首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Belvisi MG  Dale N  Birrell MA  Canning BJ 《Nature medicine》2011,17(7):776; author reply 776-776; author reply 778
  相似文献   

2.
We employed the first principles computational method MembStruk and homology modeling techniques to predict the 3D structures of the human phenylthiocarbamide (PTC) taste receptor. This protein is a seven-transmembrane-domain G protein-coupled receptor that exists in two main forms worldwide, designated taster and nontaster, which differ from each other at three amino-acid positions. 3D models were generated with and without structural similarity comparison to bovine rhodopsin. We used computational tools (HierDock and ScanBindSite) to generate models of the receptor bound to PTC ligand to estimate binding sites and binding energies. In these models, PTC binds at a site distant from the variant amino acids, and PTC binding energy was equivalent for both the taster and nontaster forms of the protein. These models suggest that the inability of humans to taste PTC is due to a failure of G protein activation rather than decreased binding affinity of the receptor for PTC. Amino-acid substitutions in the sixth and seventh transmembrane domains of the nontaster form of the protein may produce increased steric hindrance between these two α-helices and reduce the motion of the sixth helix required for G protein activation.  相似文献   

3.
Responses of cultured rat trigeminal ganglion neurons to bitter tastants   总被引:1,自引:2,他引:1  
Liu  L; Simon  SA 《Chemical senses》1998,23(2):125-130
The initial steps in taste and olfaction result from the activation by chemical stimuli of taste receptor cells (TRCs) and olfactory receptor neurons (ORNs). In parallel with these two pathways is the chemosensitive trigeminal pathway whose neurons terminate in the oral and nasal cavities and which are activated by many of the same chemical stimuli that activate TRCs and ORNs. In a recent single unit study we investigated the responses of rat chorda tympani and glossopharnygeal neurons to a variety of bitter-tasting alkaloids, including nicotine, yohimbine, quinine, strychnine and caffeine, as well as capsaicin, the pungent ingredient in hot pepper. Here we apply many of these same compounds to cultured rat trigeminal ganglion (TG) neurons and measure changes in intracellular calcium [Ca2+]i to determine whether TG neurons will respond to these same compounds. Of the 89 neurons tested, 34% responded to 1 mM nicotine, 7% to 1 mM caffeine, 5% to 1 mM denatonium benzoate, 22% to 1 mM quinine hydrochloride, 18% to 1 mM strychnine and 55% to 1 microM capsaicin. These data suggest that neurons from the TG respond to the same bitter-tasting chemical stimuli as do TRCs and are likely to contribute information sent to the higher CNS regarding the perception of bitter/irritating chemical stimuli.   相似文献   

4.
5.
Sweet and bitter tastants specific detection by cell-based sensor is investigated in this paper. Human enteroendocrine NCI-H716 cells, expressing G protein-coupled receptors and sweet receptors (type 1, member 2/type 1, member 3), and human enteroendocrine STC-1 cells, expressing G protein-coupled receptors and bitter receptors (type 2 members) are used as sensing devices. The HEK-293 cells, without taste receptor expression, are used as negative control. The electrochemical impedance spectrum data is recorded and processed by bistable stochastic resonance for signal-to-noise ratio calculation. NCI-H716 cell-based sensor selectively responds to sweeteners and sweet tastant mixtures. STC-1 cell-based sensor selectively responds to bitter tastants and bitter tastant mixtures. The tastants species and concentrations can be decided by signal-to-noise ratio parameters. HEK-293 cell-based sensor lacks the tastants discriminating ability. The taste cell-based sensor is easy to prepare and operate. This work offers a useful way in gustatory mechanism research.  相似文献   

6.
Someamphipathic bitter tastants and non-sugar sweeteners are directactivators of G proteins and stimulate transduction pathways in cellsnot related to taste. We demonstrate that the amphipathic bittertastants quinine and cyclo(Leu-Trp) and the non-sugar sweetener saccharin translocate rapidly through multilamellar liposomes. Furthermore, when rat circumvallate (CV) taste buds were incubated withthe above tastants for 30 s, their intracellular concentrations increased by 3.5- to 7-fold relative to their extracellularconcentrations. The time course of this dramatic accumulation was alsomonitored in situ in rat single CV taste buds under a confocallaser-scanning microscope. Tastants were clearly localized to the tastecell cytosol. It is proposed that, due to their rapid permeation into taste cells, these amphipathic tastants may be available for activation of signal transduction components (e.g., G proteins) directly withinthe time course of taste sensation. Such activation may occur inaddition to the action of these tastants on putative G protein-coupledreceptors. This phenomenon may be related to the slow taste onset andlingering aftertaste typically produced by many bitter tastants andnon-sugar sweeteners.

  相似文献   

7.
Sweet and bitter taste sensations are believed to be initiated by the tastant-stimulated T1R and T2R G protein-coupled receptor (GPCR) subfamilies, respectively, which occur in taste cells. Although such tastants, with their significantly diverse chemical structures (e.g., sugar and nonsugar sweeteners), may share the same or similar T1Rs, some nonsugar sweeteners and many bitter tastants are amphipathic and produce a significant delay in taste termination (lingering aftertaste). We report that such tastants may permeate rat taste bud cells rapidly in vivo and inhibit known signal termination-related kinases in vitro, such as GPCR kinase (GRK)2, GRK5, and PKA. GRK5 and perhaps GRK2 and GRK6 are present in taste cells. A new hypothesis is proposed in which membrane-permeant tastants not only interact with taste GPCRs but also interact intracellularly with the receptors' downstream shutoff components to inhibit signal termination. amphipathic tastants; tastant permeation; desensitization; lingering aftertaste  相似文献   

8.
9.
10.
11.
12.
The free fatty acids (FFAs), linoleic and oleic acids, commonly found in dietary fats can be detected by rats on the basis of gustatory cues following conditioned taste aversion pairings. FFAs depolarize the membrane potential of isolated rat taste receptor cells by inhibiting delayed rectifying potassium channels. This study examined the licking response of rats to sweet, salt, sour, and bitter taste solutions when 88 muM linoleic acid, 88 muM oleic acid, or an 88 muM linoleic-oleic acid mixture was added to the solutions. The presence of linoleic, oleic, and the linoleic-oleic acid mixture in sweet solutions produced increases in the licking responses, whereas adding linoleic, oleic, and the linoleic-oleic acid mixture to salt, sour, or bitter taste solutions produced decreases in licking responses when compared with the licking responses to the solutions in the absence of the FFAs. We conclude that FFAs may act in the oral cavity to depolarize taste receptor cells and therefore to increase the perceived intensity of concomitant tastants, thus contributing to the enhanced palatability associated with foods containing high dietary fat.  相似文献   

13.
A useful approach for constructing dose–response relationships and for studying the underlying mechanisms by which a xenobiotic agent enhances airway reactivity is to measure the response of an isolated airway following ex vivo exposure to a pollutant. We have in this way determined the dose–response relationship between ex vivo exposure to pollutants such as nitrogen dioxide (NO2), the aldehyde acrolein, and ozone (O3) and the reactivity to agonists in human isolated bronchial smooth muscle. We have also investigated the underlying alteration in the cellular mechanisms of airway smooth-muscle contraction induced by such exposure and found that it is related to alteration in calcium signaling at the site of the airway smooth-muscle cell. Finally, although there is epidemiological evidence that an increase in allergic diseases such as asthma may be linked to air pollution, there are few experimental data to address this issue. The final aim of this study was therefore to investigate the interaction between passive sensitization and exposure to pollutants in human isolated airways. We have examined (i) the effect of a pre-exposure to pollutants on the contraction of sensitized bronchi in response to a specific antigen and (ii) the effect of passive sensitization on the contraction in response to nonspecific agonists in bronchi pre-exposed to pollutants. The results indicate a combined effect of immunological sensitization and exposure to pollutants; that is, passive sensitization and exposure to pollutants act in a synergistic manner on human bronchial smooth-muscle reactivity in response to both specific antigens and nonspecific agonists. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
The purpose of this study was to define the effects of individual polymorphisms within the haplotypes of the TAS2R38 taste receptor gene on human bitter taste perception. A racially and ethnically diverse sample of children and adults (N = 980) was phenotyped for thresholds of 6-n-propylthiouracil (PROP) and genotyped for 3 polymorphisms of the TAS2R38 gene (A49P, V262A, I296V). Subjects were grouped according to their diplotype (i.e., specific combinations of haplotypes) and compared for PROP thresholds. By contrasting subjects with particular diplotypes, we found that in addition to A49P, V262A and I296V were related to the ability of the subjects to detect PROP. The V262A variant site affected the ability of subjects to detect mid-range concentrations of PROP, whereas the I296V variant site affected the ability of subjects to perceive PROP at the lowest concentration. These data agree with results from previous studies using cell-based assays for 2 variant sites (A49P and V262A) but not those for the I296V variant site. The reason for the discordant results is not known but it highlights the need for psychophysical as well as cell-based methods to understand the genotype-phenotype relationship for taste receptors. Human PROP sensitivity is determined by the combination of each of these 3 polymorphisms within the TAS2R38 gene.  相似文献   

15.
Human bitter taste receptors of the TAS2R gene family play a crucial role as warning sensors against the ingestion of toxic food compounds. Moreover, the genetically highly polymorphic hTAS2Rs recognize an enormous number of structurally diverse toxic and non-toxic bitter substances, and hence, may substantially influence our individual eating habits. Heterologous expression in mammalian cells is a useful tool to investigate interactions between these receptors and their agonists. However, many bitter taste receptors are poorly expressed at the cell surface of heterologous cells requiring the addition of plasma membrane export promoting epitopes to the native receptor proteins. Currently, nothing is known about amino acid motifs or other receptor-intrinsic features of TAS2Rs affecting plasma membrane association. In the present study, we analyzed the Asn-linked glycosylation of hTAS2Rs at a consensus sequence in the second extracellular loop, which is conserved among all 25 hTAS2Rs. Non-glycosylated receptors exhibit substantially lower cell surface localization and reduced association with the cellular chaperone calnexin. As the auxiliary factors receptor transporting proteins 3 and 4 are able to restore the function of non-glycosylated hTAS2R16 partially, we conclude that glycosylation is important for receptor maturation but not for its function per se .  相似文献   

16.
The sweeteners saccharin, D-tryptophan, and neohesperidin dihydrochalcone (NHD) and the bitter tastant cyclo(Leu-Trp) stimulated concentration-dependent pigment aggregation in a Xenopus laevis melanophore cell line similar to melatonin. Like melatonin, these tastants inhibited (by 45-92%) cAMP formation in melanophores; pertussis toxin pretreatment almost completely abolished the tastant-induced cAMP inhibition, suggesting the involvement of the inhibitory pathway (Gi) of adenylyl cyclase. The presence of luzindole (melatonin receptor antagonist) almost completely abolished the inhibition of cAMP formation induced by saccharin, D-tryptophan, and cyclo(Leu-Trp) but only slightly affected the inhibitory effect of NHD. In contrast, the presence of an alpha2-adrenergic receptor antagonist, yohimbine, almost completely abolished the inhibition of cAMP formation induced by NHD but had only a minor effect on that induced by the other tastants. Thus saccharin, D-tryptophan, and cyclo(Leu-Trp) are melatonin receptor agonists whereas NHD is an alpha2-adrenergic receptor agonist, but both pathways lead to the same transduction output and cellular response. Formation of D-myo-inositol 1,4,5-trisphosphate (IP3) in melanophores was reduced (15-58%, no concentration dependence) by saccharin, D-tryptophan, and cyclo(Leu-Trp) stimulation but increased by NHD stimulation. Tastant stimulation did not affect cGMP. Although some of the above tastants were found to be membrane permeant, their direct activation of downstream transduction components in this experimental system is questionable. MT1 and MT2 melatonin receptor mRNAs were identified in rat circumvallate papilla taste buds and nonsensory epithelium, suggesting the occurrence of MT1 and MT2 receptors in these tissues. Melatonin stimulation reduced the cellular content of cAMP in taste cells, which may or may not be related to taste sensation.  相似文献   

17.
The T2Rs belong to a multi-gene family of G-protein-coupled receptors responsible for the detection of ingested bitter-tasting compounds. The T2Rs are conserved among mammals with the human and mouse gene families consisting of about 25 members. In the present study we address the signalling properties of human and mouse T2Rs using an in vitro reconstitution system in which both the ligands and G-proteins being assayed can be manipulated independently and quantitatively assessed. We confirm that the mT2R5, hT2R43 and hT2R47 receptors respond selectively to micromolar concentrations of cycloheximide, aristolochic acid and denatonium respectively. We also demonstrate that hT2R14 is a receptor for aristolochic acid and report the first characterization of the ligand specificities of hT2R7, which is a broadly tuned receptor responding to strychnine, quinacrine, chloroquine and papaverine. Using these defined ligand-receptor interactions, we assayed the ability of the ligand-activated T2Rs to catalyse GTP binding on divergent members of the G(alpha) family including three members of the G(alphai) subfamily (transducin, G(alphai1) and G(alphao)) as well as G(alphas) and G(alphaq). The T2Rs coupled with each of the three G(alphai) members tested. However, none of the T2Rs coupled to either G(alphas) or G(alphaq), suggesting the T2Rs signal primarily through G(alphai)-mediated signal transduction pathways. Furthermore, we observed different G-protein selectivities among the T2Rs with respect to both G(alphai) subunits and G(betagamma) dimers, suggesting that bitter taste is transduced by multiple G-proteins that may differ among the T2Rs.  相似文献   

18.
19.
Distribution of chymase-containing mast cells in human bronchi.   总被引:5,自引:0,他引:5  
Mast cell chymase stimulates secretion from cultured airway gland serous cells and hydrolyzes bronchoactive peptides in vitro. To explore the likelihood of these interactions occurring in situ, we examined the distribution and concentration of chymase-containing mast cells near glands and smooth muscle of major human bronchi from eight individuals without known airway disease. Total airway mast cells and the subset of mast cells containing chymase were detected by staining for methylene blue metachromasia and chloroacetate esterase activity, respectively. The percentage of chymase-containing mast cells was found to differ strikingly among bronchial tissue compartments. Near glands, for example, the concentration of chymase-positive mast cells (640 +/- 120 cells/mm3) was 73 +/- 9% that of total mast cells (910 +/- 130 cells/mm3), whereas in smooth muscle the concentration of chymase-positive mast cells (450 +/- 200 cells/mm3) was only 14 +/- 4% that of total mast cells (2920 +/- 620 cells/mm3). Of all chymase-containing mast cells in the airway subepithelium, 30 +/- 4% were located within 20 microns of submucosal glands. Although the percentage of chymase-containing cells varied, the absolute concentration of chymase-containing mast cells was similar in all compartments. These results reveal a differential distribution of mast cell subpopulations in human airway and suggest that mast cells containing chymase are near gland and smooth muscle targets.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号