首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BNip3 is a hypoxia‐inducible protein that targets mitochondria for autophagosomal degradation. We report a novel tumor suppressor role for BNip3 in a clinically relevant mouse model of mammary tumorigenesis. BNip3 delays primary mammary tumor growth and progression by preventing the accumulation of dysfunctional mitochondria and resultant excess ROS production. In the absence of BNip3, mammary tumor cells are unable to reduce mitochondrial mass effectively and elevated mitochondrial ROS increases the expression of Hif‐1α and Hif target genes, including those involved in glycolysis and angiogenesis—two processes that are also markedly increased in BNip3‐null tumors. Glycolysis inhibition attenuates the growth of BNip3‐null tumor cells, revealing an increased dependence on autophagy for survival. We also demonstrate that BNIP3 deletion can be used as a prognostic marker of tumor progression to metastasis in human triple‐negative breast cancer (TNBC). These studies show that mitochondrial dysfunction—caused by defects in mitophagy—can promote the Warburg effect and tumor progression, and suggest better approaches to stratifying TNBC for treatment.  相似文献   

2.
Mitochondria have an essential role in powering cells by generating ATP following the metabolism of pyruvate derived from glycolysis. They are also the major source of generating reactive oxygen species (ROS), which have regulatory roles in cell death and proliferation. Mutations in mitochondrial DNA (mtDNA) and dysregulation of mitochondrial metabolism have been frequently described in human tumors. Although the role of oxidative stress as the consequence of mtDNA mutations and/or altered mitochondrial functions has been demonstrated in carciongenesis, a causative role of mitochondria in tumor progression has only been demonstrated recently. Specifically, the subject of this mini-review focuses on the role of mitochondria in promoting cancer metastasis. Cancer relapse and the subsequent spreading of cancer cells to distal sites are leading causes of morbidity and mortality in cancer patients. Despite its clinical importance, the underlying mechanisms of metastasis remain to be elucidated. Recently, it was demonstrated that mitochondrial oxidative stress could actively promote tumor progression and increase the metastatic potential of cancer cells. The purpose of this mini-review is to summarize current investigations of the roles of mitochondria in cancer metastasis. Future development of diagnostic and therapeutic strategies for patients with advanced cancer will benefit from the new knowledge of mitochondrial metabolism in epithelial cancer cells and the tumor stroma.  相似文献   

3.
This perspective article highlights the growing evidence placing mitochondria and mitochondrial function at the center of cancer as an age‐related disease. The discussion starts from the mitochondrial free radical hypothesis that predicts the involvement of endogenous mitochondrial reactive oxygen species (ROS) in cancer development and summarizes studies demonstrating the impact of the modulation of ROS levels on cancer development and metastasis. Cancer is fundamentally a complex interplay of cell growth, division, metastasis and death‐ processes connected to mitochondria through energy metabolism. Based on this evidence, therapeutics focused on mitochondrial function and mitochondrial ROS production are an attractive approach to modulating the progression of metastatic cancer and the general improvement of human health span.  相似文献   

4.
Mitochondria are intracellular organelles involved in energy production, cell metabolism and cell signaling. They are essential not only in the process of ATP synthesis, lipid metabolism and nucleic acid metabolism, but also in tumor development and metastasis. Mutations in mtDNA are commonly found in cancer cells to promote the rewiring of bioenergetics and biosynthesis, various metabolites especially oncometabolites in mitochondria regulate tumor metabolism and progression. And mutation of enzymes in the TCA cycle leads to the unusual accumulation of certain metabolites and oncometabolites. Mitochondria have been demonstrated as the target for cancer treatment. Cancer cells rely on two main energy resources: oxidative phosphorylation (OXPHOS) and glycolysis. By manipulating OXPHOS genes or adjusting the metabolites production in mitochondria, tumor growth can be restrained. For example, enhanced complex I activity increases NAD+/NADH to prevent metastasis and progression of cancers. In this review, we discussed mitochondrial function in cancer cell metabolism and specially explored the unique role of mitochondria in cancer stem cells and the tumor microenvironment. Targeting the OXPHOS pathway and mitochondria-related metabolism emerging as a potential therapeutic strategy for various cancers.  相似文献   

5.
Mitochondria, also known as ??Power House of cell,?? are crucial organelles, regulating energy metabolism. Recently, an involvement of mitochondria in cancer occurrence and metastasis has been proposed. The roles of mitochondria in cancer progression/metastasis include alteration of glycolysis, regulation of ROS and suppression of intrinsic apoptosis. This mini-review explains the specific mitochondrial characteristics during cancer metastasis with past and recent findings. It may contribute to understanding mitochondria-related mechanisms of cancer metastasis.  相似文献   

6.
Gu Y  Wang C  Cohen A 《FEBS letters》2004,577(3):357-360
Mutations in mitochondrial DNA (mtDNA) cause excessive production of mitochondrial reactive oxygen species (ROS) and shorten animal life span. We examined the mechanisms responsible for removal of mitochondria with deleterious mtDNA mutations by autophagy. Incubation of primary cells and cell lines in the absence of serum promotes autophagy of mitochondria with deleterious mtDNA mutations but spares their normal counterparts. The effect of serum withdrawal on the autophagy of dysfunctional mitochondria is prevented by the addition of IGF-1. As a result of the elimination of mitochondria with deleterious mutations, excessive ROS production, characteristic of dysfunctional mitochondria, is greatly reduced. Mitochondrial autophagy shares a common mechanism with mitochondrial-induced cell apoptosis, including mitochondrial transition pore formation and increased ROS production.  相似文献   

7.
ER-mitochondria contact sites represent hubs for signaling that control mitochondrial biology related to several aspects of cellular survival, metabolism, cell death sensitivity and metastasis, which all contribute to tumorigenesis. Altered ER-mitochondria contacts can deregulate Ca2+ homeostasis, phospholipid metabolism, mitochondrial morphology and dynamics. MAM represent both a hot spot in cancer onset and progression and an Achilles' heel of cancer cells that can be exploited for therapeutic perspectives. Over the past years, an increasing number of cancer-related proteins, including oncogenes and tumor suppressors, have been localized in MAM and exert their pro- or antiapoptotic functions through the regulation of Ca2+ transfer and signaling between the two organelles. In this review, we highlight the central role of ER-mitochondria contact sites in tumorigenesis and focus on chemotherapeutic drugs or potential targets that act on MAM properties for new therapeutic approaches in cancer.  相似文献   

8.
There is a growing realization that tumor cells rely on healthy mitochondria to promote their growth under changing microenvironmental stresses and do so by dynamically modulating both their mitochondrial mass and state of mitochondrial fusion. Our recent work adds to this appreciation by showing that the mitophagy receptor BNIP3 functions as a tumor suppressor in mammary tumorigenesis and also as a prognostic indicator of progression to metastasis in certain sub-types of human breast cancer.  相似文献   

9.
Cancer stem cells(CSCs) are maintained by theirsomatic stem cells and are responsible for tumor initiation, chemoresistance, and metastasis. Evidence for the CSCs existence has been reported for a number of human cancers. The CSC mitochondria have been shown recently to be an important target for cancer treatment, but clinical significance of CSCs and their mitochondria properties remain unclear. Mitochondriatargeted agents are considerably more effective compared to other agents in triggering apoptosis of CSCs, as well as general cancer cells, via mitochondrial dysfunction. Mitochondrial metabolism is altered in cancer cells because of their reliance on glycolytic intermediates, which are normally destined for oxidative phosphorylation. Therefore, inhibiting cancer-specific modifications in mitochondrial metabolism, increasing reactive oxygen species production, or stimulating mitochondrial permeabilization transition could be promising new therapeutic strategies to activate cell death in CSCs as well, as in general cancer cells. This review analyzed mitochondrial function and its potential as a therapeutic target to induce cell death in CSCs. Furthermore, combined treatment with mitochondriatargeted drugs will be a promising strategy for the treatment of relapsed and refractory cancer.  相似文献   

10.
Reactive oxygen species (ROS) are produced by mitochondria during metabolism. In physiological states, the production of ROS and their elimination by antioxidants are kept in balance. However, in pathological states, elevated levels of ROS interact with susceptible cellular target compounds including lipids, proteins, and DNA and deregulate oncogenic signaling pathways that are involved in colorectal cancer (CRC) carcinogenesis. Although antioxidant compounds have been successfully used in the treatment of CRC as prevention approaches, they have also been shown in some cases to promote disease progression. In this review, we focus on the role of ROS in gastrointestinal homeostasis, CRC progression, diagnosis, and therapy with particular emphasis on ROS-stimulated pathways.  相似文献   

11.
Reduced oxygen availability (hypoxia) leads to increased production of reactive oxygen species (ROS) by the electron transport chain. Here, I review recent work delineating mechanisms by which hypoxia‐inducible factor 1 (HIF‐1) mediates adaptive metabolic responses to hypoxia, including increased flux through the glycolytic pathway and decreased flux through the tricarboxylic acid cycle, in order to decrease mitochondrial ROS production. HIF‐1 also mediates increased flux through the serine synthesis pathway and mitochondrial one‐carbon (folate cycle) metabolism to increase mitochondrial antioxidant production (NADPH and glutathione). Dynamic maintenance of ROS homeostasis is required for induction of the breast cancer stem cell phenotype in response to hypoxia or cytotoxic chemotherapy. Consistently, inhibition of phosphoglycerate dehydrogenase, the first enzyme of the serine synthesis pathway, in breast cancer cells impairs tumor initiation, metastasis, and response to cytotoxic chemotherapy. I discuss how these findings have important implications for understanding the logic of the tumor microenvironment and for improving therapeutic responses in women with breast cancer.  相似文献   

12.
The tumor host microenvironment is increasingly viewed as an important contributor to tumor growth and suppression. Cellular oxidative stress resulting from high levels of reactive oxygen species (ROS) contributes to various processes involved in the development and progress of malignant tumors including carcinogenesis, aberrant growth, metastasis, and angiogenesis. In this regard, the stroma induces oxidative stress in adjacent tumor cells, and this in turn causes several changes in tumor cells including modulation of the redox status, inhibition of cell proliferation, and induction of apoptotic or necrotic cell death. Because the levels of ROS are determined by a balance between ROS generation and ROS detoxification, disruption of this system will result in increased or decreased ROS level. Recently, we demonstrated that the control of mitochondrial redox balance and cellular defense against oxidative damage is one of the primary functions of mitochondrial NADP+-dependent isocitrate dehydrogenase (IDH2) that supplies NADPH for antioxidant systems. To explore the interactions between tumor cells and the host, we evaluated tumorigenesis between IDH2-deficient (knock-out) and wild-type mice in which B16F10 melanoma cells had been implanted. Suppression of B16F10 cell tumorigenesis was reproducibly observed in the IDH2-deficient mice along with significant elevation of oxidative stress in both the tumor and the stroma. In addition, the expression of angiogenesis markers was significantly down-regulated in both the tumor and the stroma of the IDH2-deficient mice. These results support the hypothesis that redox status-associated changes in the host environment of tumor-bearing mice may contribute to cancer progression.  相似文献   

13.
The majority of endogenous reactive oxygen species (ROS) are produced in the mitochondrial respiratory chain. An imbalance in ROS production alters the intracellular redox homeostasis, triggers DNA damage, and contributes to cancer development and progression. This study identified a novel protein, reactive oxygen species modulator 1 (Romo1), which is localized in the mitochondria. Romo1 was found to increase the level of ROS in the cells. Increased Romo1 expression was observed in various cancer cell lines. This suggests that the increased Romo1 expression during cancer progression may cause persistent oxidative stress to tumor cells, which can increase their malignancy.  相似文献   

14.
Selective degradation of mitochondria by mitophagy   总被引:17,自引:0,他引:17  
Mitochondria are the essential site of aerobic energy production in eukaryotic cells. Reactive oxygen species (ROS) are an inevitable by-product of mitochondrial metabolism and can cause mitochondrial DNA mutations and dysfunction. Mitochondrial damage can also be the consequence of disease processes. Therefore, maintaining a healthy population of mitochondria is essential to the well-being of cells. Autophagic delivery to lysosomes is the major degradative pathway in mitochondrial turnover, and we use the term mitophagy to refer to mitochondrial degradation by autophagy. Although long assumed to be a random process, increasing evidence indicates that mitophagy is a selective process. This review provides an overview of the process of mitophagy, the possible role of the mitochondrial permeability transition in mitophagy and the importance of mitophagy in turnover of dysfunctional mitochondria.  相似文献   

15.

Background

Tumor formation and spread via the circulatory and lymphatic drainage systems is associated with metabolic reprogramming that often includes increased glycolytic metabolism relative to mitochondrial energy production. However, cells within a tumor are not identical due to genetic change, clonal evolution and layers of epigenetic reprogramming. In addition, cell hierarchy impinges on metabolic status while tumor cell phenotype and metabolic status will be influenced by the local microenvironment including stromal cells, developing blood and lymphatic vessels and innate and adaptive immune cells. Mitochondrial mutations and changes in mitochondrial electron transport contribute to metabolic remodeling in cancer in ways that are poorly understood.

Scope of Review

This review concerns the role of mitochondria, mitochondrial mutations and mitochondrial electron transport function in tumorigenesis and metastasis.

Major Conclusions

It is concluded that mitochondrial electron transport is required for tumor initiation, growth and metastasis. Nevertheless, defects in mitochondrial electron transport that compromise mitochondrial energy metabolism can contribute to tumor formation and spread. These apparently contradictory phenomena can be reconciled by cells in individual tumors in a particular environment adapting dynamically to optimally balance mitochondrial genome changes and bioenergetic status.

General Significance

Tumors are complex evolving biological systems characterized by genetic and adaptive epigenetic changes. Understanding the complexity of these changes in terms of bioenergetics and metabolic changes will permit the development of better combination anticancer therapies. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.  相似文献   

16.
Mitochondria are semi-autonomous organelles that play essential roles in cellular metabolism and programmed cell death pathways. Genomic, functional and structural mitochondrial alterations have been associated with cancer. Some of those alterations may provide a selective advantage to cells, allowing them to survive and grow under stresses created by oncogenesis. Due to the specific alterations that occur in cancer cell mitochondria, these organelles may provide promising targets for cancer therapy. The development of drugs that specifically target metabolic and mitochondrial alterations in tumor cells has become a matter of interest in recent years, with several molecules undergoing clinical trials. This review focuses on the most relevant mitochondrial alterations found in tumor cells, their contribution to cancer progression and survival, and potential usefulness for stratification and therapy.  相似文献   

17.
Once thought of as toxic by-products of cellular metabolism, reactive oxygen species (ROS) have been implicated in a large variety of cell-signaling processes. Several enzymatic systems contribute to ROS production in vascular endothelial cells, including NA(D)PH oxidase, xanthine oxidase, uncoupled endothelial nitric oxide synthase, and the mitochondrial electron transport chain. The respiratory chain is the major source of ROS in most mammalian cells, but the role of mitochondria-derived ROS in vascular cell signaling has received little attention. A new paradigm has evolved in recent years postulating that, in addition to producing ATP, mitochondria also play a key role in cell signaling and regulate a variety of cellular functions. This review focuses on the emerging role of mitochondrial ROS as signaling molecules in vascular endothelial cells. Specifically, we discuss some recent findings that indicate that mitochondrial ROS regulate vascular endothelial function, focusing on major sites of ROS production in endothelial mitochondria, factors modulating mitochondrial ROS production, the physiological and clinical implications of endothelial mitochondrial ROS, and methodological considerations in the study of mitochondrial contribution to vascular ROS generation.  相似文献   

18.
To adapt to tumoral environment conditions or even to escape chemotherapy, cells rapidly reprogram their metabolism to handle adversities and survive. Given the rapid rise of studies uncovering novel insights and therapeutic opportunities based on the role of mitochondria in tumor metabolic programing and therapeutics, this review summarizes most significant developments in the field. Taking in mind the key role of mitochondria on carcinogenesis and tumor progression due to their involvement on tumor plasticity, metabolic remodeling, and signaling re-wiring, those organelles are also potential therapeutic targets. Among other topics, we address the recent data intersecting mitochondria as of prognostic value and staging in cancer, by mitochondrial DNA (mtDNA) determination, and current inhibitors developments targeting mtDNA, OXPHOS machinery and metabolic pathways. We contribute for a holistic view of the role of mitochondria metabolism and directed therapeutics to understand tumor metabolism, to circumvent therapy resistance, and to control tumor development.  相似文献   

19.
Mitochondria autophagy, termed as mitophagy, is a mechanism of specific autophagic elimination of mitochondria. Mitophagy controls the quality and the number of mitochondria, eliminating dysfunctional or excessive mitochondria that can generate reactive oxygen species (ROS) and cause cell death. Mitochondria are centrally implicated in neuron and tissue injury after stroke, due to the function of supplying adenosine triphosphate (ATP) to the tissue, regulating oxidative metabolism during the pathologic process, and contribution to apoptotic cell death after stroke. As a catabolic mechanism, mitophagy links numbers of a complex network of mitochondria, and affects mitochondrial dynamic process, fusion and fission, reducing mitochondrial production of ROS, mediated by the mitochondrial permeability transition pore (MPTP). The precise nature of mitophagy’s involvement in stroke, and its underlying molecular mechanisms, have yet to be fully clarified. This review aims to provide a comprehensive overview of the integration of mitochondria with mitophagy, also to introduce and discuss recent advances in the understanding of the potential role, and possible signaling pathway, of mitophagy in the pathological processes of both hemorrhagic and ischemic stroke. The author also provides evidence to explain the dual role of mitophagy in stroke.  相似文献   

20.
In diabetic cardiomyopathy (DCM), a major diabetic complication, the myocardium is structurally and functionally altered without evidence of coronary artery disease, hypertension or valvular disease. Although numerous anti-diabetic drugs have been applied clinically, specific medicines to prevent DCM progression are unavailable, so the prognosis of DCM remains poor. Mitochondrial ATP production maintains the energetic requirements of cardiomyocytes, whereas mitochondrial dysfunction can induce or aggravate DCM by promoting oxidative stress, dysregulated calcium homeostasis, metabolic reprogramming, abnormal intracellular signaling and mitochondrial apoptosis in cardiomyocytes. In response to mitochondrial dysfunction, the mitochondrial quality control (MQC) system (including mitochondrial fission, fusion, and mitophagy) is activated to repair damaged mitochondria. Physiological mitochondrial fission fragments the network to isolate damaged mitochondria. Mitophagy then allows dysfunctional mitochondria to be engulfed by autophagosomes and degraded in lysosomes. However, abnormal MQC results in excessive mitochondrial fission, impaired mitochondrial fusion and delayed mitophagy, causing fragmented mitochondria to accumulate in cardiomyocytes. In this review, we summarize the molecular mechanisms of MQC and discuss how pathological MQC contributes to DCM development. We then present promising therapeutic approaches to improve MQC and prevent DCM progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号