首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reported in this paper is a very simple method for direct preparation of 4-substituted quinazoline derivatives from a reaction between substituted 2-aminobenzophenones and thiourea in the presence of dimethyl sulfoxide (DMSO). This is a unique complementary reaction system in which thiourea undergoes thermal decomposition to form carbodiimide and hydrogen sulfide, where the former reacts with 2-aminobenzophenone to form 4-phenylquinazolin-2(1H)-imine intermediate, whilst hydrogen sulfide reacts with DMSO to give methanethiol or other sulfur-containing molecule which then functions as a complementary reducing agent to reduce 4-phenylquinazolin-2(1H)-imine intermediate into 4-phenyl-1,2-dihydroquinazolin-2-amine. Subsequently, the elimination of ammonia from 4-phenyl-1,2-dihydroquinazolin-2-amine affords substituted quinazoline derivative. This reaction usually gives quinazoline derivative as a single product arising from 2-aminobenzophenone as monitored by GC/MS analysis, along with small amount of sulfur-containing molecules such as dimethyl disulfide, dimethyl trisulfide, etc. The reaction usually completes in 4-6 hr at 160 ºC in small scale but may last over 24 hr when carried out in large scale. The reaction product can be easily purified by means of washing off DMSO with water followed by column chromatography or thin layer chromatography.  相似文献   

2.
The reaction mechanisms of H2 with OCS have been investigated theoretically by using density function theory method. Three possible pathways leading to major products CO and H2S, as well as two possible pathways leading to by-product CH4 have been proposed and discussed. For these reaction pathways, the structure parameters, vibrational frequencies and energies for each stationary point have been calculated, and the corresponding reaction mechanism has been given by the potential energy surface, which is drawn according to the relative energies. The calculated results show that the corresponding major products CO and H2S as well as by-product CH4 are in agreement with experimental findings, which provided a new illustration and guidance for the reaction of H2 with OCS.  相似文献   

3.
The first Novozym 435 lipase-catalyzed Morita–Baylis–Hillman (MBH) reaction with amides as co-catalyst was realized. Results showed that neither Novozym 435 nor amide can independently catalyze the reaction. This co-catalytic system that used a catalytic amount of Novozym 435 with a corresponding amount of amide was established and optimized. The MBH reaction strongly depended on the structure of aldehyde substrate, amide co-catalyst, and reaction additives. The optimized reaction yield (43.4%) was achieved in the Novozym 435-catalyzed MBH reaction of 2, 4-dinitrobenzaldehyde and cyclohexenone with isonicotinamide as co-catalyst and β-cyclodextrin as additive only in 2 days. Although enantioselectivity of Novozym 435 was not found, the results were still significant because an MBH reaction using lipase as biocatalyst was realized for the first time.  相似文献   

4.
1,2,3,4-Tetra-O-acetyl-5-thio-D-ribopyranose as well as its 1-bromide were used as donors in the reaction with 4-cyano- and 4-nitrobenzenethiol, to give the corresponding thioglycosides in different anomeric ratios depending on the reaction conditions. Zemplén deacetylation afforded 4-cyanophenyl as well as 4-nitrophenyl 1,5-dithio-alpha- and beta-D-ribopyranosides, respectively. 1,3,4-Tri-O-acetyl-2-deoxy-5-thio-D-erythro-pentopyranose was synthesized from methyl 2-deoxy-D-erythro-pentofuranoside and was coupled with 4-cyano- and 4-nitrobenzenethiol to give anomeric mixtures from which 4-cyanophenyl as well as 4-nitrophenyl 1,5-dithio-beta-D-erythro-pentopyranosides were isolated after deacetylation. 1,4-Di-O-acetyl-2,3-dideoxy-5-thio-D-glycero-pentopyranose was obtained starting from 1,2,5,6-di-O-isopropylidene-D-mannitol and used as the donor in the glycosylation reaction with 4-cyano- and 4-nitrobenzenethiol. The resulting anomeric mixtures were separated to give, after deacetylation, 4-cyanophenyl as well as 4-nitrophenyl 2,3-dideoxy-1,5-dithio-beta-D-glycero-pentopyranosides. All of these thioglycosides showed significant antithrombotic activity on rats after oral administration.  相似文献   

5.
Leaf Alcohol     
The diethylamine-catalyzed aldol condensation of E-2-hexenal yielded a mixture of 2-E,4-E,6-E- (IV-a) and 2-E,4-Z,6-E-4-ethyldeca-2,4,6-triene-1-al (IV-b). Structual and geometrical elucidation of both alcohols were made by means of spectral evidence as well as by the catalytic hydrogenation leading to the same 4-ethyldecanol (VI). The “b-peak substance” detected in the leaf alcohol reaction products was proved to be identical with 4-ethyldecanol (VI). The treatment of the trienal containing the central Z-double bond with sodium under the leaf alcohol reaction condition failed to afford ethyl-propyl-benzyl alcohol, but gave 4-ethyldecanol (VI). This result safely excludes the operation of the previously suspected valence tautomerism (Cope rearrangement) in the leaf alcohol reaction, and accounts for the pathway of the formation of (VI).  相似文献   

6.
When a mixture of vinyl chloride/oxygen or vinyl bromide/air was passed through a mouse-liver microsomal system, volatile alkylating metabolites were trapped by reaction with excess 4-(4-nitrobenzyl)pyridine. The absorption spectra of the adducts, either from vinyl bromide or vinyl chloride, were identical with that obtained by reaction of chloroethylene oxide with 4-(4-nitrobenzyl) pyridine. Chloroethylene oxide decomposes in aqueous solution with a half-life of 1.6 minutes. After reaction of chloroethylene oxide and 2-chloroacetaldehyde with adenosine and Sephadex chromatography the binding products were compared with those formed in the presence of vinyl chloride, mouse-liver microsomes and adenosine. A common product of these reactions was tentatively characterized as 3-β-ribofuranosyl-imidazo-[2,1-i]purine.  相似文献   

7.
During the formation of radical A (2) and its precursor (tris(2-deoxy-2-L-ascorbyl)amine, 1) by the reaction of dehydroascorbic acid (DHA) with amino acid, ascorbic acid (AsA) and the reduced red pigment (3) were newly identified, in addition to scorbamic acid (SCA) and the red pigment (4), as intermediate products. The addition of AsA to the DHA-amino acid reaction, as well as to the DHA-SCA reaction, greatly increased the formation of 3 and 1. The reaction of AsA with 4 gave rapidly 3, followed by the gradual production of 1. From these results, a reaction pathway is proposed that 3 formed by the reduction of 4 with AsA is a key intermediate and its condensation with DHA followed by reduction with AsA might produce 2 and 1.  相似文献   

8.
Low-molecular-weight chitosan were prepared using 85% phosphoric acid at different reaction temperatures and reaction time. At room temperature, the viscosity average-molecular weights (Mv) of chitosan decreased to 7.1×104 from 21.4×104 after 35 days treatment. The degradation rate decreased with increasing hydrolysis time. The yields of chitosan also continuously decreased from 68.4 to 40.2% after 35 days. At 40, 60 and 80 °C, the molecular weight decreased to 3.70×104, 3.50×104 and 2.00×104 on 8 h hydrolysis, respectively. The yields of chitosan remain at a high level compared with that at room temperature and were 86.5, 71.4 and 61.3% at 40, 60 and 80 °C treatment, respectively. The different reaction time gave chitosan with different molecular weights. At 60 °C, the molecular weight of products decreased to 7.40×104 from 21.4×104 within 4 h, then decreased slowly to 1.90×104 in 15 h. It was also found that the water-solubility of chitosan increased as the molecular weight decreased. Results show the changes in yields and molecular weight of chitooligomers were strongly dependent on the reaction temperature and reaction time.  相似文献   

9.
Nitric oxide synthase (EC 1.14.13.39; NOS) converts L-arginine into NO and L-citrulline in a two-step reaction with Nomega-hydroxy-L-arginine (NOHLA) as an intermediate. The active site iron in NOS has thiolate axial heme-iron ligation as found in the related monooxygenase cytochrome P450. In NOS, tetrahydrobiopterin (BH4) is an essential cofactor for both steps, but its function is controversial. Previous optical studies of the reaction between reduced NOS with O2 at -30 degrees C suggested that BH4 may serve as an one-electron donor in the first cycle, implying formation of a trihydrobiopterin radical. We investigated the same reaction under identical conditions with electron paramagnetic resonance spectroscopy. With BH4-containing full-length neuronal NOS we obtained an organic free radical (g-value 2.0042) in the presence of Arg, and a similar radical was observed with the endothelial NOS oxygenase domain in the presence of Arg and BH4. Without substrate the radical yield was greatly (10x) diminished. Without BH4, or with NOHLA instead of Arg, no radical was observed. With 6-methyltetrahydropterin or 5-methyl-BH4 instead of BH4, radicals with somewhat different spectra were formed. On the basis of simulations we assign the signals to trihydropterin radical cations protonated at N5. This is the first study that demonstrates the formation of a protonated trihydrobiopterin radical with the constitutive isoforms of NOS, and the first time the radical was obtained without exogenous BH4. These results offer strong support for redox cycling of BH4 in the first reaction cycle of NOS catalysis (BH4 <--> BH3.H+).  相似文献   

10.
A new method for the colorimetric estimation of DNA has been developed by extensive modification of the Webb-Levy procedure using p-nitrophenylhydrazine as the colorimetric reagent. The method combines the chromogenic reaction with extraction of the DNA from the tissue, in order to minimize the destruction of DNA-deoxyribose that otherwise occurs during the extraction with hot acid. Other modifications include addition of sulfite to the reaction mixture, use of acetylated pNPH as the reagent, removal of excess reagent by reaction with acetylacetone, and extraction of the chromophore into butanol. These and other modifications have resulted in improved yield and stability of the chromophore and better reproducibility, in addition to the greater precision deriving from the combination of the processes of reaction and extraction of the DNA. The modified procedure gives a linear standard curve for 15 to 400 μg DNA in 4 ml reaction mixture and the upper limit of the range can be extended to at least 4 mg by dilution of a portion of the reaction mixture for chromophore development.  相似文献   

11.

Background

Xyloglucan xyloglucosyl transferases (EC 2.4.1.207), known as xyloglucan endotransglycosylases (XETs) use a disproportionation reaction mechanism and modulate molecular masses of xyloglucans. However, it is not known precisely how these size modulations and transfer reactions occur with polymeric acceptor substrates.

Methods

cDNAs encoding three barley HvXETs were expressed in Pichia pastoris and reaction mechanism and molecular properties of HvXETs were investigated.

Results

Significant differences in catalytic efficiencies (kcat·Km1) were observed and these values were 0.01, 0.02 and 0.2 s1·mg1·ml for HvXET3, HvXET4 and HvXET6, respectively, using tamarind xyloglucan as a donor substrate. HPLC analyses of the reaction mixtures showed that HvXET6 followed a stochastic reaction mechanism with fluorescently or radioactively labelled tamarind xyloglucans and xyloglucan-derived oligosaccharides. The analyses from two successive reaction cycles revealed that HvXET6 could increase or decrease molecular masses of xyloglucans. In the first reaction cycle equilibrium was reached under limiting donor substrate concentrations, while xyloglucan mass modulations occurred during the second reaction cycle and depended on the molecular masses of incoming acceptors. Deglycosylation experiments indicated that occupancy of a singular N-glycosylation site was required for activity of HvXET6. Experiments with organic solvents demonstrated that HvXET6 tolerated DMSO, glycerol, methanol and 1,4-butanediol in 20% (v/v) concentrations.

Conclusions

The two-phase experiments demonstrated that large xyloglucan molecules can bind in the acceptor sites of HvXETs.

General significance

The results characterise donor and acceptor binding sites in plant XET, report that HvXETs act on xyloglucan donor substrates adsorbed onto nanocrystals and that HvXETs tolerate the presence of organic solvents.  相似文献   

12.
Extracts of Pseudomonas B4 grown with l-β-lysine (3,6-diaminohexanoate) as the main energy source are shown to contain a 3-keto-6-acetamidohexanoate cleavage enzyme that converts 3-keto-6-acetamidohexanoate and acetyl · CoA reversibly to 4-acetamidobutyryl · CoA and acetoacetate. The enzyme catalyzes the third step in β-lysine degradation. In unfractionated extracts cleavage enzyme activity is generally assayed spectrophotometrically by coupling the forward reaction with excess 4-acetamidobutyryl · CoA thiolesterase, derived from the same organism, and measuring the rate of CoASH formation by reaction with 5,5-dithiobis(2-nitrobenzoic acid). Enzyme freed of thiolesterase is conveniently assayed by using 4-acetamidobutyryl · CoA and acetoacetate as substrates and measuring acetyl · CoA formation by means of citrate synthase reaction in the presence of 5,5-dithiobis(2-nitrobenzoic acid). The cleavage enzyme has been purified 38-fold to a specific activity of 237 mU/mg. The stoichiometry, equilibrium constant, molecular weight, and various kinetic properties of the enzymatic reaction have been determined. The substrate specificity of the Pseudomonas enzyme differs markedly from that of the analogous 3-keto-5-aminohexanoate cleavage enzyme of Clostridium subterminale strain SB4 and is broader. In the forward reaction 3-ketohexanoate can replace 3-keto-6-acetamidohexanoate, and propionyl · CoA can replace acetyl · CoA as a substrate. In the backward reaction, 4-acetamidobutyryl · CoA can be replaced by any of several CoA thiolesters including the butyryl, valeryl, 4-propionamidobutyryl, 3-acetamidopropionyl, and β-alanyl derivatives, and acetoacetate can be replaced by 2-methylacetoacetate. The products of these reactions have been characterized. Unlike the cleavage enzyme of Clostridium subterminale strain SB4, the Pseudomonas enzyme is not stimulated by Co2+ or Mn2+ and is not inhibited by EDTA, 5,5-dithiobis(2-nitrobenzoic acid), or p-chloromercuribenzoate. Tracer experiments indicate that carbon atoms 1 and 2 of acetoacetate are derived from carbon atoms 1 and 2 of 3-keto-6-acetamidohexanoate, and carbon atoms 3 and 4 of acetoacetate are derived from the acetyl group of acetyl · CoA. The cleavage enzyme is not formed in detectable amounts when Pseudomonas B4 is grown in a peptone-yeast extract medium.  相似文献   

13.
The kinetics of the reductive amination reaction of lupine-nodule glutamate dehydrogenase (l-glutamate:NAD oxidoreductase (deaminating), EC 1.4.1.2) were found to vary with the identity of the ammonium salt which was used as a substrate. Normal Michaelis-Menten kinetics were obtained with (NH4)2SO4 but when NH4Cl or NH4-acetate was varied apparent substrate inhibition was observed. Linear double-reciprocal plots were obtained with NH4Cl and NH4-acetate, however, if the concentration of Cl? or acetate was maintained constant by adding KCl or K-acetate. Chloride and acetate were subsequently found to cause linear noncompetitive inhibition with respect to NH4+ and the apparent substrate inhibition by NH4Cl and NH4-acetate can be explained as the result varying a substrate and a noncompetitive inhibitor in constant ratio. Other anions were also found to be inhibitors of the glutamate dehydrogenase reaction; I? caused parabolic noncompetitive inhibition with respect to NH4+ and NO3? caused slope-parabolic noncompetitive inhibition with respect to all three substrates of the reductive amination reaction. For the oxidation deamination reaction, Cl? was a linear competitive inhibitor with respect to both NAD and l-glutamate whereas NO3? caused parabolic competitive inhibition with respect to these reactants. To explain the results, it is proposed that anions bind to an allosteric site and cause a change in some of the rate constants of the reaction. Specifically, the results are consistent with anions causing decreases in the rates of association of NADH and 2-oxoglutarate with the enzyme and an increase in the rate of dissociation of NAD.  相似文献   

14.
To improve ATP production from adenine, we optimized cultivation and reaction conditions for the ATP producing strain, Corynebacterium ammoniagenes KY13510. In the conventional method, 28% NH4OH has been used both to adjust pH during cultivation and reaction, and to provide nitrogen for cell growth. In the ATP-producing reaction, high concentrations of inorganic phosphate and magnesium ion are needed, which form magnesium ammonium phosphate (MgNH4PO4) precipitate. To keep inorganic phosphate and magnesium ions soluble in the reaction mixture, it was indispensable to add phytic acid as a chelating agent of divalent metal ions. Under such conditions, 37 mg/ml (61.2 mM) ATP was accumulated in 13 h (Appl. Microbiol. Biotechnol. 21, 143 1985). If ammonium ion was depleted from the reaction mixture to avoid MgNH4PO4 formation, we expected that there was no need to add phytic acid and ATP accumulation might be improved. Therefore, we obtained the cultured broth of C. ammoniagenes KY13510 strain with low ammonium ion content (less than 1 mg/ml as NH3) by the method that a part of alkali solution (28% NH4OH) for pH control was replaced with 10 N KOH. Using this culture broth, ATP producing reaction was done in 2-liter jar fermentor, controlling the pH of the reaction mixture with 10 N KOH. Under these conditions, the rate of ATP accumulation improved greatly, and 70.6 mg/ml (117 mM) ATP was accumulated in 28 h. The molar conversion ratio from adenine to ATP was about 82%. Phytic acid was slightly inhibitory to ATP formation under these ammonium-limited conditions.  相似文献   

15.
The dissociation constants for GTP and GDP with tubulin were determined to be equal to 1.1 ± 0.4 × 10?7 M and 1.5 ± .6 × 10?7 (4°), respectively. A lower limit for the dissociation constant for ATP was established as equal to 6 × 10?4 M. The equivalent binding of GTP and GDP is not readily consistent with a mechanism in which the role of GTP in microtubule assembly is to bind to the protein to induce a conformation which is able to polymerize. An ATP-induced polymerization of tubulin apparently involves a transphosphorylation reaction in which GTP is formed and mediates the assembly. For this reaction to occur with desalted tubulin trace amounts of GDP are required; in the reaction of 0.1 mM ATP with 22.0 μM tubulin, 0.1 μM GDP induces about 80% as much tubule formation as is seen with 0.1 mM GTP alone.  相似文献   

16.
1. By means of a photographic method a study was made of the photolytic effect of light on the luminescent granules of Eucharis multicornis. 2. The photolytic reaction conforms to the Bunsen-Roscoe law. 3. The velocity of the photolytic reaction is not increased by a rise in temperature. 4. The photolytic reaction proceeds as a first order reaction.  相似文献   

17.
Novel l-bicyclocarba-d4T (1), an enantiomer of d-N-MCd4T has been enantiopurely synthesized as a potent anti-HIV agent starting from (R)-epichlorohydrin using tandem alkylation, chemoselective reduction of ester in the presence of lactone functional group, Grignard reaction, RCM reaction, and Mitsunobu reaction as key steps. l-N-MCd4T (1) was found to be very potent anti-HIV-1 (EC50 = 6.76 μg/mL) agent with no cytotoxicity.  相似文献   

18.
4-羟基苯甲酸(4HBA)是在自然界中广泛存在的芳香族化合物,也是很多天然产物和人工合成化合物的中间代谢产物。4HBA的代谢途径有原儿茶酸开环途径、脱碳酸途径和厌氧微生物的苯甲酰-CoA还原途径,以及尚未完全阐明的龙胆酸开环途径。从4HBA转化为龙胆酸的过程包含NIH重排反应步骤,本综述重点介绍NIH重排反应的研究进展并初步介绍了涉及4HBA降解过程中的酶。在本综述中,结合我们的研究工作介绍了一个嗜热Bacillus sp.B1菌株降解4HBA等芳香族化合物的代谢途径,最后对4HBA降解过程中的NIH重排反应研究进行了展望。  相似文献   

19.
Leaf discs of Populus deltoides cv. W-79/307 inoculated with race 4–C of Melampsora medusae, give a compatible reaction when incubated at 16°C (LT), but an incompatible reaction at 26°C (HT). When, over a 12–day period, sets of inoculated leaf discs were reciprocally transferred between the temperature regimes (LT to HT, or HT to LT), incubation for as short as 15 h at HT resulted in incompatibility which was not reversed by subsequent incubation at LT. In contrast, incubation of the inoculated discs at LT for at least 4 days was necessary for the development of a compatible reaction following transfer to HT. Further, incompatibility induced in discs by inoculation with race 4–C and incubation at HT is epistatic to expected compatibility following subsequent inoculation with race 4–M, a temperature non-sensitive biotype. The rapidity, irreversibility and epistatic nature of the temperature-induced incompatibility suggests that initial recognition in this pathosystem may be for incompatibility. The significance of these results in this host/pathogen system is discussed.  相似文献   

20.
In this paper, we show the substrate 4-(trimethylsilyl)-3-butyn-2-one is unstable, and can be easily cleaved into a carbonyl alkyne and trimethylhydroxysilane in aqueous buffer with pH above 6.0. However, this problem could be effectively solved by lowering the buffer pH. Meanwhile, the efficient synthesis of enantiopure (S)-4-(trimethylsilyl)-3-butyn-2-ol, a key intermediate for preparing a 5-lipoxygenase inhibitor, has been successfully conducted through the asymmetric reduction of 4-(trimethylsilyl)-3-butyn-2-one with immobilized Candida parapsilosis CCTCC M203011 cells. For optimization of the reaction, various influential variables, such as buffer pH, co-substrate concentration, reaction temperature and substrate concentration, were systematically examined. All the factors mentioned above had effect on the reaction to some extent. The optimal buffer pH, co-substrate concentration, reaction temperature and substrate concentration were 5.0, 65.3 mM, 30 °C and 3.0 mM, respectively, under which the maximum yield and product e.e. were as high as 81.3% and >99.9% after a reaction time of 1 h, which are much higher than the corresponding values previously reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号