首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 287 毫秒
1.
Supramaximal stimulation of the rat pancreas with CCK, or its analog caerulein, triggers acute pancreatitis and a number of pancreatitis-associated acinar cell changes including intracellular activation of digestive enzyme zymogens and acinar cell injury. It is generally believed that some of these various acinar cell responses to supramaximal secretagogue stimulation are interrelated and interdependent. In a recent report, Lu et al. showed that secretin, by causing generation of cAMP and activation of PKA, sensitizes acinar cells to secretagogue-induced zymogen activation, and, as a result, submaximally stimulating concentrations of caerulein can, in the presence of secretin, trigger intracellular zymogen activation. We found that secretin also sensitizes acinar cells to secretagogue-induced cell injury and to subapical F-actin redistribution but that it did not alter the caerulein concentration dependence of other pancreatitis-associated changes such as the induction of a peak plateau intracellular [Ca(2+)] rise, inhibition of secretion, activation of ERK1/2, and activation of NF-kappaB. The finding that secretin sensitizes acinar cells to both intracellular zymogen activation and cell injury is consistent with the concept that these two early events in pancreatitis are closely interrelated and, possibly, interdependent. On the other hand, the finding that, in the presence of secretin, caerulein can trigger subapical F-actin redistribution without inhibiting secretion challenges the concept that disruption of the subapical F-actin web is causally related to high-dose secretagogue-induced inhibition of secretion in pancreatic acinar cells.  相似文献   

2.
Summary Incubation of rat pancreatic lobules for 90 min with optimal concentrations of caerulein, carbachol or secretin caused the release of about 30% of the amylase content. Combination of secretin with carbachol or caerulein increased the amylase output to about 40%. With secretin, as with carbachol or caerulein, heterogeneity of cellular responsiveness was observed, some acini being partially or completely depleted of their zymogen granules, whereas others appeared to be resting. When secretin was combined with carbachol or caerulein, granule depletion, originally confined to small groups of neighbouring acini, spread to form large areas of degranulated cells, sometimes comprising a whole section of a lobule.In dispersed acini, under the same conditions, carbachol caused the release of about 60% of the amylase content, and secretin 40%. When both secretagogues were combined, a significant increase to 78% was observed. Under these conditions, there was some important cellular damage, as indicated by the release of 20% of the amylase content and between 6 and 12% of lactate dehydrogenase into the media, in the absence of stimulus. These results were corroborated by cytological observations. On the basis of their secretory response two groups of acini can be distinguished, those that respond to carbachol, caerulein or secretin and those that respond to the combination of secretin with carbachol or caerulein. Electrophoretic patterns of secretory proteins released by lobules stimulated by these different types of secretagogues were essentially similar. The pattern was quite different, however, in the absence of a stimulus. The most striking feature was the presence of a band at 63 Kd whereas a 73.5 Kd band was found only under conditions of stimulation. The latter results support the view that under resting and stimulated conditions secretory proteins are released from distinct compartments in the acinar cell.Abbreviations used PMSF phenylmethylsulfonyl fluoride - Carbachol carbamylcholine chloride - SBTI soybean trypsin inhibitor  相似文献   

3.
The pathological activation of proteases within the pancreatic acinar cell is critical to initiating pancreatitis. Stimulation of acinar cells with supraphysiological concentrations of the CCK analog caerulein (CER) leads to protease activation and pancreatitis. Agents that sensitize the acinar cell to the effects of CCK might contribute to disease. The effects of physiological ligands that increase acinar cell cAMP [secretin, VIP, and pituitary adenylate cyclase activating peptide (PACAP)] on CER-induced responses were examined in isolated rat pancreatic acini. Each ligand sensitized the acinar cell to zymogen activation by physiological concentrations of CER (0.1 nM). VIP and PACAP but not secretin also enhanced activation by supraphysiological concentrations of CER (0.1 muM). A cell-permeable cAMP analog also sensitized the acinar cell to CER-induced activation. The cAMP antagonist Rp-8-Br-cAMP inhibited these sensitizing effects. These findings suggest that ligands that increase acinar cell cAMP levels can sensitize the acinar cell to the effects of CCK-induced zymogen activation.  相似文献   

4.
Gamma Glutamyltranspeptidase (GGT) is a membrane-bound enzyme involved in glutathione metabolism. It is present in rat exocrine pancreas at a level which is only exceeded by the kidney. It has been previously shown that most of the enzyme activity is located in the apical area of the acinar cell, more precisely at the level of zymogen granules and plasma membrane. The aim of the present study was to examine the secretory behavior of that enzyme. Under resting conditions, in vivo, high levels of GGT were found in pancreatic juice and its level was not related to protein concentration. Under secretin infusion, a relatively constant level of GGT was released, and again, there was no correlation between enzyme activity and protein concentration. Following a bolus injection of caerulein, an analog of cholecystokinin, marked and concomitant rises in protein and GGT levels were observed. Ultracentrifugation, as well as gel filtration on Sepharose 4B, demonstrated that the enzyme was not released in a soluble form. This observation is in agreement with in vitro determinations on isolated zymogen granules showing that GGT is totally associated with the ZG membrane and undetect-able in the content of these organelles. The present data show that 1 degree GGT is released from the rat pancreas acinar cells in a particulate form; 2 degree GGT release is elicited by hormonal stimulation coinciding with the exocytotic release of secretory proteins. Our observations lead us to propose that in rat pancreas, ZG membrane fragments are released along with secretory proteins during exocytosis.  相似文献   

5.
The pancreatic acinar cell has several phenotypic responses to cAMP agonists. At physiological concentrations of the muscarinic agonist carbachol (1 microM) or the CCK analog caerulein (100 pM), ligands that increase cytosolic Ca(2+), cAMP acts synergistically to enhance secretion. Supraphysiological concentrations of carbachol (1 mM) or caerulein (100 nM) suppress secretion and cause intracellular zymogen activation; cAMP enhances both zymogen activation and reverses the suppression of secretion. In addition to stimulating cAMP-dependent protein kinase (PKA), recent studies using cAMP analogs that lack a PKA response have shown that cAMP can also act through the cAMP-binding protein, Epac (exchange protein directly activated by cyclic AMP). The roles of PKA and Epac in cAMP responses were examined in isolated pancreatic acini. The activation of both cAMP-dependent pathways or the selective activation of Epac was found to enhance amylase secretion induced by physiological and supraphysiological concentrations of the muscarinic agonist carbachol. Similarly, activation of both PKA or the specific activation of Epac enhanced carbachol-induced activation of trypsinogen and chymotrypsinogen. Disorganization of the apical actin cytoskeleton has been linked to the decreased secretion observed with supraphysiological concentrations of carbachol and caerulein. Although stimulation of PKA and Epac or Epac alone could largely overcome the decreased secretion observed with either supraphysiological carbachol or caerulein, stimulation of cAMP pathways did not reduce the disorganization of the apical cytoskeleton. These studies demonstrate that PKA and Epac pathways are coupled to both secretion and zymogen activation in the pancreatic acinar cell.  相似文献   

6.
Summary We have investigated the short-term effects of hydrocortisone (60 mg/kg per day) and placebo on basal and stimulated pancreatic secretion in the conscious rat. Volume and enzyme secretion were determined; fine structural changes were examined simultaneously.The pancreatic and bile ducts were cannulated separately; pancreatic juice was drained via an isolated fistula, and bile was recirculated into the duodenum. The application of hydrocortisone led to an almost complete inhibition of the secretory response of the exocrine pancreas when stimulated with 0.25 U secretin in combination with 5 × 10-8 g caerulein per h. It strongly affected the secretion rates of volume, protein, lipase, chymotrypsin, trypsin and carboxypeptidase, whereas the secretion rate of alpha-amylase continued to show a slight increase after stimulation.After stimulation with secretin and caerulein, the hydrocortisone-treated animals showed a higher density of zymogen granules in the acinar cell and an increase in the number of autophagic vacuoles in comparison to the equally stimulated placebo-treated rats.It is concluded that the short-term inhibition of pancreatic secretion by hydrocortisone occurs largely as a result of an inhibition of cellular enzyme discharge.Supported by the Deutsche Forschungsgemeinschaft, Ga 279  相似文献   

7.
Isoforms of protein kinase C (PKC) have been shown to modulate some cellular responses such as pathological secretion and generation of inflammatory mediators during acute pancreatitis (AP). We propose that PKC also participates in premature zymogen activation within the pancreatic acinar cell, a key event in the initiation of AP. This hypothesis was examined in in vivo and cellular models of caerulein-induced AP using PKC activators and inhibitors. Phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA, 200 nM), a known activator of PKC, enhanced zymogen activation at both 0.1 nM and 100 nM caerulein, concentrations which mimic physiological and supraphysiological effects of the hormone cholecystokinin, respectively, in preparations of pancreatic acinar cells. Isoform-specific PKC inhibitors for PKC-delta and PKC-epsilon reduced supraphysiological caerulein-induced zymogen activation. Using a cell-free reconstitution system, we showed that inhibition of PKC-delta and -epsilon, reduced zymogen activation in both zymogen granule-enriched and microsomal fractions. In dispersed acinar cells, 100 nM caerulein stimulation caused PKC-delta and -epsilon isoform translocation to microsomal membranes using cell fractionation and immunoblot analysis. PKC translocation was confirmed with in vivo studies and immunofluorescence microscopy in pancreatic tissues from rats treated with or without 100 nM caerulein. PKC-epsilon redistributed from an apical to a supranuclear region following caerulein administration. The signal for PKC-epsilon overlapped with granule membrane protein, GRAMP-92, an endosomal/lysosomal marker, in a supranuclear region where zymogen activation takes place. These results indicate that PKC-delta and -epsilon isoforms translocate to specific acinar cell compartments and modulate zymogen activation.  相似文献   

8.
To determine how low or high dose of caerulein, a cholecystokinin analogue influence pancreatic growth, doses of caerulein were selected which were submaximal (1 microgram/kg i.p.) and supramaximal (10 micrograms/kg i.p.) for enzyme protein secretion. Rats were injected every 8 h for 7 days with saline, low, or high dose of caerulein. The low dose of caerulein significantly increased pancreatic weight and content of DNA, protein, and digestive enzymes. The high dose caerulein group did not differ from control in these parameters of pancreatic growth. The number of zymogen granules was increased in both caerulein-treated groups. However, zymogen granules in the high dose group were atypical, appearing lucent or having a dense core with a lucent halo. These results indicate that caerulein has a biphasic effect on both enzyme secretion and the trophic response of acinar cells, and that the inhibitory effect of high dose of caerulein on pancreatic growth is accompanied by alterations in acinar cell morphology.  相似文献   

9.
Activation of zymogens within the pancreatic acinar cell is an early feature of acute pancreatitis. Supraphysiological concentrations of cholecystokinin (CCK) cause zymogen activation and pancreatitis. The effects of the CCK analog, caerulein, and alcohol on trypsin and chymotrypsin activation in isolated pancreatic acini were examined. Caerulein increased markers of zymogen activation in a time- and concentration-dependent manner. Notably, trypsin activity reached a peak value within 30 min, then diminished with time, whereas chymotrypsin activity increased with time. Ethanol (35 mM) sensitized the acinar cells to the effects of caerulein (10(-10) to 10(-7) M) on zymogen activation but had no effect alone. The effects of ethanol were concentration dependent. Alcohols with a chain length of >or=2 also sensitized the acinar cell to caerulein; the most potent was butanol. Branched alcohols (2-propanol and 2-butanol) were less potent than aliphatic alcohols (1-propanol and 1-butanol). The structure of an alcohol is related to its ability to sensitize acinar cells to the effects of caerulein on zymogen activation.  相似文献   

10.
A characteristic of acute pancreatitis is the premature activation and retention of enzymes within the pancreatic acinar cell. Because ligands linked to cAMP production may prevent some forms of pancreatitis, we evaluated the effects of increased intracellular cAMP in the rat pancreatic acinar cell. Specifically, this study examined the effects of the cholinergic agonist carbachol and agents that increase cAMP [secretin and 8-bromoadenosine 3',5'-cyclic monophosphate (8-Br-cAMP)] on zymogen activation (trypsin and chymotrypsin), enzyme secretion, and cellular injury in isolated pancreatic acini. Although cAMP agonists affected the responses to physiological concentrations of carbachol (1 microM), their most prominent effects were observed with supraphysiological concentrations (1 mM). When secretin was added to 1 mM carbachol, there was a slight increase in zymogen activation, but no change in the secretion of amylase or chymotrypsin. Furthermore, coaddition of secretin increased parameters of cell injury (trypan blue exclusion, lactic dehydrogenase release, and morphological markers) compared with carbachol (1 mM) alone. Although directly increasing cellular cAMP by 8-Br-cAMP caused much greater zymogen activation than carbachol (1 mM) alone or with secretin, 8-Br-cAMP cotreatment reduced all parameters of injury to the level of unstimulated acini. Furthermore, 8-Br-cAMP dramatically enhanced the secretion of amylase and chymotrypsin from the acinar cell. This study demonstrates that increasing acinar cell cAMP can overcome the inhibition of enzyme secretion caused by high concentrations of carbachol and eliminate acinar cell injury.  相似文献   

11.
In-vivo stimulation of rat pancreatic acinar cells by infusion of secretin   总被引:2,自引:0,他引:2  
Infusion of synthetic secretin in conscious unrestricted rats for periods up to 24 h was used to study the structural and functional adaptation of pancreatic acinar cells to this secretagogue. Initial dose-response studies established 16 clinical units (CU) per kg and h (corresponding to 4.64 micrograms X kg-1 X h-1) as optimal dose for persistent stimulation of enzyme discharge. Infusion of this dose led to a slow but progressive depletion of enzyme stores with minimal content by 12 h stimulation. As a result of persistent stimulation total protein synthesis in the acinar cells increased after a lag period of 3 h and reached maximal values 90% above controls by 6 and 12 h secretin infusion. No structural equivalent for pronounced fluid and bicarbonate secretion was observed for either acinar or duct cells over the entire dose range (1 to 64 CU X kg-1 X h-1) and infusion period (1-24 h), except an increased number of coated vesicles in duct cells. Discharge of enzymes from acinar cells was paralleled by a high frequency of exocytotic images at the luminal plasma membrane and was accompanied by the occurrence of membrane fragments in the luminal space, especially after 3 and 6 h secretin infusion. An increased number of lysosomal bodies at these time points especially in the vicinity of the Golgi complex was interpreted in relation to membrane recycling following massive exocytosis. This pattern of structural and functional adaptation of acinar cells following secretin infusion corresponds to previously described changes following caerulein and carbamylcholine stimulation.  相似文献   

12.
This study was undertaken to evaluate whether hypertrophy and hyperplasia of the pancreatic acinar cells induced by caerulein remained after termination of the hormonal treatment. Rats received subcutaneous injections of saline or caerulein for 4 days and were killed immediately after termination of treatment or 2, 15 and 50 days later. Caerulein treatment induced significant increases in pancreatic weight and contents of DNA, RNA, protein, amylase and chymotrypsinogen along with an increased number of acinar cells per acinus and zymogen granules per acinar cells. During the post-treatment period, the caerulein-treated pancreas reverted to control values for their contents in proteins, enzymes and RNA and number of zymogen granules per acinar cell while the number of pancreatic cells remained constant as indicated by the absence of modification in total DNA content and acinar cells per acinus. During that same period, saline-treated pancreas exhibited constant growth. These morphological and biochemical data indicate that the already present and newly formed acinar cells can remain in place once the trophic stimulus is withdrawn and that they can adjust their cellular components and thus their digestive capacity to the circulating levels of endogenous cholecystokinin released in response to normal meals.  相似文献   

13.
Summary Infusion of synthetic secretin in conscious unrestricted rats for periods up to 24 h was used to study the structural and functional adaptation of pancreatic acinar cells to this secretagogue. Initial dose-response studies established 16 clinical units (CU) per kg and h (corresponding to 4.64 ug x kg-1 x h-1) as optimal dose for persistent stimulation of enzyme discharge. Infusion of this dose led to a slow but progressive depletion of enzyme stores with minimal content by 12 h stimulation. As a result of persistent stimulation total protein synthesis in the acinar cells increased after a lag period of 3 h and reached maximal values 90% above controls by 6 and 12 h secretin infusion. No structural equivalent for pronounced fluid and bicarbonate secretion was observed for either acinar or duct cells over the entire dose range (1 to 64 CU x kg-1 x h-1) and infusion period (1–24 h), except an increased number of coated vesicles in duct cells.Discharge of enzymes from acinar cells was paralleled by a high frequency of exocytotic images at the luminal plasma membrane and was accompanied by the occurrence of membrane fragments in the luminal space, especially after 3 and 6 h secretin infusion. An increased number of lysosomal bodies at these time points especially in the vicinity of the Golgi complex was interpreted in relation to membrane recycling following massive exocytosis. This pattern of structural and functional adaptation of acinar cells following secretin infusion corresponds to previously described changes following caerulein and carbamylcholine stimulation.Supported by a grant from Deutsche Forschungsgemeinschaft (Ke 113/15-1)  相似文献   

14.
Summary We examined the effects of secretin (0 to 200 nM) and caerulein (0 to 100 nM) on rat pancreatic acinar cells cultured 0 to 48 h in serum-free medium. The effects of 100 nM secretin with 1 nM caerulein were also studied because secretin may potentiate the effects of caerulein. Cellular and media (secreted) lipase and amylase were analyzed as were cellular DNA and protein content. Cellular lipase and amylase activities significantly decreased (P<0.0001) over time in all treatment groups, whereas media amylase and lipase significantly increased (P<0.0001). Neither secretin nor caerulein affected cellular lipase or media amylase. However, secretin significantly increased (P<0.04) and caerulein tended to increase (P<0.08) media lipase in a dose-dependent manner. At 12 h, 10 nM secretin maximally increased media lipase (58%), suggesting that cultured acinar cells remain responsive to secretin in vitro. Caerulein, at all concentrations, significantly decreased (P<0.001) cellular amylase but exhibited a dose-dependent effect only at 24 h when 100 nM caerulein maximally decreased cellular amylase (34%). Secretin (100 nM) did not alter these effects of caerulein. These results support the proposed role of caerulein in the regulation of amylase but not a direct role of secretin in the regulation of lipase. This study was supported in part by grant RO1 DK32690 from the National Institutes of Health, Bethesda, MD.  相似文献   

15.
To examine mechanisms that might be related to biliary pancreatitis, we examined the effects of pancreatic duct ligation (PDL) with pancreatic stimulation in vivo. PDL alone caused no increase in pancreatic levels of trypsinogen activation peptide (TAP), trypsin, or chymotrypsin and did not initiate pancreatitis. Although bombesin caused zymogen activation within the pancreas, the increases were slight and it did not cause pancreatitis. However, the combination of PDL with bombesin resulted in prominent increases in pancreatic TAP, trypsin, chymotrypsin, and the appearance of TAP in acinar cells and caused pancreatitis. Disruption of the apical actin network in the acinar cell was observed when PDL was combined with bombesin but not with PDL or bombesin alone. These studies suggest that when PDL is combined with pancreatic acinar cell stimulation, it can promote zymogen activation, the retention of active enzymes in acinar cells, and the development of acute pancreatitis.  相似文献   

16.
The influence of venom (TSV) from the Brazilian scorpion, Tityus serrulatus, on exocrine pancreatic secretion was studied in relation to known cholinergic and peptidergic secretagogue activity. Pulse-labeling followed by chase incubation in the presence of secretagogues and various pharmacological agents revealed unique physiological characteristics of TSV in guinea pig pancreatic lobules. Exocytotic discharge of newly synthesized 3H-labeled proteins during a 3-h chase incubation showed a marked increase over basal discharge levels using logarithmic TSV doses of 0.10 to 100 micrograms/ml. This stimulation was comparable to maximal values elicited by carbachol, cholecystokinin-octapeptide (CCK-8) or caerulein and discharge kinetics were similar. TSV-mediated secretion was ATP and calcium dependent and partially inhibited by atropine. Only tetrodotoxin completely blocked TSV stimulation of newly synthesized protein discharge. Both botulinum toxin and curare had no effect on venom stimulation, indicating that TSV interaction with exocrine pancreatic cells occurs postsynaptically. Verapamil, a calcium channel antagonist, produced a moderate inhibition of TSV stimulation. When antagonists to the cholecystokinin (CCK) receptor were incubated with TSV, no change in secretory activity occurred. Therefore, TSV does not bind to CCK receptors and probably operates through its own receptor which may be an ion channel. Additionally, morphological studies in vitro revealed a high level of pancreatic secretory activity as evidenced by dense secretory acinar luminal content, reduction in zymogen granule (ZG) population, and development of exocytotic images.  相似文献   

17.
The present work reports on exocrine pancreatic secretion in control rats, adrenalectomized rats and hydrocortisone-treated (10 mg/Kg/d) rats during 7 days, under normal conditions and after induction of acute pancreatitis with caerulein (20 micrograms/Kg) by 4 subcutaneous injections at hourly intervals. Pancreatic secretion was seen to be affected by the procedure of adrenalectomy, which led to a marked reduction in the secretion of proteins and amylase with respect to control values. This was probably due to the decrease occurring in the zymogen granules in the acinar cells of the exocrine pancreas, a phenomenon which also led to a decrease in pancreatic weight observed in these animals. Treatment with hydrocortisone induced a decrease in the secretion of proteins and amylase, as well as an increase in pancreatic weight. This agrees with the accepted hypothesis that large amounts glucocorticoids stimulate the synthesis and storage of proteins in the exocrine pancreas, reducing the secretory phase. The administration of high doses of caerulein under these conditions led to acute pancreatitis in the three groups of animals. This was paralleled by a dramatic decrease in protein and amylase secretion and by severe interstitial edema of the pancreas and by increases in serum amylase values. In the case of the animals treated previously with hydrocortisone, the latter were tripled with respect to the control animals. The conclusion is offered that since the storage of enzyme proteins is governed by glucocorticoids, which furthermore increase the sensitivity of the acinar cells to stimulation by secretagogues, the administration of these substances during the development of pancreatic lesions such as acute pancreatitis is highly compromising to the organism.  相似文献   

18.
Syncollin is a small protein that is abundantly expressed in pancreatic acinar cells and that is tightly associated with the lumenal side of the zymogen granule membrane. To shed light on the hitherto unknown function of syncollin, we have generated syncollin-deficient mice. The mice are viable and show a normal pancreatic morphology as well as normal release kinetics in response to secretagogue stimulation. Although syncollin is highly enriched in zymogen granules, no change was found in the overall protein content and in the levels of chymotrypsin, trypsin, and amylase. However, syncollin-deficient mice reacted to caerulein hyperstimulation with a more severe pancreatitis. Furthermore, the rates of both protein synthesis and intracellular transport of secretory proteins were reduced. We conclude that syncollin plays a role in maturation and/or concentration of zymogens in zymogen granules.  相似文献   

19.
We have examined the secretogogue responsiveness and the pattern of secretory proteins produced by a transplantable rat pancreatic acinar cell tumor. Dispersed tumor cells were found to discharge secretory proteins in vitro when incubated with hormones that act on four different classes of receptors: carbamylcholine, caerulein, secretin-vasoactive intestinal peptide, and bombesin. With all hormones tested, maximal discharge from tumor cells was only about one-half that of control pancreatic lobules, but occurred at the same dose optima except for secretin, whose dose optimum was 10-fold higher. Biochemical analysis of secretory proteins discharged by the tumor cells was carried out by crossed immunoelectrophoresis and by two-dimensional isoelectric focusing-SDS polyacrylamide gel electrophoresis. To establish a baseline for comparison, secretory proteins from normal rat pancreas were identified according to enzymatic activity and correlated with migration position on two-dimensional gels. Our results indicate that a group of basic polypeptides including proelastase, basic trypsinogen, basic chymotrypsinogen, and ribonuclease, two out of three forms of procarboxypeptidase B, and the major lipase species were greatly reduced or absent in tumor cell secretion. In contrast, the amount of acidic chymotrypsinogen was notably increased compared with normal acinar cells. Although the acinar tumor cells are highly differentiated cytologically and express functional receptors for several classes of pancreatic secretagogues, they show quantitative and qualitative differences when compared with normal pancreas with regard to their production of secretory proteins.  相似文献   

20.
The secretory response of hepatic bile and exocrine pancreas to gastrointestinal peptides has been studied in chronically cannulated sheep. Pancreatic juice flow and protein output were evoked dose dependently by intraportal injection of secretin, CCK-8, caerulein, VIP and neurotensin. However, biliary secretion was evoked by only secretin. Biliary and pancreatic exocrine secretions were enhanced by delivered gastric juice into the duodenum as followed by the increased plasma concentration of immunoreactive secretin (IRS). Results suggest that secretin is the major peptide that regulates pancreatic exocrine secretion and hepatic bile production in the sheep.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号