首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monoclonal antibodies (mAbs) directed against the transferrin receptor are known to inhibit proliferation of cells due to iron deprivation. Some cell types, however, escape from growth inhibition by a mechanism which is unclear at present. This mechanism is the subject of the present study. We investigated the differential growth inhibition caused by anti-transferrin receptor mAb ER-MP21 in connection with the differentiation of murine macrophages (M phi). Therefore, we applied two models of M phi differentiation, namely, culture of bone marrow cells in the presence of M-CSF and a panel of M phi cell lines ordered in a linear differentiation sequence. In both models we observed that proliferation of M phi precursors was strongly inhibited by ER-MP21. In contrast, proliferation of more mature stages of M phi differentiation was hardly affected. Remarkably, iron uptake by M phi precursor and mature M phi cell lines was inhibited by ER-MP21 to the same extent. However, mature M phi cell lines showed an iron uptake two- to threefold higher than that of M phi precursor cell lines. These observations strongly suggest that mature M phi escape from ER-MP21-mediated growth inhibition, because these cells take up more iron than is actually needed for proliferation. Furthermore, we found that enhanced iron uptake by mature M phi is not necessarily accompanied by a higher cell surface expression of transferrin receptors, thus suggesting an increased recycling of transferrin receptors in mature M phi.  相似文献   

2.
The effects of the iron-chelator, desferrioxamine, and monoclonal antibodies against transferrin receptors of DNA synthesis and ribonucleotide reductase activity were examined in human leukemia K562 cells. Treatment of the cells with desferrioxamine resulted in decreases of ribonucleotide reductase activity, DNA synthesis, and cell growth. Exposure of the cells to anti-transferrin receptor antibody, 42/6, which blocks iron supplement into cells caused decreases of ribonucleotide reductase activity and DNA synthesis, in a parallel fashion. Decreases of ribonucleotide reductase activity and DNA synthesis by 42/6 were restored by the addition of ferric nitriloacetate. These results indicate that ribonucleotide reductase activity is dependent on the iron-supply and also regulates cell proliferation.  相似文献   

3.
Some anti-murine transferrin receptor monoclonal antibodies block iron uptake in mouse cell lines and inhibit cell growth. We report here the selection and characterization of mutant murine lymphoma cell lines which escape this growth inhibition by anti-transferrin receptor antibody. Growth assays and immunoprecipitation of transferrin receptor in hybrids between independently derived mutants or between mutants and antibody-susceptible parental cell lines indicate that all of the selected lines have a similar genetic alteration that is codominantly expressed in hybrids. Anti-transferrin receptor antibodies and transferrin itself still bind to the mutant lines with saturating levels and Kd values very similar to those of the parental lines. However, reciprocal clearing experiments by immunoprecipitation and reciprocal blocking of binding to the cell surface with two anti-transferrin receptor antibodies indicate that the mutant lines have altered a fraction of their transferrin receptors such that the growth-inhibiting antibody no longer binds, whereas another portion of their transferrin receptors is similar to those of the parental lines and binds both antibodies. These results argue that the antibody-selected mutant cell lines are heterozygous in transferrin receptor expression, probably with a mutation in one of the transferrin receptor structural genes.  相似文献   

4.
The purpose of this study is to clarify the role of iron, transferrin, an iron-binding protein in vertebrate plasma, and transferrin receptors in cell proliferation. Transferrin, which is indispensable for most cells growing in tissue culture, is frequently referred to as a "growth factor". Proliferating cells express high numbers of transferrin receptors, and the binding of transferrin to their receptors that is needed for cells to initiate and maintain their DNA synthesis is sometimes regarded as analogous to other growth factor-receptor interactions. Although numerous previous experiments strongly indicate that the only function of transferrin in supporting cell proliferation is supplying cells with iron, they did not completely rule out some direct or signaling role transferrin receptors could play in cell proliferation. To address this issue, we exploited transferrin-receptor-deficient mutant Chinese hamster ovary (CHO) cells (McGraw, T. E., Greenfield, L., and Maxfield, F. R., 1987, J. Cell. Biol. 105, 207-214) in which various aspects of iron and transferrin metabolism in relation to their capacity to proliferate were investigated. Variant cells neither specifically bind transferrin nor do their extracts contain any detectable functional transferrin receptors, yet they proliferate and synthesize DNA with rates comparable to those observed with parent CHO cells. Desferrioxamine, an iron chelating agent, inhibits growth and DNA synthesis of both variant and control CHO cells. This inhibition can be fully alleviated, in both cell types, by ferric pyridoxal isonicotinoyl hydrazone, which can supply cells with a utilizable form of iron by a pathway not requiring transferrin and their receptors. Studies of 59Fe uptake and 125I-transferrin binding revealed that parent cells can take up iron by at least three mechanisms: from transferrin by receptor-dependent and -independent (nonspecific, nonsaturable, not requiring acidification) pathways and from inorganic iron salts (initially present in the medium as FeSO4). Although variant CHO cells are unable to acquire transferrin iron via the receptor pathway, two remaining mechanisms provide these cells with sufficient amounts of iron for DNA synthesis and cell proliferation. In conclusion, although transferrin receptors are dispensable in terms of their absolute requirement for proliferating cells, a supply of iron is still needed for their DNA synthesis. Transferrin-receptor-deficient CHO cells may be a useful model for investigating receptor-independent iron uptake from transferrin and nontransferrin iron sources.  相似文献   

5.
It has been suggested that effects of anti-transferrin receptor antibodies on cell growth and receptor expression are the result of varying degrees of receptor crosslinking by bi- and multivalet binding agents. In order to study this question directly, we have cultured murine lymphoma cells in mono- and divalent fragments from IgG and IgM monoclonal anti-transferrin receptor antibodies and in intact antibodies. The studies presented here demonstrate that effects of antibody binding on transferrin receptor distribution, metabolism, and function depend, at least in part, on antibody valence, and therefore on the degree of crosslinking of receptors by antibody. We found that monovalent antibody fragments did not significantly alter cell growth, receptor surface expression, intracellular localization, or degradation. Diavalent antibody caused a uniform down-regulation of cell-surface receptor expression, which was accompanied by increased degradation only when antibody Fc was present. Normal receptor cycling apparently continued, despite the reduction in surface expression. Culture in multivalent IgM antibody, however, resulted in accumulation of antibody-complexed receptor on the cell surface without internalization and caused profound inhibition of cell growth. Thus, we show two mechanisms by which different degrees of antibody crosslinking can influence transferrin receptor function: by receptor down-regulation and blocking internalization.  相似文献   

6.
The iron-carrying serum protein transferrin is required for the proliferation and differentiation of embryonic tissues in culture. We studied the expression and role of transferrin receptors in two model systems using a monoclonal antibody against the transferrin receptor of mice. The addition of 20-100 micrograms/ml antibody to a chemically defined culture medium containing transferrin (10 micrograms/ml) inhibited morphogenesis and cell proliferation in kidneys and teeth. However, the antibody did not inhibit development when iron was delivered to the cells by a lipophilic iron chelator i.e., by-passing the receptor-mediated pathway. Hence, the binding of the receptor antibody to the receptor apparently did not affect cell proliferation, and the antibody was not toxic to the tissues. Our results suggest that the antibody to the transferrin receptor inhibits development by blocking the normal endocytotic route of iron delivery. Cells derived from embryonic kidneys and teeth expressed the transferrin receptor when cultured as monolayers. However, using immunofluorescent techniques, we were unable to detect the receptor in frozen tissue sections. It is possible that the seeding of cells in monolayer cultures affects the expression of the transferrin receptor, since it is known that all types of cells require transferrin for continued proliferation in culture. Organ-cultured kidney mesenchymal cells are not initially responsive to transferrin, but they acquire responsiveness as a consequence of an inductive tissue interaction. Although it remains unknown as to whether the acquisition of transferrin responsiveness is directly related to the expression of transferrin receptors, our results suggest that transferrin and its receptors play a role in embryonic morphogenesis.  相似文献   

7.
The role of the transferrin receptor in human B lymphocyte activation   总被引:11,自引:0,他引:11  
Transferrin receptors are expressed on proliferating cells and are required for their growth. Transferrin receptors can be detected after, but not before, mitogenic stimulation of normal peripheral blood T and B cells. T cells demonstrate a functional requirement for transferrin receptors in the activation process. These receptors, in turn, are induced to appear by T cell growth factor (interleukin 2). In the experiments reported here, we examined the regulation of transferrin receptor expression on activated human B cells and whether these receptors are necessary for activation to occur. Activation was assessed by studying both proliferation and immunoglobulin secretion. We determined that transferrin receptor expression on B cells is regulated by a factor contained in supernatants of mitogen-stimulated T cells (probably B cell growth factor). This expression is required for proliferation to occur, because antibody to transferrin receptor (42/6) blocks B cell proliferation. Induction of immunoglobulin secretion, however, although dependent on phytohemagglutinin-treated T cell supernatant, is not dependent on transferrin receptor expression and can occur in mitogen-stimulated cells whose proliferation has been blocked by anti-transferrin receptor antibody. These findings support a model for B cell activation in which mitogen (or antigen) delivers two concurrent but distinct signals to B cells: one, dependent on B cell growth factor and transferrin receptor expression, for proliferation; and a second, dependent on T cell-derived factors and not requiring transferrin receptors, which leads to immunoglobulin secretion.  相似文献   

8.
Treatment of PBL or Percoll-isolated LGL with anti-transferrin antibodies plus complement reduced their natural killing activity against K-562 cells between 30 and 70%. The same antibodies inhibited natural cytotoxicity when added directly to the assay. Similar depletion or inhibition of NK cytotoxicity was observed when using HeLa cells as targets. The decrease or inhibition by transferrin antibodies was less marked when IFN-treated PBL or LGL as effector cells were used. The inhibition of anti-transferrin antibodies seems to be located at the level of the effector cell population. When PBL but not target K-562 cells were pretreated with anti-transferrin antibodies and were washed before use in the assay, cytotoxicity was decreased by 50%. In addition, about 80% of the LGL positively selected on anti-transferrin plates stained with Leu-11. Furthermore, no reduction by anti-transferrin antibodies plus complement treatment of PBL or LGL, or inhibition by antibodies alone, was observed when the cells were tested against HSV-1-infected cells. Membrane extracts from LGL inhibited NK cytotoxicity against K-562 or HeLa cells. Moreover, the inhibitory component of this extract was removed by anti-transferrin IgG but not by control IgG. These results are in agreement with the recent hypothesis that NK cells recognize the transferrin receptor in tumor target cells, because both the transferrin receptor and anti-transferrin antibodies may share a similar structure that interacts with the NK cells.  相似文献   

9.
Human T cells activated with mitogens, antigens, or antibodies to the T-cell receptor complex acquire a cascade of new receptors, including the receptors for interleukin-2, transferrin, and insulin. We investigated whether receptors for insulin-like growth factors (IGF) also were expressed on activated T cells. Based on competitive binding studies, immunoprecipitation of labeled cell surface receptors and blocking of radiolabeled peptide binding by a specific monoclonal antibody (alpha IR-3) to the type I IGF receptor, as well as affinity crosslinking of radiolabeled peptides to their receptors, we concluded that both type I and type II IGF receptors are expressed on activated T cells. A specific binding site for IGF-II also was observed on the type I IGF receptor which was not inhibited by alpha IR-3. Receptors for IGF were more numerous on activated T cells than on resting T cells, and their peak expression appeared by the peak of DNA synthesis. Thus, human activated T cells were shown to express both type I and II IGF receptors which could potentially play a role in the regulation of T-cell proliferation, differentiation, and function.  相似文献   

10.
The transferrin receptor   总被引:1,自引:0,他引:1  
The isolation and analysis of the transferrin receptor has been greatly aided by the use of monoclonal antibodies. The receptor is a disulphide-linked homo-dimer which spans the membrane and binds two molecules of transferrin. Controlling genes for this receptor in humans have been mapped to chromosome 3 using cell hybrids. The expression of transferrin receptors is related to the obligatory and ubiquitous iron requirements associated with cell proliferation or the special iron demand of haemoglobin synthesizing cells and trophoblasts. However, transferrin receptors may also be involved in cell interactions regulating cell growth.  相似文献   

11.
In many types of cells the synthesis of delta-aminolevulinic acid (ALA) limits the rate of heme formation. However, results from our laboratory with reticulocytes suggest that the rate of iron uptake from transferrin (Tf), rather than ALA synthase activity, limits the rate of heme synthesis in erythroid cells. To determine whether changes occur in iron metabolism and the control of heme synthesis during erythroid cell development Friend erythroleukemia cells induced to erythroid differentiation by dimethylsulfoxide (DMSO) were studied. While added ALA stimulated heme synthesis in uninduced Friend cells (suggesting ALA synthase is limiting) it did not do so in induced cells. Therefore the possibility was investigated that, in induced cells, iron uptake from Tf limits and controls heme synthesis. Several aspects of iron metabolism were investigated using the synthetic iron chelator salicylaldehyde isonicotinoyl hydrazone (SIH). Both induced and uninduced Friend cells take up and utilize Fe for heme synthesis directly from Fe-SIH without the involvement of transferrin and transferrin receptors and to a much greater extent than from saturating levels of Fe-Tf (20 microM). Furthermore, in induced Friend cells 100 microM Fe-SIH stimulated 2-14C-glycine incorporation into heme up to 3.6-fold as compared to the incorporation observed with saturating concentrations of Fe-Tf. In contrast, Fe-SIH, even when added in high concentrations, did not stimulate heme synthesis in uninduced Friend cells but was able to do so as early as 24 to 48 h following induction. In addition, contrary to previous results with rabbit reticulocytes, Fe-SIH also stimulated globin synthesis in induced Friend cells above the level seen with saturating concentrations of transferrin. These results indicate that some step(s) in the pathway of iron from extracellular Tf to protoporphyrin, rather than the activity of ALA synthase, limits and controls the overall rate of heme and possibly hemoglobin synthesis in differentiating Friend erythroleukemia cells.  相似文献   

12.
Regulation of K562 cell transferrin receptors by exogenous iron   总被引:1,自引:0,他引:1  
Single-cell analysis of K562 human erythroleukemia cells by flow cytometry was used to demonstrate the specific role of iron in regulating transferrin receptors (TfRs) and to establish that TfR expression does not necessarily correlate with growth rate. Exogenous iron concentration in culture was manipulated by supplementing the medium with sera having different iron concentrations over the range 0.6 to 5.4 micrograms/ml, by the addition of iron in the form of FeCl3, iron-saturated serum, or diferric transferrin, and by the addition of the iron chelator Desferal (desferrioxamine). TfR expression was negatively correlated with exogenous iron content: any treatment that reduced exogenous iron supply by at least 15% resulted in as much as a 1.8-fold increase in external receptors, detected as binding by both transferrin and monoclonal anti-TfR antibodies, and a 1.5-fold increase in the pool of internal receptors, as detected by anti-TfR antibody binding. None of these treatments altered growth rate, total cellular protein content, protein synthetic rate, cell cycle distribution or cell size. The rapid (12 hr) and reversible induction of internal and external receptors by Desferal was inhibited by cycloheximide and therefore may have resulted from de novo synthesis and not just mobilization of internal receptor pool to the cell surface. The correlation between growth rate and TfR expression previously observed in these and other cells must be secondary to cellular mechanisms that maintain intracellular iron pools by regulating synthesis, recycling, and cell surface expression of TfRs.  相似文献   

13.
Treatment of two human leukemia cell lines with 1.25% dimethyl sulfoxide at 37 degrees C results in a rapid increase in the number of transferrin receptors on the cell surface detected by fluorescein-labeled anti-transferrin receptor antibodies. Both HL-60 cells, a human myeloid cell line, and K562 cells, a human erythroid-myeloid cell line, showed a 25-65% increase in cell surface transferrin binding in parallel experiments. Scatchard plot analysis of the data indicates that the number of receptors increases while the affinity of transferrin for the receptor remains the same. This rapid increase in the number of receptors at the cell surface appears to be due to a slowing of endocytosis rather than an increase in externalization of the receptor.  相似文献   

14.
Kinetic analysis of transferrin receptor properties in 6-8 day rat reticulocytes showed the existence of a single class of high-affinity receptors (Kd 3-10 nM), of which 20-25% were located at the cell surface and the remainder within an intracellular pool. Total transferrin receptor cycling time was 3.9 min. These studies examined the effects of various inhibitors on receptor-mediated transferrin iron delivery in order to define critical steps and events necessary to maintain the functional integrity of the pathway. Dansylcadaverine inhibited iron uptake by blocking exocytic release of transferrin and return of receptors to the cell surface, but did not affect transferrin endocytosis; this action served to deplete the surface pool of transferrin receptors, leading to shutdown of iron uptake. Calmidazolium and other putative calmodulin antagonists exerted an identical action on iron uptake and receptor recycling. The inhibitory effects of these agents on receptor recycling were overcome by the timely addition of Ca2+/ionomycin. From correlative analyses of the effects of these and other inhibitors, it was concluded that: (1) dansylcadaverine and calmodulin antagonists inhibit iron uptake by suppression of receptor recycling and exocytic transferrin release, (2) protein kinase C, transglutaminase, protein synthesis and release of transferrin-bound iron are not necessary for the functional integrity of the iron delivery pathway, (3) exocytic transferrin release and concomitant receptor recycling in rat reticulocytes is dependent upon Ca2+/calmodulin, (4) dansylcadaverine, dimethyldansylcadaverine and calmidazolium act on iron uptake by interfering with calmodulin function, and (5) the endocytotic and exocytotic arms of the iron delivery pathway are under separate regulatory control.  相似文献   

15.
The Belgrade rat has a hypochromic, microcytic anemia inherited as an autosomal recessive mutation. Although transferrin binds normally to reticulocytes and internalizes normally, iron accumulation into cells and heme is much slower than normal. We have investigated the role of the transferrin cycle in this mutant by bypassing transferrin iron delivery with the iron chelate ferric salicylaldehyde isonicotinoyl hydrazone (Fe-SIH). Fe-SIH increases iron uptake into heme by Belgrade reticulocytes, restoring it almost to normal levels. This increase indicates that Fe-SIH delivers iron to a step in iron utilization that is after the Belgrade defect. Depleting reticulocytes of transferrin did not alter these observations. Failure to achieve above normal rates of iron incorporation could indicate damage due to chronic intracellular iron deficiency. Also, iron delivery by Fe-SIH restored globin synthesis to near-normal levels in Belgrade reticulocytes. The rates of glycine incorporation into porphyrin and heme in Belgrade reticulocytes incubated with Fe2-transferrin or Fe-SIH paralleled the rates of iron incorporation into heme. These data are consistent with the concept that iron availability limits protoporphyrin formation in rat reticulocytes. The protoporphyrin used for heme synthesis is provided by de novo synthesis and not by a pool of pre-existing protoporphyrin. The Belgrade defect occurs in the movement of iron from transferrin to a step prior to the ferrous state and insertion into heme. This defect diminishes the synthesis of heme and, consequently, that of protoporphyrin and globin.  相似文献   

16.
Recombinant human transferrin receptor has been produced in a baculovirus expression system. Magnetic particles coated with an anti-transferrin receptor monoclonal antibody were used to immunoselect virus-infected Sf9 insect cells expressing the human transferrin receptor on their cell surface. Recombinant virus containing the human transferrin receptor cDNA was then plaque-purified from these cells. Biosynthetic labeling studies of infected cells showed that the human transferrin receptor is one of the major proteins made 2-3 days postinfection. The recombinant receptor made in insect cells is glycosylated and is also posttranslationally modified by the addition of a fatty acid moiety. However, studies with tunicamycin and endoglycosidases H and F showed that the oligosaccharides displayed on the recombinant receptor differ from those found on the naturally occurring receptor in human cells. As a consequence, the human receptor produced in the baculovirus system has an Mr of 82,000 and is smaller in size than the authentic receptor. About 30% of human transferrin receptors made in insect cells do not form intermolecular disulfide bonds, but are recognized by the anti-transferrin receptor antibody, B3/25, and bind specifically to a human transferrin-Sepharose column. Binding studies using 125I-labeled human transferrin showed that insect cells infected with the recombinant virus expressed an average of 5.8 +/- 0.9 X 10(5) transferrin receptors (Kd = 63 +/- 9 nM) on their cell surface. Thus, the human transferrin receptor produced in insect cells is biologically active and appears suitable for structural and functional studies.  相似文献   

17.
HL-60 cells produce an autostimulatory growth factor. Since the stimulatory effect of HL-60 conditioned medium is only observed in the absence of exogenous transferrin we have assayed HL-60 cells for the production of transferrin and found that they produce polypeptides which react with transferrin antibodies. 35S-methionine labelling, immunoprecipitation and subsequent separation by SDS-gel electrophoresis reveals the presence of a major transferrin related 41 +/- 2 kDa species released by HL-60 cells. Physiological levels of iron salts completely abolish the requirement of exogenous transferrin which indicates that the endogenous transferrin related polypeptides in the presence of exogenous inorganic iron salts are sufficient for the proliferation of HL-60 cells provided insulin or related growth factors are present. The addition of transferrin receptor antibodies inhibits the stimulatory action of the endogenous transferrin related activity.  相似文献   

18.
Incubation of human erythroleukaemia K562 cells with Al-transferrin inhibited iron uptake from 59Fe-transferrin by about 80%. The inhibition was greater than that produced by a similar quantity of Fe-transferrin. Preincubation of cells for 6 h with either Al-transferrin or Fe-transferrin diminished the number of surface transferrin receptors by about 40% compared with cells preincubated with apo-transferrin. Al-transferrin did not compete significantly with Fe-transferrin for transferrin receptors and, when cells were preincubated for 15 min instead of 6 h, the inhibitory effect of Al-transferrin on receptor expression was lost. Both forms of transferrin also decreased the level of transferrin receptor mRNA by about 50%, suggesting a common regulatory mechanism. Aluminium citrate had no effect on iron uptake or transferrin-receptor expression. AlCl3 also had no effect on transferrin-receptor expression, but at high concentration it caused an increase in iron uptake by an unknown, possibly non-specific, mechanism. Neither Al-transferrin nor AlCl3 caused a significant change in cell proliferation. It is proposed that aluminium, when bound to transferrin, inhibits iron uptake partly by down-regulating transferrin-receptor expression and partly by interfering with intracellular release of iron from transferrin.  相似文献   

19.
The mechanism of iron uptake and the changes which occur during cellular development of muscle cells were investigated using primary cultures of chick embryo breast muscle. Replicating presumptive myoblasts were examined in exponential growth and after growth had plateaued. These were compared to the terminally differentiated cell type, the myotube. All cells, regardless of the state of growth or differentiation, had specific receptors for transferrin. Presumptive myoblasts in exponential growth had more transferrin receptors (3.78 +/- 0.24 X 10(10) receptors/micrograms DNA) than when division had ceased (1.70 +/- 0.14 X 10(10) receptors/micrograms DNA), while myotubes had 3.80 +/- 0.26 X 10(10) receptors/micrograms DNA. Iron uptake occurred by receptor-mediated endocytosis of transferrin. While iron was accumulated by the cells, apotransferrin was released in an undegraded form. There was a close correlation between the molar rates of endocytosis of transferrin and iron. Maximum rates of iron uptake were significantly higher in myotubes than in presumptive myoblasts in either exponential growth or after growth had plateaued. There were two rates of exocytosis of transferrin, implying the existence of two intracellular pathways for transferrin. These experiments demonstrate that iron uptake by muscle cells in culture occurs by receptor-mediated endocytosis of transferrin and that transferrin receptor numbers and the kinetics of transferrin and iron uptake vary with development of the cells.  相似文献   

20.
The effect of ligand interactions with the C3d/C3dg complement receptor (CR2) on proliferation of human B lymphoblastoid cells was investigated by using cell cultures performed at low density (1 to 1.5 x 10(3) cells/ml) in a serum-free defined medium to which only transferrin had been added. This medium does not allow proliferation of Raji cells which die within 48 hr with formation of polykaryons. Addition of purified human C3 to the cultures resulted in a dose-dependent proliferation of the cells. A steady growth of Raji cells with a doubling time of 36 hr was observed in cultures containing 10 micrograms/ml of C3. A growth rate similar to that observed in the presence of native C3 was found in the presence of equimolar concentrations of purified C3dg but not of C3c. F(ab')2 anti-C3d but not F(ab')2 anti-C3c antibodies inhibited the mitogenic effect of C3. Preincubation of Raji cells with monoclonal antibody OKB7 which directly inhibits the binding of C3dg to CR2, totally suppressed C3-induced growth of the cells. C3 did not enhance growth of the T lymphoma-derived cell line JM and monocytic cell line U937 which do not express CR2. These results provide direct evidence that the interaction between CR2 and C3 fragments stimulates proliferation of human cells of the B lineage. Because CR2 also acts as a receptor for Epstein-Barr virus on B cells, our results may pertain to the B cell mitogenic properties of the virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号