that in human cell extracts repair of either of the 8-oxoguanine lesions within a tandem damaged site is initiated randomly and that the majority of the initiated repair proceeds to completion. However, a fraction of the initiated repair is delayed at the stage of an incised AP site and the rate of further processing of this incised AP site is dependent on the position of the remaining 8-oxoguanine. If the remaining 8-oxoguanine residue is located near the 5' terminus of the incised abasic site, repair continues as efficiently as repair of a single 8-oxoguanine residue. However, repair is delayed after the incision step when the remaining 8-oxoguanine residue is located near the 3' terminus. Although the presence of the 8-oxoguanine residue near the 3' terminus did not affect either DNA polymerase beta activity or poly(ADP)ribose polymerase-1 affinity and turnover on an incised AP site, we find that 8-oxoguanine-DNA glycosylase has reduced ability to remove an 8-oxoguanine residue located near the 3' terminus of the incised AP site. We find that binding of the 8-oxoguanine-DNA glycosylase to this 8-oxoguanine residue inhibits DNA repair synthesis by DNA polymerase beta, thus delaying repair. We propose that interference between a DNA glycosylase and DNA polymerase during the repair of tandem lesions may lead to accumulation of the intermediate products that contain persisting DNA strand breaks.  相似文献   

13.
The interaction of nucleotide excision repair (NER) proteins (XPC-HR23b, RPA, and XPA) with 48-mer DNA duplexes containing the bulky lesion-mimicking fluorescein-substituted derivative of dUMP (5-{3-[6-(carboxyamidofluo-resceinyl)amidocapromoyl]allyl}-2′-deoxyuridine-5′-monophosphate) in a cluster with a lesion of another type (apurinic/apyrimidinic (AP) site) has been studied. It is shown that XPC-HR23b is modified to a greater extent by the DNA duplex containing an AP site opposite nucleotide adjacent to the fluorescein residue than by DNA containing an AP site shifted to the 3′-or 5′-end of the DNA strand. The efficiency of XPA modification by DNA duplexes containing both AP site and fluorescein residue is higher than that by DNA lacking the bulky lesion; the modification pattern in this case depends on the AP site position. In accordance with its major function, RPA interacts more efficiently with single-stranded DNA than with DNA duplexes, including those bearing bulky lesions. The observed interaction between the proteins involved in nucleotide excision repair and DNA structures containing a bulky lesion processed by NER and the AP site repaired via base excision repair may be significant for both these repair pathways in cells and requires the specific sequence of repair of clustered DNA lesions.  相似文献   

14.
DNA deoxyribophosphodiesterase (dRpase) of E. coli catalyzes the release of deoxyribose-phosphate moieties following the cleavage of DNA at an apurinic/apyrimidinic (AP) site by either an AP endonuclease or AP lyase. Exonuclease I is a single-strand specific DNA nuclease which affects the expression of recombination and repair pathways in E. coli. We show here that a major dRpase activity in E. coli is associated with the exonuclease I protein. Highly purified exonuclease I isolated from an over-producing stain contains high levels of dRpase activity; it catalyzes the release of deoxyribose-5-phosphate from an AP site incised with endonuclease IV of E. coli and the release of 4-hydroxy-2-pentenal-5-phosphate from an AP site incised by the AP lyase activity of endonuclease III of E. coli. A strain containing a deletion of the sbcB gene showed little dRpase activity; the activity could be restored by transformation of the strain with a plasmid containing the sbcB gene. The dRpase activity isolated from an overproducing stain was increased 70-fold as compared to a normal sbcB+ strain (AB3027). These results suggest that the dRpase activity may be important in pathways for both DNA repair and recombination.  相似文献   

15.
When ionizing radiation traverses a DNA molecule, a combination of two or more base damages, sites of base loss or single strand breaks can be produced within 1-4 nm on opposite DNA strands, forming a multiply damaged site (MDS). In this study, we reconstituted the base excision repair system to examine the processing of a simple MDS containing the base damage, 8-oxoguanine (8-oxoG), or an abasic (AP) site, situated in close opposition to a single strand break, and asked if a double strand break could be formed. The single strand break, a nucleotide gap containing 3' and 5' phosphate groups, was positioned one, three or six nucleotides 5' or 3' to the damage in the complementary DNA strand. Escherichia coli formamidopyrimidine DNA glycosylase (Fpg), which recognizes both 8-oxoG and AP sites, was able to cleave the 8-oxoG or AP site-containing strand when the strand break was positioned three or six nucleotides away 5' or 3' on the opposing strand. When the strand break was positioned one nucleotide away, the target lesion was a poor substrate for Fpg. Binding studies using a reduced AP (rAP) site in the strand opposite the gap, indicated that Fpg binding was greatly inhibited when the gap was one nucleotide 5' or 3' to the rAP site.To complete the repair of the MDS containing 8-oxoG opposite a single strand break, endonuclease IV DNA polymerase I and Escherichia coli DNA ligase are required to remove 3' phosphate termini, insert the "missing" nucleotide, and ligate the nicks, respectively. In the absence of Fpg, repair of the single strand break by endonuclease IV, DNA polymerase I and DNA ligase occurred and was not greatly affected by the 8-oxoG on the opposite strand. However, the DNA strand containing the single strand break was not ligated if Fpg was present and removed the opposing 8-oxoG. Examination of the complete repair reaction products from this reaction following electrophoresis through a non-denaturing gel, indicated that a double strand break was produced. Repair of the single strand break did occur in the presence of Fpg if the gap was one nucleotide away. Hence, in the in vitro reconstituted system, repair of the MDS did not occur prior to cleavage of the 8-oxoG by Fpg if the opposing single strand break was situated three or six nucleotides away, converting these otherwise repairable lesions into a potentially lethal double strand break.  相似文献   

16.
Non-coding apurinic/apyrimidinic (AP) sites in DNA form spontaneously and as DNA base excision repair intermediates are the most common toxic and mutagenic in vivo DNA lesion. For repair, AP sites must be processed by 5′ AP endonucleases in initial stages of base repair. Human APE1 and bacterial Nfo represent the two conserved 5′ AP endonuclease families in the biosphere; they both recognize AP sites and incise the phosphodiester backbone 5′ to the lesion, yet they lack similar structures and metal ion requirements. Here, we determined and analyzed crystal structures of a 2.4 Å resolution APE1-DNA product complex with Mg2+ and a 0.92 Å Nfo with three metal ions. Structural and biochemical comparisons of these two evolutionarily distinct enzymes characterize key APE1 catalytic residues that are potentially functionally similar to Nfo active site components, as further tested and supported by computational analyses. We observe a magnesium-water cluster in the APE1 active site, with only Glu-96 forming the direct protein coordination to the Mg2+. Despite differences in structure and metal requirements of APE1 and Nfo, comparison of their active site structures surprisingly reveals strong geometric conservation of the catalytic reaction, with APE1 catalytic side chains positioned analogously to Nfo metal positions, suggesting surprising functional equivalence between Nfo metal ions and APE1 residues. The finding that APE1 residues are positioned to substitute for Nfo metal ions is supported by the impact of mutations on activity. Collectively, the results illuminate the activities of residues, metal ions, and active site features for abasic site endonucleases.  相似文献   

17.
Agents that act via oxygen-derived free radicals form DNA strand breaks with fragmented sugar residues that block DNA repair synthesis. Using a synthetic DNA substrate with a single type of sugar fragment, 3'-phosphoglycolaldehyde esters, we show that in Escherichia coli extracts the only EDTA-resistant diesterase for these damages depends on the bacterial nfo (endonuclease IV) gene. Endonuclease IV was purified to physical homogeneity (Mr = 31,000) from an E. coli strain carrying the cloned nfo gene and in which the enzyme had been induced with paraquat. Although heat-stable and routinely assayed in the presence of EDTA, endonuclease IV was inactivated in the absence of substrate at 23-50 degrees C by either EDTA or 1,10-phenanthroline, suggesting the presence of an essential metal tightly bound to the protein. Purified endonuclease IV released phosphoglycolaldehyde, phosphate, and intact deoxyribose 5-phosphate from the 3'-end of DNA, all with apparent Km of 5-10 nM. The optimal KCl or NaCl concentration for 3'-phosphoglycolaldehyde release was 50-100 mM. The purified enzyme had endonuclease activity against partially depurinated DNA but lacked significant nonspecific nuclease activities. Endonuclease IV also activated H2O2-damaged DNA for repair synthesis by DNA polymerase I. Thus, endonuclease IV can act on a variety of oxidative damages in DNA, consistent with a role for the enzyme in combating free-radical toxicity.  相似文献   

18.
Ionizing radiation induces clustered DNA damage sites, whereby two or more individual DNA lesions are formed within one or two helical turns of DNA by a single radiation track. A subset of DNA clustered damage sites exist in which the lesions are located in tandem on the same DNA strand. Recent studies have established that two closely opposed lesions impair the repair machinery of the cell, but few studies have investigated the processing of tandem lesions. In this study, synthetic double-stranded oligonucleotides were synthesized to contain 8-oxoA and an AP site in tandem, separated by up to four bases in either a 5' or 3' orientation. The influence 8-oxoA has on the incision of the AP site by the E. coli glycosylases Fpg and Nth protein and the human AP endonuclease HAP1 was assessed. 8-OxoA has little or no effect on the efficiency of incision of the AP site by Nth protein; however, the efficiency of incision of the AP site by Fpg protein is reduced in the presence of 8-oxoA even up to a four-base separation in both the 5' and 3' orientations. 8-OxoA influences the efficiency of HAP1 incision of the AP site only when it is 3' to the AP site and separated by up to two bases. This study demonstrates that the initial stages of base excision repair can be impaired by the presence of a second base lesion in proximity to an AP site on the same DNA strand. This impairment could have biological consequences, such as mutation induction, if the AP site is present at replication.  相似文献   

19.
DNA base flipping is an important mechanism in molecular enzymology, but its study is limited by the lack of an accessible and reliable diagnostic technique. A series of crystalline complexes of a DNA methyltransferase, M.HhaI, and its cognate DNA, in which a fluorescent nucleobase analogue, 2-aminopurine (AP), occupies defined positions with respect the target flipped base, have been prepared and their structures determined at higher than 2 Å resolution. From time-resolved fluorescence measurements of these single crystals, we have established that the fluorescence decay function of AP shows a pronounced, characteristic response to base flipping: the loss of the very short (~100 ps) decay component and the large increase in the amplitude of the long (~10 ns) component. When AP is positioned at sites other than the target site, this response is not seen. Most significantly, we have shown that the same clear response is apparent when M.HhaI complexes with DNA in solution, giving an unambiguous signal of base flipping. Analysis of the AP fluorescence decay function reveals conformational heterogeneity in the DNA–enzyme complexes that cannot be discerned from the present X-ray structures.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号