首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Morphological and autoradiographic studies on various hemopoietic tissues in sturgeon are presented. The classic hemopoietic organs characteristic of lower vertebrates, such as the kidney and spleen, are studied as well as unique hemopoietic structures described only in the evolutionarily most ancient fish species (hemopoietic tissues of cartilaginous skull capsules and epicardium). The intensity of cell divisions in hemopoietic foci has been characterized by autoradiography. The results obtained provide a basis for the revision of traditional views about the phylogeny of hemopoiesis. They provide evidence that the osteogenic gravitation of hemopoietic tissue shows up in evolution alongside the appearance of the inner skeleton.  相似文献   

2.
Activity of the adenosine deaminase promoter in transgenic mice.   总被引:1,自引:0,他引:1       下载免费PDF全文
The promoter of the human gene for adenosine deaminase (ADA) is extremely G/C-rich, contains several G/C-box motifs (GGGCGGG) and lacks any apparent TATA or CAAT boxes. These features are commonly found in promoters of genes that lack a strong tissue specificity, and are referred to as "housekeeping genes". Like other housekeeping genes, the ADA gene is expressed in all tissues. However, there is a considerable variation in the levels of expression of the ADA protein in different tissues. In order to study the activity of the ADA promoter, transgenic mice were generated that harbor a chimeric gene composed of the ADA promoter linked to a reporter gene encoding the bacterial enzyme Chloramphenicol Acetyl Transferase (CAT). These mice reproducibly showed CAT expression in all tissues examined, including the hemopoietic organs (spleen, thymus and bone marrow). However, examination of the actual cell types expressing the CAT gene revealed the ADA promoter to be inactive in the hemopoietic cells. This was substantiated by a transplantation experiment in which bone marrow from ADA-CAT transgenic mice was used to reconstitute the hemopoietic compartment of lethally irradiated mice. The engrafted recipients revealed strongly reduced CAT activity in their hemopoietic organs. The lack of expression in hemopoietic cells was further shown to be correlated with a hypermethylated state of the transgene. Combined, our data suggest that the ADA promoter sequences tested can direct expression in a wide variety of tissues as expected for a regular housekeeping gene promoter. However, the activity of the ADA promoter fragment did not reflect the tissue-specific variations in expression levels of the endogenous ADA gene. Additionally, regulatory elements are needed for expression in the hemopoietic cells.  相似文献   

3.
The fine structure of the hemopoietic tissue and its detailed reticular organization in the mealworm beetle, T. molitor were examined using light and scanning electron microscopes. The major hemopoietic tissues in the abdomen were located on the upper surface of the dorsal diaphragm which continuous over the ventral wall of the heart. Histologic characteristics of this hemopoietic tissues are dense clusters of cells. They are irregular in outline and are not surrounded by any connective tissue sheath. The hemopoietic tissue of this insect is consisted of three cellular components which are the reticular cells, hemocytic stem cells and several kinds of mature hemocytes. The reticular cells had numerous cytoplasmic processes and forming a complex network. The stem cells give rise to differentiating hemocytes of the different cell lineages. Mature hemocytes within this hemopoietic tissue are originated from the stem cells and differentiated into several types of hemocytes including prohemocytes, plasmatocytes, and granulocytes.  相似文献   

4.
For determination of the localization of lymphoid and erythroid precursor cells in embryos of Xenopus laevis , diploid-triploid chimeras were produced either by joining embryos antero-posteriorly or by orthotopic grafting of various tissues into N ieuwkoop -F aber st. 22–23 tailbud embryos. The sources of the hemopoietic cells were determined in the chimeric animals at various stages by microspectrophotometry of F eulgen -stained cells. Analyses of chimeras produced by joining embryos antero-posteriorly at different levels showed that the precursor cells that contribute to the hemopoietic cells are localized in the posterior half to three quarters. Orthotopic grafting of ventral or dorsal tissues revealed that the precursor cells that contribute to hemopoietic cells in early larvae are mostly localized in the ventral blood island (VBI) mesoderm, whereas those for late larvae and adults are localized both in the dorso-lateral plate (DLP) mesoderm comprising the prospective mesonephros and in the VBI mesoderm. Reciprocal heterotopic grafting of VBI- and DLP mesoderms showed that the two compartments differ in their capacities to differentiate into hemopoietic cells. It is proposed that the VBI-derived cells migrating towards the primary lymphoid organs constitute the transient hemopoietic population of early larvae, and the importance of the mesonephric region for definitive hemopoiesis is pointed out.  相似文献   

5.
A review of one of the key problems of experimental hematology: the origin of hemopoietic stem cells in the development of vertebrates (amphibians, birds, and mammals). The appearance and functioning of two independent sources of hemopoietic stem cells (extra- and intraembryonic) were considered in amphibians, birds, and mammals. The contribution of each source to the formation of definitive hemopoietic tissue was analyzed. It was shown for amphibians and birds that intraembryonic organs such as the dorsolateral plate and the mesenchyme of dorsal aorta are involved in the formation of adult hemopoietic tissue, while the extraembryonic organs such as ventral islets and the yolk sac are devoid of true stem cells and provide only for the primary, transient hemopoiesis. New data have been considered concerning the previously unknown intraembryonic hemopoietic organ in mammals, a region of aorta–gonad–mesonephros arising in embryogenesis simultaneously with the yolk sac. Two extreme views on the involvement of stem cells of all these organs in the formation of definitive hemopoiesis have been considered. The data are provided on the interaction of the embryonic hemopoietic stem cells and the hemopoietic microenvironment of adult recipients.  相似文献   

6.
D Zipori 《FASEB journal》1992,6(9):2691-2697
Blood-forming tissues are organized in well-defined microenvironments composed of hemopoietic cells and a supportive stroma of connective tissue and endothelium. Hemopoietic cells segregate to various lineages, all derived from a small population of pluripotent stem cells residing in the bone marrow. Regulation of growth and differentiation, particularly under conditions of perturbations, damage, and disease, is mediated by inducer colony-stimulating factors and interleukins counteracted by inhibitory cytokines. Whereas much is known about the mode of induction of differentiation, insufficient information is available to explain the process of stem cell renewal that is crucial for the longevity of the hemopoietic system. It is also only partially known how inhibition of hemopoietic processes occurs, and what molecules in blood-forming tissues signal organization into discrete patterns. This paper reviews recent progress that has opened new avenues to a better understanding of this highly complex issue.  相似文献   

7.
Leptin is a hormone secreted by adipocytes. Besides controlling appetite and body weight, it has been suggested that leptin plays a role in inflammation and hemopoiesis. In this study we demonstrate that the pro-inflammatory/hemopoietic cytokines, IL-1beta, IL-6, TNF-alpha, and interferon-gamma, significantly inhibit gene expression and secretion of leptin by bone marrow adipocytes. These findings are in agreement with the data recently obtained from non-medullary adipose tissues. Within the bone marrow environment, leptin regulation by these pleiotropic cytokines could contribute to controlling the proliferation and differentiation of hemopoietic precursors as well as the maturation of stromal cells.  相似文献   

8.
The model of heterotopic transplantation of the mixture of bone marrow and thymus fragments was used to study the interaction of hemopoietic and lymphoid tissues under their direct contact. The bone marrow and thymus fragments of adult mice F1 (CBAXXC57BL) were transplanted separately or in the mixture under the kidney capsule of mice of the same strain. During the whole period of observation (from 10 days up to 14 months), the development of bone marrow and thymus fragments in the joint transplants proceeded independently, no "mixed" stroma appeared, and the stroma of each organ ensured the differentiation characteristic of its organ. The development of joint transplants somewhat differs from that of isolated transplants: on the 10th day a greater amount of hemopoietic tissues was noted in the former; the bone marrow component increases continuously up to 6 months (vs. 1--2 months in the isolated transplants); the bone and hemopoietic tissues predominate in the joint transplants by 14 months, the amount of thymic tissue markedly decreases but it does not disappear completely.  相似文献   

9.
An immunofluorescent study of hemopoietic organs in xenogenic (mouse-rat) radiation chimaeras has been carried out by means of specific antiserum against hemopoietic cells of the rat bone marrow. The presence of donor cells was tested at different times after the transplantation in the bone marrow, spleen, lymph nodes, thymus and liver of radiochimaeras. The transplanted cells were shown to populate all hemopoietic organs of the recipient, first of all tissues of the bone marrow type and, then, lymphoid organs. The donor (bone marrow) origin of the extramedullar foci of hemopoiesis in the liver was established.  相似文献   

10.
MHC-matched hemopoietic stem cell transplantation is commonly used for the treatment of some forms of leukemia. Conditioning regimens before transplant act to reduce the burden of leukemic cells and the graft-vs-leukemia (GvL) effect can eliminate residual disease. The GvL effect results largely from the recognition of minor histocompatibility Ags by donor T cells on recipient tissues. These Ags are generally widely expressed and also provoke graft-vs-host (GvH) disease. Manipulation of immunity to promote GvL while curtailing GvH would greatly improve clinical outcome. To develop strategies that may achieve this, the parameters which control immunity to minor histocompatibility Ags need to be defined. In this study, we have analyzed responses to the mouse HY minor histocompatibility Ag using hemopoietic cell and skin grafts as surrogate GvL and GvH targets, respectively. We show that natural regulation of CD8 T cell responses to HY operates at multiple levels. First, CD4 T cell help is required for primary CD8 responses directed at hemopoietic cells. However, although CD4 T cells of H2(k) mouse strains recognize HY, they provide ineffective help associated with a proportion of recipients developing tolerance. This was further investigated using TCR-transgenic mice which revealed H2(k)-restricted HY-specific CD4 T cells are highly susceptible to regulation by CD25(+) regulatory T cells which expand in tolerant recipients. A second level of regulation, operating in the context of skin grafts, involves direct inhibition of CD8 T cell responses by CD94/NKG2 engagement of the nonclassical MHC class I molecule Qa1.  相似文献   

11.
Hemopoietic stem and progenitor cells from different sources differ in radiosensitivity. Recently, we have demonstrated that the multinucleated cell responsible for bone resorption and marrow cavity formation, the osteoclast, is in fact of hemopoietic lineage. In this investigation we have studied the radiosensitivity of osteoclast formation from two different hemopoietic tissues: fetal liver and adult bone marrow. Development of osteoclasts from hemopoietic progenitors was induced by coculture of hemopoietic cell populations with fetal mouse long bones depleted of their own osteoclast precursor pool. During culture, osteoclasts developed from the exogenous cell population and invaded the calcified hypertrophic cartilage of the long bone model, thereby giving rise to the formation of a primitive marrow cavity. To analyze the radiosensitivity of osteoclast formation, either the hemopoietic cells or the bone rudiments were irradiated before coculture. Fetal liver cells were found to be less radiosensitive than bone marrow cells. The D0, Dq values and extrapolation numbers were 1.69 Gy, 5.30 Gy, and 24.40 for fetal liver cells and 1.01 Gy, 1.85 Gy, and 6.02 for bone marrow cells. Irradiation of the (pre)osteoclast-free long bone rudiments instead of the hemopoietic sources resulted in a significant inhibition of osteoclast formation at doses of 4 Gy or more. This indirect effect appeared to be more prominent in the cocultures with fetal than with adult hemopoietic cells. Furthermore, radiation doses of 8.0-10.0 Gy indirectly affected the appearance of other cell types (e.g., granulocytes) in the newly formed but underdeveloped marrow cavity. The results indicate that osteoclast progenitors from different hemopoietic sources exhibit a distinct sensitivity to ionizing irradiation. Radiation injury to long bone rudiments disturbs the osteoclast-forming capacity as well as the hemopoietic microenvironment.  相似文献   

12.
Wnt signaling regulates hemopoiesis through stromal cells.   总被引:6,自引:0,他引:6  
Hemopoietic cells develop in a complex milieu that is made up of diverse components, including stromal cells. Wnt genes, which are known to regulate the fate of the cells in a variety of tissues, are expressed in hemopoietic organs. However, their roles in hemopoiesis are not well characterized. In this study, we examined the roles of Wnt proteins in hemopoiesis using conditioned medium containing Wnt-3a. This conditioned medium dramatically reduced the production of B lineage cells and myeloid lineage cells, except for macrophages in the long-term bone marrow cultures grown on stromal cells, although the sensitivity to the conditioned medium differed, depending on the hemopoietic lineage. In contrast, the same conditioned medium did not affect the generation of B lineage or myeloid lineage cells in stromal cell-free conditions. These results suggested that Wnt proteins exert their effects through stromal cells. Indeed, these effects were mimicked by the expression of a stabilized form of beta-catenin in stromal cells. In this study, we demonstrated that Wnt signaling regulates hemopoiesis through stromal cells with selectivity and different degrees of the effect, depending on the hemopoietic lineage in the hemopoietic microenvironment.  相似文献   

13.
Hemopoietic stem cell distribution in tissues of fetal and newborn mice   总被引:2,自引:0,他引:2  
The variations in the distribution of hemopoietic stem cells in fetal tissues are concomitant with changes in the electrophoretic pattern of hemoglobin. The data presented here are consistent with the hypothesis that the embryonic stem cells can be transformed into adult stem cells in the liver of 15 to 16 days old fetuses.  相似文献   

14.
The HIN-200 family was initially grouped together based on their hemopoietic expression, interferon-inducibility, nuclear localization, and characteristic 200 amino-acid domains. In this review, we performed a comprehensive search of genome databases and determined the location of previously characterized and predicted genes within the human, mouse, and rat HIN-200 loci. Several novel proteins were predicted in the mouse and rat. We also discuss recent advances in our understanding of this family of proteins and highlight the most important findings. In addition to a role in interferon biology, there is now good evidence supporting a role for these proteins as regulators of cell proliferation and differentiation. The activity of HIN-200 proteins is not restricted to the hemopoietic system as they are expressed and can function in a variety of other cells and tissues. The importance of HIN-200 proteins in disease now is beginning to be understood as they appear to be involved in autoimmunity and may act as tumor suppressor proteins.  相似文献   

15.
Interspecific grafts of limb buds and femurs on the chorioallantoic membrane of 5-day-old hosts and into the somatopleure of 3-day-old hosts were carried out between quail and chick embryos. Due to their different nuclear features, the cells of the two species can be identified in the chimeric bones resulting from the endochondral ossification which occurs in the explanted tissues. By following the cell lineage in the bone and marrow we were able to show that the hemopoietic and the osteogenic (comprising osteoblasts, osteocytes, and chondrocytes) cell lines have different embryological origins. The osteogenic line is derived from the limb bud mesenchyme, while the hemopoietic cells are brought into the bone marrow via the circulation. In the fixed cells of the marrow two categories have to be distinguished: the reticular cells originating from the bone rudiment and the endothelial cells which invade the cartilage and are of hematogenous origin. The osteoclasts belong to the hemopoietic cell line and are not derived from any cell type of the osteogenic line.  相似文献   

16.
17.
The osteopetrotic (os) rabbit is a lethal mutation of autosomal recessive inheritance characterized by hypocalcemia, hypophosphatemia, fibrosis of marrow spaces, and ultrastructural abnormalities in both osteoclasts and osteoblasts. Procedures involving the transplantation of cells from normal hemopoietic tissues, which are sources of osteoclast precursors, are known to cure osteopetrosis in several mutations including some children. We tested the ability of transplanted bone marrow and/or spleen from normal littermates to reverse the skeletal sclerosis in os rabbits. Treatment of 15 neonatal mutants consisted of immunosuppression by whole-body irradiation followed by transplantation of normal bone marrow and/or spleen cell suspensions. This treatment failed to prolong life span or to cure osteopetrosis judged radiographically and histologically for up to 3 weeks posttreatment, the longest time of survival. These data indicate that transplantation of stem cells from multiple hemopoietic tissues, procedures known to cure osteopetrosis in other mutations, is not effective in the os rabbit. These results support the hypothesis that the skeletal microenvironment is not capable of supporting the development and function of normal osteoclasts in this mutation.  相似文献   

18.
It was investigated the functional status of stem cell pool (CFUs) of bone marrow, spleen and peripheral blood in mice (CBA) in early (1-30 days) and late (180-360 days) period after acute intake of 90Sr (29.6 kBq/g). Cumulative dose in red bone marrow due to incorporated 90Sr was 0.98-87.7 Gy. The kinetics, proliferative and differentiative potential of stem hemopoietic cells (CFUs) and productivity of hemopoietic tissues were significantly influenced by dose rate, absorbed dose and degree of suppresssion of bone marrow functions.The obtained results indicated that the sarcomogenous doses of 90Sr (29.6 kBq/g) resulted in realization of compensatory reactions in hemopoietic stem cell pool to support the life ability of irradiated animals: higher proliferative potential of CFUs and its repopulation, redistribution of cell subpopulations during differentiation and activation of spleens hemopoiesis.  相似文献   

19.
Stem cells may have a special importance in the neoplastic behavior of certain lineages as well as in the normal development of these tissues. The role of oncogenes, and their normal cellular analogues, in stem cell behavior is therefore of special interest. This review describes recent results on the effects of virally-mediated src-gene transfer into hemopoietic stem cells in the physiological and developmental properties of these cells.  相似文献   

20.
Ataxia telangiectasia is a genetically determined disease with multi-system abnormalities and a high incidence of neoplasia. In order to define the nature of the association between ataxia telangiectasia and malignancy, we investigated a patient with the disease and heterozygote for the Mediterranean variant of the X-linked marker glucose 6-phosphate dehydrogenase. Enzymatic mosaicism in hemopoietic and nonhemopoietic cells was evaluated with the 2-deoxy glucose 6-phosphate technique. While erythrocytes, platelets, and lymphocytes expressed the same double-enzyme phenotype as tissues of nonhemopoietic origin, granulocytes and monocytes expressed almost exclusively the Mediterranean-type enzyme. We suggest that, as the result of genetic instability at the hemopoietic stem-cell level, the granulocytic/monocytic progeny enjoyed a proliferative advantage and became the predominant clone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号