首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The four isomers of hydroxycitrate have been tested as substrates and inhibitors for citrate synthase, citrate lyase, and ATP citrate lyase. None of the isomers served as a substrate for citrate synthase and they were moderate to weak inhibitors of this reaction. Of the four isomers, only (pncit)-(2S)-2-hydroxycitrate did not serve as a substrate for citrate lyase while (pncit)-(4S)-4-hydroxycitrate was the only isomer which did not serve as a substrate for ATP citrate lyase. No consistent pattern of reactivity or inhibitor potency was seen with the different isomeric hydroxycitrates. It is proposed that more than one mode of binding is possible between the isomers and the three different active sites.  相似文献   

2.
3.
Efficient methods were developed to synthesize a novel series of macrocyclic bisindolylmaleimides containing linkers with multiple heteroatoms. Potent inhibitors (single digit nanomolar IC(50)) for PKC-beta and GSK-3beta were identified, and compounds showed good selectivity over PKC-alpha, -gamma, -delta, -epsilon, and -zeta. Representative compound 5a also had high selectivity in a screening panel of 10 other protein kinases. In cell-based functional assays, several compounds effectively blocked interleukin-8 release induced by PKC-betaII and increased glycogen synthase activity by inhibiting GSK-3beta.  相似文献   

4.
Protein kinase B (also known as Akt) signaling regulates dopamine-mediated locomotor behaviors. Here the ability of cocaine to regulate Akt and glycogen synthase kinase 3 (GSK3) was studied. Rats were injected with cocaine or saline in a binge-pattern, which consisted of three daily injections of 15 mg/kg cocaine or 1 mL/kg saline spaced 1 h apart for 1, 3, or 14 days. Amygdala, nucleus accumbens, caudate putamen, and hippocampus tissues were dissected 30 min following the last injection and analyzed for phosphorylated and total Akt and GSK3(alpha and beta) protein levels using western blot analysis. Phosphorylation of Akt on the threonine-308 (Thr308) residue was significantly reduced in the nucleus accumbens and increased in the amygdala after 1 day of cocaine treatment; however, these effects were not accompanied by a significant decrease in GSK3 phosphorylation. Phosphorylation of Akt and GSK3 was significantly reduced after 14 days of cocaine administration, an effect that was only observed in the amygdala. Cocaine did not alter Akt or GSK3 phosphorylation in the caudate putamen or hippocampus. The findings in nucleus accumbens may reflect dopaminergic motor-stimulant activity caused by acute cocaine, whereas the effects in amygdala may be associated with changes in emotional state that occur after acute and chronic cocaine exposure.  相似文献   

5.
6.
The MCK1 gene of Saccharomyces cerevisiae encodes a protein kinase homologous to metazoan glycogen synthase kinase-3. Previous studies implicated Mck1p in negative regulation of pyruvate kinase. In this study we find that purified Mck1p does not phosphorylate pyruvate kinase, suggesting that the link is indirect. We find that purified Tpk1p, a cAMP-dependent protein kinase catalytic subunit, phosphorylates purified pyruvate kinase in vitro, and that loss of the cAMP-dependent protein kinase regulatory subunit, Bcy1p, increases pyruvate kinase activity in vivo. We find that purified Mck1p inhibits purified Tpk1p in vitro, in the presence or absence of Bcy1p. Mck1p must be catalytically active to inhibit Tpk1p, but Mck1p does not phosphorylate this target. We find that abolition of Mck1p autophosphorylation on tyrosine prevents the kinase from efficiently phosphorylating exogenous substrates, but does not block its ability to inhibit Tpk1p in vitro. We find that this mutant form of Mck1p appears to retain the ability to negatively regulate cAMP-dependent protein kinase in vivo. We propose that Mck1p, in addition to phosphorylating some target proteins, also acts by a separate, novel mechanism: autophosphorylated Mck1p binds to and directly inhibits, but does not phosphorylate, the catalytic subunits of cAMP-dependent protein kinase.  相似文献   

7.
TIMAP (TGF-beta1 inhibited, membrane-associated protein) is a prenylated, endothelial cell-predominant protein phosphatase 1 (PP1c) regulatory subunit that localizes to the plasma membrane of filopodia. Here, we determined whether phosphorylation regulates TIMAP-associated PP1c function. Phosphorylation of TIMAP was observed in cells metabolically labeled with [32P]orthophosphate and was reduced by inhibitors of protein kinase A (PKA) and glycogen synthase kinase-3 (GSK-3). In cell-free assays, immunopurified TIMAP was phosphorylated by PKA and, after PKA priming, by GSK-3beta. Site-specific Ser to Ala substitution identified amino acid residues Ser333/Ser337 as the likely PKA/GSK-3beta phosphorylation site. Substitution of Ala for Val and Phe in the KVSF motif of TIMAP (TIMAPV64A/F66A) abolished PP1c binding and TIMAP-associated PP1c activity. TIMAPV64A/F66A was hyper-phosphorylated in cells, indicating that TIMAP-associated PP1c auto-dephosphorylates TIMAP. Constitutively active GSK-3beta stimulated phosphorylation of TIMAPV64A/F66A, but not wild-type TIMAP, suggesting that the PKA/GSK-3beta site may be subject to dephosphorylation by TIMAP-associated PP1c. Substitution of Asp or Glu for Ser at amino acid residues 333 and 337 to mimic phosphorylation reduced the PP1c association with TIMAP. Conversely, GSK-3 inhibitors augmented PP1c association with TIMAP-PP1c in cells. The 333/337 phosphomimic mutations also increased TIMAP-associated PP1c activity in vitro and against the non-integrin laminin receptor 1 in cells. Finally, TIMAP mutants with reduced PP1c activity strongly stimulated endothelial cell filopodia formation, an effect mimicked by the GSK-3 inhibitor LiCl. We conclude that TIMAP is a target for PKA-primed GSK-3beta-mediated phosphorylation. This phosphorylation controls TIMAP association and activity of PP1c, in turn regulating extension of filopodia in endothelial cells.  相似文献   

8.
Purified glycogen synthase is contaminated with traces of two protein kinases that can phosphorylate the enzyme. One is protein kinase dependent on adenosine 3':5'-monophosphate (cyclic AMP) and the second is an activity termed glycogen synthase kinase-2 [Nimmo, H.G. and Cohen P, (1974)]. Glycogen synthase kinase-2 has been found to be localized relatively specifically in the protein-glycogen complex. It has been purified 4000-fold by two procedures, both of which involve disruption of the complex, followed by the DEAE-cellulose and phosphocellulose chromatographies. However the salt concentration at which glycogen synthase kinase-2 is eluted from DEAE-cellulose depends on the method that is used to disrupt the complex. The results indicate that glycogen synthase kinase-2 is firmly attached to a protein component of the complex. The isolation procedures separate glycogen synthase kinase-2 from phosphorylase kinase, cyclic AMP-dependent protein kinase and other glycogen-metabolising enzymes. Glycogen synthase kinase-2 is the major phosvitin kinase in skeletal muscle, although glycogen synthase is a six to eight-fold better substrate than phosvitin under the standard assay conditions. Phosphorylase kinase and phosphorylase b are not substrates for glycogen synthase kinase 2. Following incubation with cyclic-AMP-dependent protein kinase, cyclic AMP and Mg-ATP, the phosphorylation of glycogen synthase reaches a plateau at 1.0 molecules of phosphate incorporated per subunit and the activity ratio measured in the absence and presence of glucose 6-phosphate falls from 0.8 to a plateau of 0.18. The Ka for glucose 6-phosphate of this phosphorylated species, termed glycogen synthase b1, is the 0.6 mM. Following incubation with glycogen synthase kinase-2 and Mg-ATP, the phosphorylation reaches a plateau of 0.92 molecules of phosphate incorporated per subunit and the activity ratio decreases to a plateau of 0.08. The Ka for glucose 6-phosphate of this phosphorylated species, termed glycogen synthetase b2, is 4 mM. In the presence of both cyclic-AMP-dependent protein kinase and glycogen synthase kinase-2, the phosphorylation of glycogen synthase reaches a plateau when 1.95 molecules of phoshophate have been incorporated per subunit. The activity ratio is 0.01 and the Ka for glucose 6-phosphate is 10 mM. The results indicate that glycogen synthase can be regulated by two distinct phosphorylation-dephosphorylation cycles. The implication of these findings for the regulation of glycogen synthase in vivo are discussed.  相似文献   

9.
10.
The glycogen-binding (G) subunit of protein phosphatase-1G is phosphorylated stoichiometrically by glycogen synthase kinase-3 (GSK3), and with a greater catalytic efficiency than glycogen synthase, but only after prior phosphorylation by cyclic AMP-dependent protein kinase (A-kinase) at site 1. The residues phosphorylated are the first two serines in the sequence AIFKPGFSPQPSRRGS-, while the C-terminal serine (site 1) is one of the two residues phosphorylated by A-kinase. These findings demonstrate that (i) the G subunit undergoes multisite phosphorylation in vitro; (ii) phosphorylation by GSK3 requires the presence of a C-terminal phosphoserine residue; (iii) GSK3 can synergise with protein kinases other than casein kinase-2.  相似文献   

11.
The Drosophila gene product Wingless (Wg) is a secreted glycoprotein and a member of the Wnt gene family. Genetic analysis of Drosophila epidermal development has defined a putative paracrine Wg signalling pathway involving the zeste-white 3/shaggy (zw3/sgg) gene product. Although putative components of Wg- (and by inference Wnt-) mediated signalling pathways have been identified by genetic analysis, the biochemical significance of most factors remains unproven. Here we show that in mouse 10T1/2 fibroblasts the activity of glycogen synthase kinase-3 (GSK-3), the murine homologue of Zw3/Sgg, is inactivated by Wg. This occurs through a signalling pathway that is distinct from insulin-mediated regulation of GSK-3 in that Wg signalling to GSK-3 is insensitive to wortmannin. Additionally, Wg-induced inactivation of GSK-3 is sensitive to both the protein kinase C (PKC) inhibitor Ro31-8220 and prolonged pre-treatment of 10T1/2 fibroblasts with phorbol ester. These findings provide the first biochemical evidence in support of the genetically defined pathway from Wg to Zw3/Sgg, and suggest a previously uncharacterized role for a PKC upstream of GSK-3/Zw3 during Wnt/Wg signal transduction.  相似文献   

12.
13.
Rabbit skeletal muscle glycogen synthase was phosphorylated by kinase Fa, phosphorylase kinase, and cAMP-independent synthase (casein) kinase-1 to determine the differences among these kinase-catalyzed reactions. The stoichiometry of phosphate incorporation, the extent of inactivation, and the sites of phosphorylation were compared. Synthase (casein) kinase-1 catalyzes the highest level of synthase phosphorylation (4 mol/subunit) and inactivation (reduction of the activity ratio to below 0.05). The sites, defined by characteristic tryptic peptides, phosphorylated by synthase (casein) kinase-1 are distinguishable from those by kinase Fa and phosphorylase kinase. In addition, synthase (casein) kinase-1, unlike kinase Fa, does not activate ATP X Mg2+-dependent protein phosphatase. These results demonstrate that synthase (casein) kinase-1 is a distinct glycogen synthase kinase.  相似文献   

14.
Reelin is a large secreted protein that controls cortical layering by signaling through the very low density lipoprotein receptor and apolipoprotein E receptor 2, thereby inducing tyrosine phosphorylation of the adaptor protein Disabled-1 (Dab1) and suppressing tau phosphorylation in vivo. Here we show that binding of Reelin to these receptors stimulates phosphatidylinositol 3-kinase, resulting in activation of protein kinase B and inhibition of glycogen synthase kinase 3beta. We present genetic evidence that this cascade is dependent on apolipoprotein E receptor 2, very low density lipoprotein receptor, and Dab1. Reelin-signaling components are enriched in axonal growth cones, where tyrosine phosphorylation of Dab1 is increased in response to Reelin. These findings suggest that Reelin-mediated phosphatidylinositol 3-kinase signaling in neuronal growth cones contributes to final neuron positioning in the mammalian brain by local modulation of protein kinase B and glycogen synthase kinase 3beta kinase activities.  相似文献   

15.
Modulation of protein kinase FA /glycogen synthase kinase-3α (kinase FA /GSK-3α) by reversible tyrosine phosphorylation/dephosphorylation was investigated. In addition to genistein, other protein tyrosine kinase (PTK) inhibitors, such as tyrphostin A47 and B42, also could induce tyrosine dephosphorylation and inactivation of kinase FA /GSK-3α in A431 cells, and this process was found to be reversible. Pretreatment of the cells with 100 μM orthovanadate, a protein tyrosine phosphatase (PTP) inhibitor, could diminish significantly the effects of PTK inhibitors on both enzyme activity and phosphotyrosine content of the kinase, suggesting that the PTK inhibitors induced tyrosine dephosphorylation/inactivation of this kinase is mediated by orthovanadate-sensitive PTP(s) in A431 cells. Moreover, the phosphotyrosine moiety of kinase FA /GSK-3α was found to be highly turned over in resting cells. Interestingly, we found that the less active, tyrosine-dephosphorylated form of kinase FA /GSK-3α immunoprecipitated from genistein-treated cells was able to reactivate partially with concomitant rephosphorylation of tyrosine residue in vitro. Taken together, these findings demonstrate that tyrosine phosphorylation and concomitant activation of kinase FA /GSK-3α can be carried out both in vitro and in vivo and an in vivo phosphatase activity may function in antagonism to PTK activation of kinase FA /GSK-3α. J. Cell. Physiol. 171:95–103, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

16.
17.
Shaw M  Cohen P 《FEBS letters》1999,461(1-2):120-124
Epidermal growth factor (EGF), insulin-like growth factor 1 (IGF1) and phorbol myristate acetate (PMA) induce the inhibition of glycogen synthase kinase 3 (GSK3) by stimulating the phosphorylation of an N-terminal serine. Here, we show that protein kinase B (PKB) plays a key role in mediating EGF-induced inhibition of GSK3alpha and that the classical MAP kinase (MAPK) cascade has two functions in this process. Firstly, it makes a transient contribution to EGF-induced inhibition of GSK3alpha. Secondly, it shortens the duration of PKB activation and GSK3alpha inhibition. In contrast, PKB alone mediates the IGF1-induced inhibition of GSK3alpha, while the MAPK cascade mediates the inhibition of GSK3alpha by PMA.  相似文献   

18.
Serine/threonine phosphorylation of insulin receptor substrate-1 (IRS-1) is an important negative modulator of insulin signaling. Previously, we showed that glycogen synthase kinase-3 (GSK-3) phosphorylates IRS-1 at Ser(332). However, the fact that GSK-3 requires prephosphorylation of its substrates suggested that Ser(336) on IRS-1 was the "priming" site phosphorylated by an as yet unknown protein kinase. Here, we sought to identify this "priming kinase" and to examine the phosphorylation of IRS-1 at Ser(336) and Ser(332) in physiologically relevant animal models. Of several stimulators, only the PKC activator phorbol ester PMA enhanced IRS-1 phosphorylation at Ser(336). Treatment with selective PKC inhibitors prevented this PMA effect and suggested that a conventional PKC was the priming kinase. Overexpression of PKCalpha or PKCbetaII isoforms in cells enhanced IRS-1 phosphorylation at Ser(336) and Ser(332), and in vitro kinase assays verified that these two kinases directly phosphorylated IRS-1 at Ser(336). The expression level and activation state of PKCbetaII, but not PKCalpha, were remarkably elevated in the fat tissues of diabetic ob/ob mice and in high-fat diet-fed mice compared with that from lean animals. Elevated levels of PKCbetaII were also associated with enhanced phosphorylation of IRS-1 at Ser(336/332) and elevated activity of GSK-3beta. Finally, adenoviral mediated expression of PKCbetaII in adipocytes enhancedphosphorylation of IRS-1 at Ser(336). Taken together, our results suggest that IRS-1 is sequentially phosphorylated by PKCbetaII and GSK-3 at Ser(336) and Ser(332). Furthermore, these data provide evidence for the physiological relevance of these phosphorylation events in the pathogenesis of insulin resistance in fat tissue.  相似文献   

19.
The insulin-resistant brain state is related to late-onset sporadic Alzheimer's disease, and alterations in the insulin receptor (IR) and its downstream phosphatidylinositol-3 kinase signalling pathway have been found in human brain. These findings have not been confirmed in an experimental model related to sporadic Alzheimer's disease, for example rats showing a neuronal IR deficit subsequent to intracerebroventricular (i.c.v.) treatment with streptozotocin (STZ). In this study, western blot analysis performed 1 month after i.c.v. injection of STZ showed an increase of 63% in the level of phosphorylated glycogen synthase kinase-3alpha/beta (pGSK-3alpha/beta) protein in the rat hippocampus, whereas the levels of the unphosphorylated form (GSK-3alpha/beta) and protein kinase B (Akt/PKB) remained unchanged. Three months after STZ treatment, pGSK-3alpha/beta and Akt/PKB levels tended to decrease (by 8 and 9% respectively). The changes were region specific, as a different pattern was found in frontal cortex. Structural alterations were also found, characterized by beta-amyloid peptide-like aggregates in brain capillaries of rats treated with STZ. Similar neurochemical changes and cognitive deficits were recorded in rats treated with i.c.v. 5-thio-d-glucose, a blocker of glucose transporter (GLUT)2, a transporter that is probably involved in brain glucose sensing. The IR signalling cascade alteration and its consequences in rats treated with STZ are similar to those found in humans with sporadic Alzheimer's disease, and our results suggest a role for GLUT2 in Alzheimer's pathophysiology.  相似文献   

20.
Ren QG  Liao XM  Wang ZF  Qu ZS  Wang JZ 《FEBS letters》2006,580(10):2503-2511
Here, we demonstrated that lactacystin inhibited proteasome dose-dependently in HEK293 cells stably expressing tau. Simultaneously, it induces accumulation of both non-phosphorylated and hyperphosphorylated tau and decreases the binding of tau to the taxol-stabilized microtubules. Lactacystin activates glycogen synthase kinsase-3 (GSK-3) and decreases the phosphorylation of GSK-3 at serine-9. LiCl inhibits GSK-3 and thus reverses the lactacystin-induced accumulation of the phosphorylated tau. Lactacystin also inhibits protein phosphase-2A (PP-2A) and it significantly increases the level of inhibitor 1 of PP-2A. These results suggest that inhibition of proteasome by lactacystin induces tau accumulation and activation of GSK-3 and inhibition of PP-2A are involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号