首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The interaction between platelet glycoprotein (GP) Ib-IX-V complex and von Willebrand factor (vWF) is the first step of the hemostatic response to vessel injury. In platelet-type von Willebrand disease, two mutations, G233V and M239V, have been described within the Cys209-Cys248 disulfide loop of GPIbalpha that compromise hemostasis by increasing the affinity for vWF. We have earlier shown that converting other residues in this region to valine alters the affinity of GPIbalpha for vWF, with mutations K237V and Q232V, respectively, showing the greatest increase and decrease in affinity. Here, we investigated further the effect of these two mutations on the kinetics of the GPIbalpha interaction with the vWF-A1 domain under dynamic flow conditions. We measured the cellular on- and off-rate constants of Chinese hamster ovary cells expressing GPIb-IX complexes containing wild-type or mutant GPIbalpha interacting with vWF-A1-coated surfaces at different shear stresses. We found that the gain-of-function mutant, K237V, rolled very slowly and continuously on vWF-A1 surface while the loss-of-function mutant, Q232V, showed fast, saltatory movement compared to the wild-type (WT). The off-rate constants, calculated based on the analysis of lifetimes of transient tethers formed on surfaces coated with limiting densities of vWF-A1, revealed that the Q232V and K237V dissociated 1.25-fold faster and 2.2-fold slower than the WT. The cellular on-rate constant of WT, measured in terms of tethering frequency, was threefold more and threefold less than Q232V and K237V, respectively. Thus, the gain- and loss-of-function mutations in GPIbalpha affect both the association and dissociation kinetics of the GPIbalpha-vWF-A1 bond. These findings are in contrast to the functionally similar selectin bonds where some of the mutations have been reported to affect only the dissociation rate.  相似文献   

2.
GPIbalpha is an integral membrane protein of the GPIb-IX-V complex found on the platelet surface that interacts with the A1 domain of von Willebrand factor (vWF-A1). The interaction of GPIbalpha with vWF-A1 under conditions of high shear stress is the first step in platelet-driven thrombus formation. Phage display was used to identify peptide antagonists of the GPIbalpha-vWF-A1 interaction. Two nine amino acid cysteine-constrained phage display libraries were screened against GPIbalpha revealing peptides that formed a consensus sequence. A peptide with sequence most representative of the consensus, designated PS-4, was used as the basis for an optimized library. The optimized selection identified additional GPIbalpha binding peptides with sequences nearly identical to the parent peptide. Surface plasmon resonance of the PS-4 parent and two optimized synthetic peptides, OS-1 and OS-2, determined their equilibrium dissociation GPIbalpha binding constants ( K Ds) of 64, 0.74, and 31 nM, respectively. Isothermal calorimetry corroborated the K D of peptide PS-4 with a resulting affinity value of 68 nM. An ELISA demonstrated that peptides PS-4, OS-1, and OS-2 competitively inhibited the interaction between the vWF-A1 domain and GPIbalpha-Fc in a concentration-dependent manner. All three peptides inhibited GPIbalpha-vWF-mediated platelet aggregation induced under high shear conditions using the platelet function analyzer (PFA-100) with full blockade observed at 150 nM for OS-1. In addition, OS-1 blocked ristocetin-induced platelet agglutination of human platelets in plasma with no influence on platelet aggregation induced by several agonists of alternative platelet aggregation pathways, demonstrating that this peptide specifically disrupted the GPIbalpha-vWF-A1 interaction.  相似文献   

3.
Both type 2B and type 2M von Willebrand disease result in bleeding disorders; however, whereas type 2B has increased binding affinity between platelet glycoprotein Ibα and von Willebrand factor (vWF), type 2M has decreased binding affinity between these two molecules. We used R687E type 2B and G561S type 2M vWF-A1 mutations to study binding between flowing platelets and insolubilized vWF mutants. We measured rolling velocities, mean stop times, and mean go times at 37°C using high-speed video microscopy. The rolling velocities for wt-wt interactions first decrease, reach a minimum, and then increase with increasing shear stress, indicating a catch-slip transition. By changing the viscosity, we were able to quantify the effects of force versus shear rate for rolling velocities and mean stop times. Platelet interactions with loss-of-function vWF-A1 retain the catch-slip bond transition seen in wt-wt interactions, but at a higher shear stress compared with the wt-wt transition. The mean stop time for all vWF-A1 molecules reveals catch-slip transitions at different shear stresses (gain-of-function vWF-A1 < wt vWF-A1< loss-of-function vWF-A1). The shift in the catch-slip transition may indicate changes in how the different mutants become conformationally active, indicating different mechanisms leading to similar bleeding characteristics.  相似文献   

4.
We investigated the crucial hemostatic interaction between von Willebrand factor (VWF) and platelet glycoprotein (GP) Ibalpha. Recombinant VWF A1 domain (residues Glu(497)-Pro(705) of VWF) bound stoichiometrically to a GPIbalpha-calmodulin fusion protein (residues His(1)-Val(289) of GPIbalpha; GPIbalpha-CaM) immobilized on W-7-agarose with a K(d) of 3.3 microM. The variant VWF A1(R545A) bound to GPIbalpha-CaM 20-fold more tightly, mainly because the association rate constant k(on) increased from 1,100 to 8,800 M(-1) s(-1). The GPIbalpha mutations G233V and M239V cause platelet-type pseudo-von Willebrand disease, and VWF A1 bound to GPIbalpha(G233V)-CaM and GPIbalpha(M239V)-CaM with a K(d) of 1.0 and 0.63 microM, respectively. The increased affinity of VWF A1 for GPIbalpha(M239V)-CaM was explained by an increase in k(on) to 4,500 M(-1) s(-1). GPIbalpha-CaM bound with similar affinity to recombinant VWF A1, to multimeric plasma VWF, and to a fragment of dispase-digested plasma VWF (residues Leu(480)/Val(481)-Gly(718)). VWF A1 and A1(R545A) bound to platelets with affinities and rate constants similar to those for binding to GPIbalpha-CaM, and botrocetin had the expected positively cooperative effect on the binding of VWF A1 to GPIbalpha-CaM. Therefore, allosteric regulation by botrocetin of VWF A1 binding to GPIbalpha, and the increased binding affinity caused by mutations in VWF or GPIbalpha, are reproduced by isolated structural domains. The substantial increase in k(on) caused by mutations in either A1 or GPIbalpha suggests that productive interaction requires rate-limiting conformational changes in both binding sites. The exceptionally slow k(on) and k(off) provide important new constraints on models for rapid platelet tethering at high wall shear rates.  相似文献   

5.
Both type 2B and type 2M von Willebrand disease result in bleeding disorders; however, whereas type 2B has increased binding affinity between platelet glycoprotein Ibα and von Willebrand factor (vWF), type 2M has decreased binding affinity between these two molecules. We used R687E type 2B and G561S type 2M vWF-A1 mutations to study binding between flowing platelets and insolubilized vWF mutants. We measured rolling velocities, mean stop times, and mean go times at 37°C using high-speed video microscopy. The rolling velocities for wt-wt interactions first decrease, reach a minimum, and then increase with increasing shear stress, indicating a catch-slip transition. By changing the viscosity, we were able to quantify the effects of force versus shear rate for rolling velocities and mean stop times. Platelet interactions with loss-of-function vWF-A1 retain the catch-slip bond transition seen in wt-wt interactions, but at a higher shear stress compared with the wt-wt transition. The mean stop time for all vWF-A1 molecules reveals catch-slip transitions at different shear stresses (gain-of-function vWF-A1 < wt vWF-A1< loss-of-function vWF-A1). The shift in the catch-slip transition may indicate changes in how the different mutants become conformationally active, indicating different mechanisms leading to similar bleeding characteristics.  相似文献   

6.
The A1 domain of von Willebrand factor (vWF) mediates platelet adhesion to sites of vascular injury by binding to the platelet receptor glycoprotein Ib (GpIb), an interaction that is regulated by hydrodynamic shear forces. The GpIb binding surface of A1 is distinct from a regulatory region, suggesting that ligand binding is controlled allosterically. Here we report the crystal structures of the "gain-of-function" mutant A1 domain (I546V) and its complex with the exogenous activator botrocetin. We show that botrocetin switches the mutant A1 back toward the wild-type conformation, suggesting that affinity is enhanced by augmenting the GpIb binding surface rather than through allosteric control. Functional studies of platelet adhesion under flow further suggest that the activation mechanism is distinct from that of the gain-of-function mutation.  相似文献   

7.
We have reconstituted the platelet glycoprotein (GP) Ib-IX-mediated activation of the integrin alpha(IIb)beta(3) in a recombinant DNA expression model, and show that 14-3-3 is important in GPIb-IX signaling. CHO cells expressing alpha(IIb)beta(3) adhere poorly to vWF. Cells expressing GPIb-IX adhere to vWF in the presence of botrocetin but spread poorly. Cells coexpressing integrin alpha(IIb)beta(3) and GPIb-IX adhere and spread on vWF, which is inhibited by RGDS peptides and antibodies against alpha(IIb)beta(3). vWF binding to GPIb-IX also activates soluble fibrinogen binding to alpha(IIb)beta(3) indicating that GPIb-IX mediates a cellular signal leading to alpha(IIb)beta(3) activation. Deletion of the 14-3-3-binding site in GPIbalpha inhibited GPIb-IX-mediated fibrinogen binding to alpha(IIb)beta(3) and cell spreading on vWF. Thus, 14-3-3 binding to GPIb-IX is important in GPIb-IX signaling. Expression of a dominant negative 14-3-3 mutant inhibited cell spreading on vWF, suggesting an important role for 14-3-3. Deleting both the 14-3-3 and filamin-binding sites of GPIbalpha induced an endogenous integrin-dependent cell spreading on vWF without requiring alpha(IIb)beta(3), but inhibited vWF-induced fibrinogen binding to alpha(IIb)beta(3). Thus, while different activation mechanisms may be responsible for vWF interaction with different integrins, GPIb-IX-mediated activation of alpha(IIb)beta(3) requires 14-3-3 interaction with GPIbalpha.  相似文献   

8.
We have used proteolytic fragments and overlapping synthetic peptides to define the domain of von Willebrand factor (vWF) that forms a complex with botrocetin and modulates binding to platelet glycoprotein (GP) Ib. Both functions were inhibited by the dimeric 116-kDa tryptic fragment and by its constituent 52/48-kDa subunit, comprising residues 449-728 of mature vWF, but not by the dimeric fragment III-T2 which lacks amino acid residues 512-673. Three synthetic peptides, representing discrete discontinuous sequences within the region lacking in fragment III-T2, inhibited vWF-botrocetin complex formation; they corresponded to residues 539-553, 569-583, and 629-643. The 116-kDa domain, with intact disulfide bonds, exhibited greater affinity for botrocetin than did the reduced and alkylated 52/48-kDa molecule, and both fragments had significantly greater affinity than any of the inhibitory peptides. Thus, conformational attributes, though not strictly required for the interaction, contribute to the optimal functional assembly of the botrocetin-binding site. Accordingly, 125I-labeled botrocetin bound to vWF and to the 116-kDa fragment immobilized onto nitrocellulose but not to equivalent amounts of the reduced and alkylated 52/48-kDa fragment; it also bound to the peptide 539-553, but only when the peptide was immobilized onto nitrocellulose at a much greater concentration than vWF or the proteolytic fragments. These studies demonstrate that vWF interaction with GP Ib may be modulated by botrocetin binding to a discontinuous site located within residues 539-643. The finding that single point mutations in Type IIB von Willebrand disease are located in the same region of the molecule supports the concept that this domain may contain regulatory elements that modulate vWF affinity for platelets at sites of vascular injury.  相似文献   

9.
We have expressed in Escherichia coli the domain of von Willebrand factor (vWF) containing the binding site for platelet glycoprotein (GP) Ib and used it to study the regulation of vWF-platelet interaction. The recombinant fragment, comprising residues 445-733 of the mature vWF subunit and designated rvWF445-733, did not have the native conformation of the corresponding domain in the intact molecule because, in order to prevent formation of random aggregates, the seven cysteine residues in the sequence were reduced and alkylated. Unlike native vWF, rvWF445-733 bound to GP Ib in the absence of any modulator, suggesting that the lack of disulfide bonds and/or carbohydrate side chains within this domain may expose platelet interaction sites. In the presence of two modulators, the glycopeptide ristocetin and the snake protein botrocetin, rvWF445-733 inhibited native vWF binding to GP Ib as well as platelet aggregation mediated by vWF, suggesting that both the fragment and the native molecule interact with the same site on platelets. This conclusion was also supported by the observation that the recombinant fragment competed with the binding to platelets of an anti-GP Ib monoclonal antibody known to inhibit vWF binding. Botrocetin formed a complex with rvWF445-733, but the affinity of this interaction was approximately 25-fold lower than with native vWF. However, the complexes of botrocetin with either rvWF445-733 or multimeric native vWF bound to GP Ib with similar dissociation constant. Therefore, conformational attributes of vWF regulate its affinity for botrocetin, but once the complex is formed, interaction with GP Ib is independent of native vWF conformation. These findings provide insights into the regulation of vWF-platelet interaction.  相似文献   

10.
Crystal structure of the von Willebrand factor modulator botrocetin   总被引:4,自引:0,他引:4  
The binding of von Willebrand factor (vWF) to the platelet receptor, glycoprotein (GP) Ib-IX-V complex, has a key role in the initiation of thrombus formation and is regulated by interactions with extracellular matrix components under the influence of hemodynamic forces. To a certain extent, these effects can be mimicked in vitro by two nonphysiologic modulators, ristocetin and botrocetin. The latter, isolated from the venom of the snake Bothrops jararaca, is a 31-kDa heterodimeric protein that forms a soluble complex with vWF. As an initial step toward understanding the mechanisms that regulate vWF function, we have solved the crystal structure of botrocetin at 1.8 A resolution. Botrocetin exhibits homology with other snake proteins, but contains only one metal binding site as compared to two in Factor IX binding protein and Factor IX/X binding protein and none in flavocetin. A distinctive feature of botrocetin is the presence of a negatively charged surface that may play a role in the association with the vWF A1 domain.  相似文献   

11.
The von Willebrand factor (vWF) mediates platelet adhesion to exposed subendothelium at sites of vascular injury. It does this by forming a bridge between subendothelial collagen and the platelet glycoprotein Ib-IX-V complex (GPIb). The GPIb-binding site within vWF has been localized to the vWF-A1 domain. Based on the crystal structure of the vWF-A1 domain (Emsley, J., Cruz, M., Handin, R., and Liddington, R. (1998) J. Biol. Chem. 273, 10396-10401), we introduced point mutations into 16 candidate residues that might form all or part of the GPIb interaction site. We also introduced two mutations previously reported to impair vWF function yielding a total of 18 mutations. The recombinant vWF-A1 mutant proteins were then expressed in Escherichia coli, and the activity of the purified proteins was assessed by their ability to support flow-dependent platelet adhesion and their ability to inhibit ristocetin-induced platelet agglutination. Six mutations located on the front and upper anterior face of the folded vWF-A1 domain, R524S, G561S, H563T, T594S/E596A, Q604R, and S607R, showed reduced activity in all the assays, and we suggest that these residues form part of the GPIb interaction site. One mutation, G561S, with impaired activity occurs in the naturally occurring variant form of von Willebrand's disease-type 2M underscoring the physiologic relevance of the mutations described here.  相似文献   

12.
Glycoprotein (GP) Ib-IX-V binds von Willebrand factor (VWF), initiating thrombosis at high shear stress. The VWF-A1 domain binds the N-terminal domain of GPIbalpha (His1-Glu282); this region contains seven leucine-rich repeats (LRR) plus N- and C-terminal flanking sequences and an anionic sequence containing three sulfated tyrosines. Our previous analysis of canine/human and human/canine chimeras of GPIbalpha expressed on Chinese hamster ovary (CHO) cells demonstrated that LRR2-4 (Leu60-Glu128) were crucial for GPIbalpha-dependent adhesion to VWF. Paradoxically, co-crystal structures of the GPIbalpha N-terminal domain and GPIbalpha-binding VWF-A1 under static conditions revealed that the LRR2-4 sequence made minimal contact with VWF-A1. To resolve the specific functional role of LRR2-4, we compared wild-type human GPIbalpha with human GPIbalpha containing a homology domain swap of canine for human sequence within Leu60-Glu128 and a reverse swap (canine GPIbalpha with human Leu60-Glu128) for the ability to support adhesion to VWF under flow. Binding of conformation-specific anti-GPIbalpha antibodies and VWF binding in the presence of botrocetin (which does not discriminate between species) confirmed equivalent expression of wild-type and mutant receptors in a functional form competent to bind ligand. Compared with CHO cells expressing wild-type GPIbalpha, cells expressing GPIbalpha, where human Leu60-Glu128 sequence was replaced by canine sequence, supported adhesion to VWF at low shear rates but became increasingly ineffective as shear increased from 50 to 2000 s(-1). Together, these data demonstrate that LRR2-4, encompassing a pronounced negative charge patch on human GPIbalpha, is essential for GPIbalpha.VWF-dependent adhesion as hydrodynamic shear increases.  相似文献   

13.
Platelet attachment to von Willebrand factor (vWF) requires the interaction between the platelet GP1bα and exposed vWF-A1 domains. Structural insights into the mechanism of the A1-GP1bα interaction have been limited to an N-terminally truncated A1 domain that lacks residues Q1238E1260 that make up the linker between the D3 and A1 domains of vWF. We have demonstrated that removal of these residues destabilizes quaternary interactions in the A1A2A3 tridomain and contributes to platelet activation under high shear (Auton et al., J Biol Chem 2012;287:14579–14585). In this study, we demonstrate that removal of these residues from the single A1 domain enhances platelet pause times on immobilized A1 under rheological shear. A rigorous comparison between the truncated A1-1261 and full length A1-1238 domains demonstrates a kinetic stabilization of the A1 domain induced by these N-terminal residues as evident in the enthalpy of the unfolding transition. This stabilization occurs through site and sequence-specific binding of the N-terminal peptide to A1. Binding of free N-terminal peptide to A1-1261 has an affinity and this binding although free to dissociate is sufficient to suppress the platelet pause times to levels comparable to A1-1238 under shear stress. Our results support a dual-structure/function role for this linker region involving a conformational equilibria that maintains quaternary A domain associations in the inactive state of vWF at low shear and an intra-A1-domain conformation that regulates the strength of platelet GP1bα-vWF A1 domain associations in the active state of vWF at high shear.  相似文献   

14.
Interaction of von Willebrand factor (vWF) with its platelet receptor only occurs in vitro in the presence of a modulator such as ristocetin. We have recently confirmed that the human platelet membrane glycoprotein (GP) Ib-IX complex is the receptor involved in the ristocetin-dependent binding of vWF by reconstitution with the purified components [Berndt, M.C., Du, X., & Booth, W.J. (1988) Biochemistry 27, 633-640]. We have now developed a similar solid-phase reconstitution assay using an alternate modulator, botrocetin, for the competitive analysis of functional domains in both vWF and the GP Ib-IX complex. Botrocetin was purified from Bothrops jararaca venom by ammonium sulfate fractionation and subsequent DEAE-cellulose and hydroxylapatite chromatography. The purified protein was a 25-kilodalton (kDa) disulfide-linked dimer with apparent subunit molecular weights of 14,000 and 14,500. Binding studies with immobilized botrocetin demonstrated that botrocetin bound to vWF and to a 52/48-kDa region of vWF that contains the GP Ib binding domain, but not to glycocalicin, a proteolytic fragment of GP Ib that contains the vWF binding site. Binding of 125I-labeled vWF to GP Ib-IX complex coated beads and to platelets was strictly botrocetin-dependent with half-maximal binding at a botrocetin concentration of congruent to 0.27 microM. Botrocetin-dependent binding of vWF was specific, saturable, and comparable to that observed with ristocetin. An anti-vWF monoclonal antibody, 3F8, inhibited ristocetin- but not botrocetin-dependent binding of vWF, suggesting the presence of distinct ristocetin and botrocetin modulator sites on vWF. The botrocetin reconstitution assay was at least an order of magnitude more sensitive than the corresponding ristocetin assay for the competitive analysis of functional domains on both vWF and the GP Ib-IX complex and has confirmed the localization of the vWF-binding domain to the 45-kDa N-terminal region of GP Ib.  相似文献   

15.
As the first step in hemostasis, the binding of von Willebrand factor (vWF) to the platelet membrane glycoprotein (GP) Ib-IX complex is essential for platelet adhesion at high-shear blood flow. This interaction in vivo requires the prior binding of vWF to the subendothelial matrix, a process which exposes a normally cryptic binding site on vWF for the GP Ib-IX complex. This process can be mimicked in vitro by modulators such as ristocetin or the snake venom protein botrocetin or by desialation of vWF. We have previously localized the GP Ib binding site on vWF to a monomeric dispase fragment which extends from Leu-480/Val-481 to Gly-718 in the primary sequence of mature vWF [Andrews, R. K., Gorman, J. J., Booth, W. J., Corino, G. L., Castaldi, P. A., & Berndt, M. C. (1989) Biochemistry 28, 8326-8336]. This fragment also contains a distinct binding site for botrocetin. Analysis of synthetic peptides corresponding to hydrophilic stretches of sequence within this fragment indicated that the sequence Asp-514-Glu-542 represents a major adhesive sequence involved in receptor recognition. This peptide inhibited both the ristocetin- and botrocetin-mediated binding of vWF to either platelets or purified GP Ib-IX complex (IC50 approximately 50-200 microM) as well as the asialo-vWF- and bovine vWF-dependent agglutination of platelets. Both the N- and C-terminal halves of the peptide were inhibitory but less so than the intact peptide. This peptide also inhibited botrocetin binding to vWF, suggesting that botrocetin modulates vWF-GP Ib interaction by binding in close proximity to the vWF adhesion sequence.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Soluble von Willebrand factor (VWF) has a low affinity for platelet glycoprotein (GP) Ibalpha and needs immobilization and/or high shear stress to enable binding of its A1 domain to the receptor. The previously described anti-VWF monoclonal antibody 1C1E7 enhances VWF/GPIbalpha binding and recognizes an epitope in the amino acids 764-1035 region in the N-terminal D'D3 domains. In this study we demonstrated that the D'D3 region negatively modulates the VWF/GPIb-IX-V interaction; (i) deletion of the D'D3 region in VWF augmented binding to GPIbalpha, suggesting an inhibitory role for this region, (ii) the isolated D'D3 region inhibited the GPIbalpha interaction of a VWF deletion mutant lacking this region, indicating that intramolecular interactions limit the accessibility of the A1 domain, (iii) using a panel of anti-VWF monoclonal antibodies, we next showed that the D'D3 region is in close proximity with the A1 domain in soluble VWF but not when VWF was immobilized; (iv) destroying the epitope of 1C1E7 resulted in a mutant VWF with an increased affinity for GPIbalpha. Our results support a model of domain translocation in VWF that allows interaction with GPIbalpha. The suggested shielding interaction of the A1 domain by the D'D3 region then becomes disrupted by VWF immobilization.  相似文献   

17.
Binding of the A1 domain of von Willebrand factor (vWF) to glycoprotein Ibα (GPIbα) results in platelet adhesion, activation, and aggregation that initiates primary hemostasis. Both the elevated shear stress and the mutations associated with type 2B von Willebrand disease enhance the interaction between A1 and GPIbα. Through molecular dynamics simulations for wild-type vWF-A1 and its eight gain of function mutants (R543Q, I546V, ΔSS, etc.), we found that the gain of function mutations destabilize the N-terminal arm, increase a clock pendulum-like movement of the α2-helix, and turn a closed A1 conformation into a partially open one favoring binding to GPIbα. The residue Arg578 at the α2-helix behaves as a pivot in the destabilization of the N-terminal arm and a consequent dynamic change of the α2-helix. These results suggest a localized dynamics-driven affinity regulation mechanism for vWF-GPIbα interaction. Allosteric drugs controlling this intrinsic protein dynamics may be effective in blocking the GPIb-vWF interaction.  相似文献   

18.
vWF介导血小板粘附到细胞外基质 ,在血栓形成过程中发挥重要作用 ,可通过阻断vWF与细胞外基质的结合阻止血小板的粘附 .应用RT PCR方法从人脐静脉内皮细胞中克隆vWF分子A1、A3区基因并在大肠杆菌中表达 ,表达的重组蛋白量占菌体总蛋白 12 6 % ,包涵体经过变性剂溶解、纯化和复性 ,获得重组蛋白 (rvWF A1 A3) .应用流式细胞术检测rvWF A1 A3与血小板膜糖蛋白 (GPⅠb)的结合功能 ;血小板聚集实验观察rvWF A1 A3对瑞斯托霉素 (ristocetin)诱导的血小板聚集 (RIPA)的影响 ;ELISA胶原结合实验及竞争抑制实验分析rvWF A1 A3与胶原的结合活性 .结果显示 :rvWF A1 A3嵌合体与血小板的结合阳性率为 70 4 % .rvWF A1 A3嵌合体不能引起血小板的聚集 ,但rvWF A1 A3嵌合体与血小板温育后可以阻断ristocetin诱导人血浆vWF对血小板的聚集作用 ,而且呈剂量依赖性 ,IC50 的rvWF A1 A3浓度为 0 76 μmol L ,当浓度为 1 17μmol L时抑制率最高达 76 8% .rvWF A1 A3具有良好的胶原结合活性 ,同时它可以竞争性抑制vWF与Ⅲ型胶原的结合 ,抑制率为 76 % .表明rvWF A1 A3可作为阻断剂用于干预vWF介导的血小板粘附过程 ,同时又可以阻断血浆vWF与血小板GPIb结合抑制血小板聚集 ,具有良好的抗栓应用前景 .  相似文献   

19.
We have expressed in mammalian cells a fragment (residues 1-302) of the alpha chain of platelet glycoprotein (GP) Ib containing the von Willebrand factor- (vWF) binding site. The secreted soluble protein had an apparent molecular mass of 45 kDa and reacted with conformation-dependent monoclonal antibodies that bind only to native GP Ib, thus demonstrating its proper folding. After insolubilization on nitrocellulose membrane, the recombinant GP Ib alpha fragment bound soluble vWF in the presence of ristocetin or botrocetin with a dissociation constant similar to that exhibited by GP Ib.IX complex on platelets. Moreover, the interaction was blocked by anti-GP Ib monoclonal antibodies known to inhibit vWF binding to platelets. The sequence of GP Ib alpha between residues 269-287 has a strong net negative charge due to the presence of 10 glutamic or aspartic acid residues; 5 of these are contained in the sequence of a synthetic peptide (residues 251-279) previously shown to inhibit vWF-platelet interaction. In order to evaluate the possible functional role of these acidic residues, we employed site-directed mutagenesis to express two mutant GP Ib alpha fragments containing asparagine or glutamine instead of aspartic or glutamic acid, respectively. Mutant 1, with substitutions between residues 251-279, failed to bind vWF whether in the presence of ristocetin or botrocetin; in contrast, vWF binding to Mutant 2, with substitutions between residues 280-302, was nearly normal in the presence of ristocetin, but markedly decreased in the presence of botrocetin. Thus, mammalian cells transfected with a truncated cDNA sequence encoding the amino-terminal domain of GP Ib alpha synthesize a fully functional vWF-binding site; acidic residues in the sequence 252-287 are essential for normal function.  相似文献   

20.
We have previously demonstrated that the isolated von Willebrand Factor (vWF)-A1-domain can activate platelets in a GPIb-dependent manner. Here we evaluated the functional impact of targeted point mutations Gly561His (G1324(561)H), an analog of a previously described 2M von Willebrand disease variant, and Asp560Ser (D1323(560)S) in the model of the membrane expressed A1-domain. Platelet aggregation in response to COS-7-cells stably transfected with wild type A1-domain was abrogated by both substitutions. Ristocetin did not increase the aggregatory potential of mutant vWF-A1, in contrast to native forms. Botrocetin boosted the aggregatory responses of all A1-domains tested. These data suggest that G1324(561) and D1323(560) comprise part of the GPIb binding motif essential for subsequent platelet aggregation. Botrocetin seems to alter the potential of vWF for GPIb interaction independently of that motif. The experimental system tested here provides a rapid and reproducible approach for the functional analysis of isolated A1-domain interactions with platelet-GPIb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号